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A semiclassical approach is presented that allows us to extend the usual Van Vleck—Gutzwiller
formulation to the description of nonadiabatic quantum dynamics on coupled potential-energy surfaces.
Based on Schwinger’s theory of angular momentum, the formulation employs an exact mapping of the
discrete quantum variables onto continuous degrees of freedom. The resulting dynamical problem is
evaluated through a semiclassical initial-value representation of the time-dependent propagator. As a
first application we have performed semiclassical simulations for a spin-boson model, which reproduce
the exact quantum-mechanical results quite accurately. [S0031-9007(96)02196-5]
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In many areas of physics, classical and semiclassi- In this work, we propose a new semiclassical approach
cal methods represent a valuable approach to descriie consistently describe the coupling of quantum and
guantum-dynamical processes. A classical description islassical DoF, which is semiclassically exact and also
well established in cases where both the system undgromising from a computational point of view. The basic
consideration and the observable to be calculated have daea is to map the discrete quantum DoF onto continuous
obvious classical analog (e.g., the translational-energy dif99oF and evaluate the resulting dynamical problem by a
tribution after a scattering event). Itis less clear, howeversemiclassical “initial-value representation” [11—14] of the
how to incorporate discrete quantum-mechanical degredsne-dependent propagator. The mapping of discrete DoF
of freedom (DoF) which do not possess an obvious classiento continuous DoF is based on the representation of spin
cal counterpart into a classical theory. Aslérstate sys- operators by boson operators. Well-known examples of
tem coupled to (one or many) continuous DoF describesuch a mapping are the Holstein-Primakoff transformation
a large variety of phenomena in chemical and solid stat§l5], which represents a two-level system by a single
physics as well as in quantum optics [1], a semiclassicahonlinearly coupled boson DoF, and Schwinger's theory
modeling of this dynamics is interesting both from a con-of angular momentum [16], which represents an arbitrary
ceptional and a computational point of view. spin system by two independent boson DoF.

With this end in mind, numerous quantum-classical In order to represent a generétlevel system
hybrid models have been proposed, most notably the
“classical-path” approach [2,3] and the “surface-hopping” H =D 1D hum(ml (1)
approach [4,5]. Because of the drastic approximations o
employed in these models, however, there are wellln terms of N continuous DoF, we need to extend
known shortcomings in both approaches, e.g., classicaPchwinger's formulation.  Representing th& con-
path methods do not obey microreversibility and thetinuous DoF by the harmonic-oscillator creation and
the coherence of the quantum system [6]. A dynamicallyi@>dy] = 8..» and basis statel®,, ..., ny), the mapping
consistent formulation of the coupling of quantum andrelations for the operators and basis states read

classical DoF can be obtained within the path-integral for- ) Wl > afam (2)
malism. Employing a stationary-phase evaluation of the
path integral, Pechukas showed that the classical parti- [ = 1011, ---On). 3)

cles move in a nonlocal force field generated by the quanAccording to Eq. (2), the Hamiltonian (1) is written in the
tum particles, thus reflecting the nonlocal nature of the‘boson representation” as

quantum system [7]. Pechukas’s theory is conceptionally

illuminating and is “semiclassically exact” in the sense H = Za:fhnmam, (4)
that it requires only the basic semiclassical Van Vleck— nm

Gutzwiller approximation [8] to the quantum propagator;thus yielding the exact identity for the propagators
the calculation of nonlocal forces, however, is in prac-(Z = 1)

tice more cumbersome than the exact quantum caIcquwn|e*iﬂt|¢m> =01, Oxle 0, - 1,,---Op).
tion. Employing generalized coherent-states theory [9],

the problem of representing both quantum and classical ()
DoF has also been discussed within a phase-space paffhe mapping of the operators (2) preserves the commu-
integral formulation [10]. tation relations, but represents an identity only if it is
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restricted onto the oscillator subspace with a single excieircumvent the cumbersome root search, one may rewrite
tation. Starting with a state in this subspace, however, ithe propagator as an initial-value problem, thereby yield-
is clear from Eq. (4) that the system will always remain ining an initial-value representation of the propagator [11—
this subspace. In the case of a simple two-level systeni4]. This way the semiclassical wave function is given
the above formalism is equivalent to Schwinger’s formu-as a phase-space integral over the initial conditions=
lation [16]. {x,(0), X;(0)}, po = {p.(0), P;(0)}, which is amenable to

In order to go back to our original goal of a consistenta Monte Carlo evaluation. In this work, we use a Herman-
semiclassical description of quantum and classical DoFKluk-type representation of the propagator [12], which
we consider the generic situation that the matrix eleyields for the semiclassical wave function [17]
mentsh,,, of the Hamiltonian depend on the continuous '
DoF X = {X;} with the momentaP = {P;}. Identifying d,(X,1) = [ dxo [ APoWxypy Cxep, ()X, (1))
the matrix elements witlk,,, = [Vo(X) + T(P)]16,m +
V.m(X), whereVy(X) is a state-independent potential term
andT (P) denotes the kinetic energy, we thus obtain X U Gxopo(Xjo 1) (8b)

H =[T(P) + Vo(X)]1 + Z [ ) Vo () (| . (6)  HeTe wy,p, denotes the weight function of the integra-
nm tions, the complex functionCy,p,(7) incorporates the

elements of the stability (or monodromy) matrix [12,14],

i(al — a,)/2, the corresponding Hamiltonian in the S(f)l/jepreselnts the clas?caliactlon, abdup (X 1) :

boson representation reads 7t ex) =X - X;(0F + iPi()[X; - X0 s
the Gaussian wave packet (or coherent state) pertaining

H = hy(X,P) + %Z(xnxm + pupm)Vam(X), (7)  to the nuclear DoFX;. Denoting the projection of the
nm electronic wave packepy,p,(x, 1) on the corresponding
whereho(X, P) = T(P) + Vo(X) — %Zn V,,(X) and we nth harmonic-oscillator eigenflf,?ction by: | (1)), the
have assumed that,,, = V. . Although the Hamilton- complex electronic coefficientgx,p,(¢) are given as
ian (7) describes a variety of physical problems [1], we )
will henceforth refer to the variables,, p, as electronic X (1) = (1 (@) []€0] (@) (8¢c)
DoF and to the variableX;, P; as nuclear DoF. Equa- _ mEn _
tion (6) thus describes a situation ubiquitous in molecular Equations (8a)—(8c) describe the time-dependent semi-
and solid state physics, that is, nuclear motion on nonadig:lassical wave function pertaining to the nonadiabatic sys-
batically coupled electronic potential-energy surfaces.  €m (6) and represents_the main theor_etlcql result of this
As is stated by Eq. (5), the Hamiltonians (6) andLetter. It has been derived by employing (i) a quantum-
(7) are fully equivalent when used as the generator offechanically exact mapping (2) of the discrete quantum
guantum-mechanical time evolution. Contrary to Eq. (6),20F onto continuous DoF and (ii) a semiclassically ex-
however, the quantum-mechanical system described t initial-value representation (8b)_ of the resulting time-
Eq. (7) has a well-defined classical analog, which will bedependent propagator, thus treating both quantum and
the focus of the remainder of this work. The transitionclassical DoF on the same dynamical footing.

to classical mechanics is performed by changing from the It is instructive to compare the formulation outlined
Heisenbergperatorsy,(r) (yi = xu. pn. X;. P;) Obeying  above with existing semiclassical theories of nonadiabatic

Heisenberg’s equations of motiony( = [y, H]) to  dynamics [2,3,18]. The idea of a consistent semiclassi-

the corresponding classichinctionsobeying Hamilton’s ~ €al treatment of electronic and nuclear DoF was antici-
equations (e.g.;x = 0H/dpy). Furthermore, we need Pated in the classical electron analog model of Miller
to derive the semiclassical approximation to the time&nd co-workers, who constructed various classical-path-
dependent wave function of the nonadiabatic problem  like Hamiltonian functions which subsequently were “re-
quantized” in order to obtain a semiclassical formulation
X|W¥() = Zq%(x,t) l,), (8a) [3]. While the quantum-mechanical mapping formalism
n [EQ. (2)] uniquely determines the semiclassical propaga-
which, as usual, is obtained by expressing the wavé¢or as well as the initial conditions, the quantum-classical
function in terms of a coordinate-dependent propagatoanalogies employed in Ref. [3] are not unique and involve

Introducing the variablesx, = (a,;r + a,,)/\/i, Dn =

K:(x{,...,xy, X" x],...,xy,X’), which then is evalu- additional approximations. Furthermore, it is interesting
ated within the semiclassical Van Vleck—Gutzwiller ap-that standard classical-path theories [2] and the semiclas-
proximation [8]. sical time-dependent self-consistent-field formulation [18]

The evaluation of the semiclassical propagator repreean be directly derived from Egs. (8a)—(8c). The latter
sents a nonlinear boundary-condition problem, i.e., givefiormulation is obtained by settingy,p, (r) = 1 and ne-
a trajectory characterized by the positie(r) = x, and  glecting an electronic phase factor, while the former for-
momentump(z) = p,, we need to find the roots of the mulation additionally neglects the action integral and the
equationx, = x,(xo, po) to calculate the propagator. To nuclear Gaussian wave packets [17].

579



VOLUME 78, NUMBER 4 PHYSICAL REVIEW LETTERS 27 ANUARY 1997

To demonstrate that the semiclassical formulation outRabi oscillation due to the electronic coupling which
lined above is practically useful for the calculation of nona-is superimposed by a low-frequency beating due to
diabatic processes, we consider a simple but nontrivial aghe vibrational motion. The beating of the intensity is
plication of the theory, that is, the well-known spin-bosonaccompanied by a breathing of the width of the wave
problem [1] with a single vibrational mode. The model function. The semiclassical wave function (lower panel)
consists of two coupled electronic states with the matrixs seen to map the exact quantum-mechanical result (upper
elements ofig = w/2(X> + P?), Vi1 =A/2 + kX, Voo = panel) in almost every detail. A further quantity of
—V11, andVy; = g. For the numerical example shown interest in the discussion of nonadiabatic processes is
below we choose the bias = 1, the electronic coupling the total time-dependent population probability of the
g = 0.2A, the vibrational frequencyw = 0.1A, and the electronic statéiy, ), which is given by
vibronic couplingx = 0.05A. Although both subprob-
lems of the spin-boson model (i.e., the two-level system P,(t) = [ dx|®,(X, ). 9
and the shifted harmonic oscillator) are solved exactly . _
by the semiclassical formulation given above, the coufigure 2 compares quantum (dotted line) and semi-
p|ed prob'em (|e’ forK + 0) |S nonseparab'e and may CIaSS!CaI (fu” I|ne) CaICUIat|OnS OPZ([), Wh|Ch aga”’].
give rise to highly nonlinear dynamics [19]. To calcu- @€ in good agreement. Both the wave function
late the semiclassical wave function, we have evaluatet2(X.7) and the population probability,(r) directly
the phase-space integral in Eq. (8b) via a standard Montéflect the strong nonadiabatic dynamics of the system,
Carlo scheme, solving the equations of motion for the threé€-, in the absence of electronic coupling we have
DOF (x1,x,, X) and for the corresponding X 6 stability =~ P2(X.7) =0, P»(z) = 0. For larger times (1 > 65)
matrix for 10° trajectories. the vibronic beating of the wave function and the

Assuming that the system is initially in the electronic POpulation probability pertains. The accuracy of the
state |) and in the vibrational ground state of the sem|cla§S|caI approximation, howeyer, deterlorates. for
unshifted harmonic oscillator, Fig. 1 shows the squaredonger times due to chaotic trajectories which result in a
modulus of the time-dependent wave functidm (X, r)|>  rapidly increasing prefacto€y,p, (1) in Eq. (8b). These
projected on the electronic stafe»). Being zero at d|ff|_cult|es,_ hoyvever, are not specific to the nonadla_—
time ¢+ = 0, the wave function exhibits a high-frequency batic Hamiltonian (7), but represent a general problem in
the semiclassical evaluation of the time-dependent wave
function in the classically chaotic regime [13,14].

In conclusion, we have outlined a semiclassical ap-
proach that allows us to extend the Van Vleck—Gutzwiller
formulation to the description of nonadiabatic dynam-
ics on coupled potential-energy surfaces. The theory is
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< classical simulations, which reproduce the exact quantum-
mechanical results quite accurately.
There are several interesting continuations of this work
which include (i) the application of the semiclassical ap-
proach to gain a physically more intuitive understand-
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FIG. 1. Squared modulus of the time-dependent wave func-
tion projected on thdy,) electronic state. The upper panel FIG. 2. Quantum-mechanical (dotted line) and semiclassical
shows the exact quantum-mechanical calculation; the loweffull line) calculations of the time-dependent population proba-
panel shows the semiclassical approximation. bility of the [¢,) electronic state.
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