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Solutions to the Time Dependent Schrödinger and the Kadomtsev-Petviashvili Equations
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A method to obtain a new class of discrete eigenfunctions and associated real, nonsingular,
decaying, “reflectionless” potentials to the time dependent Schrödinger equation is presented. Using the
inverse scattering transform, related solutions of the Kadomtsev-Petviashvili equation are found. The
eigenfunctions have poles of orderm, m . 1 in the complex plane and are also characterized by an
index, or “charge,” which is obtained as a constraint in the theory. [S0031-9007(96)02189-8]
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In this Letter we describe a method to obtain a new cl
of decaying potentials and corresponding solutions to
time dependent Schrödinger and Kadomtsev-Petviashv
(KPI) equations. Both of these equations have wide ap
cation in physics. The Schrödinger operator is centra
important in quantum mechanics and the KP equation
a ubiquitous nonlinear wave equation governing wea
nonlinear long waves in two dimensions with slow tran
verse variations. It is well known that the nonstationa
Schrödinger operator can be used to linearize the KPI eq
tion via the inverse scattering transform [IST; (see e
[1])]. In [2] it was shown by IST that certain discrete stat
associated with complex conjugate pairs of simple eig
values of the Schrödinger operator are related to lump t
soliton solutions which decay asOs1yr2d, r2 ­ x2 1 y2.
The lump solutions of KPI have been extensively stud
since they were first found by direct methods [3].

Here we demonstrate that there are real, nonsingu
decaying potentials of the Schrödinger operator wh
correspond to discrete states with multiple eigenvalu
Corresponding to real potentials, one class of these ei
functions has poles/eigenvalues in the upper (lower) h
plane of multiplicity, orderm sm . 1d, but in the lower
(upper) half plane the conjugate eigenvalue is simp
We give explicit formulas form ­ 2, 3. These solutions
decay asOs1yr2d. Thus, unlike the time independen
Schrödinger equation, there are real, decaying poten
of the time dependent Schrödinger equation which
related to eigenvalues with multiplicity. We note, how
ever, that these potentials are not absolutely integra
and this underlies the fact that the potentials are cha
terized by the order of the pole and a topological numb
an index or winding number, which we refer to as t
charge.

The properties of the multilump solutions are intere
ing. They can be thought of as a collection ofm indi-
vidual humps which interact in a nontrivial manner. Th
havem maxima which move with different asymptotic ve
locities ast ! 6`.

In what follows we outline the methods and give t
main results. The nonstationary Schrödinger equatio
0 0031-9007y97y78(4)y570(4)$10.00
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taken in the form

icy 1 cxx 1 uc ­ 0 . (1)

We usey as the “time” variable in Eq. (1) because, vi
IST, y plays the role of the transverse coordinate in t
solutionusx, y, td of the KPI equation:

sut 1 6uux 1 uxxxdx ­ 3uyy . (2)

Equation (2) is obtained from the compatibility of (1) an

ct 1 4cxxx 1 6ucx 1 3uxc 2

3i

√Z x

2`
uy dx0

!
c 1 ac ­ 0 , (3)

wherea is an arbitrary constant.
The discrete states we are concerned with here are

eigenvalues of the Fredholm integral equation,

msx, y; kd ­ 1 1
Z `

2`

Z `

2`
Gsx 2 x0, y 2 y0; kd

3 sumd sx0, y0; kd dx0 dy0 (4)

(hereafter the limits on all double integrals are fro
2`, `), where c ­ m expfiskx 2 k2ydg, msx, y; kd ;
mskd, andGsx, y; kd ­ f1ys2pd2g

R R
Ĝsp, kd expsipx 1

iqyd dp dq, with Ĝsp, q; kd ­ 1ysp2 1 2pk 1 qd. For
real k there are two limits:G6skd, where6 denotes the
limit from Imk . 0 and Imk , 0, respectively;G6skd
are analytic in their respective half planes (cf. [1,2]
From Eq. (4) andG6skd one constructs two eigenfunc
tions m6skd which are meromorphic in the upper/lowe
half k-planes. These eigenfunctions lead to a nonloc
Riemann-Hilbert problem from which the inverse scatte
ing is carried out. For ease of discussion, here we w
concern ourselves with pure pole solutions ofm, where
m1 ­ m2. Continuous spectrum can be added, but w
shall not do so here.

The usual discrete states/lump solutions can be fou
by solving the following linear algebraic system o
equations (see, e.g., [1,2]),

1 1

2nX
m­1
mfij

fm

kj 2 km
­ 2ifjfj, j ­ 1, . . . 2n , (5)
© 1997 The American Physical Society
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where fj ­ fskjd ­ x 2 2kjy 1 gjstd and the eigen-
functionmskd of (4) is written

mskd ­ 1 1

2nX
m­1

fm

sk 2 kmd
. (6a)

The corresponding “reflectionless” potentials are giv
by

u ­ 22i
≠

≠x

2nX
m­1

fm ­ 2
≠2

≠x2 ln F , (6b)

where F is the determinant of the coefficient matrix o
the system (5). Real, nonsingular potentials are obtain
whenkj1n ­ kj andgj1nstd ­ gj, j ­ 1, . . . , n. Lumps
for KPI are obtained when one inserts the proper tim
dependence forgjstd, obtained from (3). It is found
that gjstd ­ 12k2

j t 1 gj0, wheregj,0 ; gjst ­ 0d. We
now describe for the casen ­ 2 in the above formulas
(two pairs of conjugate eigenvalues in the upper/low
half planes) how, by appropriately coalescing the simp
eigenvalues of the Schrödinger operator, we can find d
crete states which correspond to eigenvalues of multip
ity 2 in (say) the upper half plane and simple eigenvalu
in the lower half plane. In the limiting process we tak
k1 ­ k2 1 ´, k3 ­ k1, k4 ­ k2, k1 ­ a 1 ib, j´j ø 1,
expand as follows:

fm ­
f

s21d
m

´
1 fs0d

m 1 fs1d
m ´ 1 . . . ,

gm,0 ­ g
s21d
m,0 y´ 1 g

s0d
m,0 1 g

s1d
m,0´ 1 . . . , m ­ 1, . . . 4 ,

and substitute these expansions into Eq. (5). At ord
1y´2 there are various possibilities. But reality force
a condition ong

s21d
m,0 . We restrict tog

s21d
1,0 ­ g

s21d
4,0 ­

2g
s21d
2,0 ­ 2g

s21d
3,0 ­ 2i. In order for m to have a

finite limit as ´ tends to zero, we are forced to tak
f

s21d
1 1 f

s21d
2 ­ f

s21d
3 1 f

s21d
4 ­ 0. Proceeding to

subsequent orders is straightforward. It is convenient
define new variablesf

s0d
1 1 f

s0d
2 ; F1, f

s0d
3 1 f

s0d
4 ­

F1, f
s21d
1 ; C2. We find that f

s21d
3 ­ f

s21d
4 ­ 0,

f
s21d
1 ­ iF1ys f 1 gs0dd, gs0d ; g

s0d
1,0, f ; fsk1d,

f
s0d
3 ­ f

s0d
4 , and in the limit´ ! 0 the eigenfunctionm

then has the following spectral structure:

m ­ 1 1
C2

sk 2 k1d2
1

F1

sk 2 k1d
1

F1

sk 2 k1d
. (7)

The following system of equations is obtained:
g

2if
F1 2 aF1 ­ 1 , (8a)∑

2a3

ff
1

a2

i

µ
1
f

1
1
f

∂
2 a

∏
F1 1

g

2if
F1 ­ 1 , (8b)

where

a ­
1

k1 2 k1
, g ­ gsk1d ­ f2 1 dstd 2 2iy ,

dstd ­ ds0d 1 24ik1t, sds0d ­ g
s1d
1,0 2 g

s1d
2,0d .
n

ed

e

r
le
is-
c-
s

er
s

to

Finally, the solution, a reflectionless potential or a mul
tipole lump order-2 to the KPI equation, is obtained
from (6b),

usx, y, td ­ 2
≠2

≠x2 ln F2 (9a)

F2 ­ sz02 2 4b2y02 2 24bt 1 dRd2

1

∑
2y0s1 1 2bz0d 1

gI

b
2 dI

∏2

1
1

b2

∑µ
z0 2

1
2b

∂2

1 4b2y02 1
1

4b2

∏
, (9b)

wherek1 ­ a 1 ib, z0 ­ x0 2 2ay0, x0 ­ x 2 12sa2 1

b2dt 2 x0, y0 ­ y 2 12at 2 y0, x0 ­ sgIa 2 gRbdyb,
y0 ­ gIy2b.

Actually this particular solution of KPI was constructed
some time ago [4], but without reference to the underlyin
scattering problem. It was studied more recently in [5
again purely in terms of KP solutions and related dynamic
The present approach serves to put the class of multipo
lump solutions into a unified framework via scattering
theory of the time dependent Schrödinger operator.

This multipole order-2 configuration for the KPI
equation is composed of two mutually interacting humps
each of which moves with distinct asymptotic velocities
For larget the maxima of the humps are located approx
mately at the zeros ofF. Both humps have a maximum
amplitude usx6, y6d , 16b2 as t ! 6`. Assuming
b . 0, as t ! 2` the two maxima (1 denotes fast,2
denotes slower hump) are located at

x6 , 12sa2 1 b2dt 6

q
24a2jtjyb 1 x0

1 2ay0 2 1y2b ,

y6 , 12at 6

q
6jtjyb 1 y0 ,

and ast ! 1`, x6 , 12sa2 1 b2dt 6
p

24bt 1 x0 1

2ay0, y6 , 12at 1 y0.
These results clearly show that the humps display

nontrivial interaction. Ast ! 6` the humps diverge
from one another, proportional tojtj1y2. This situation
is different from the “pure” lump case where each lump
has the same velocity ast ! 6`.

We next outline how the class of multipole lump
solutions can be obtained directly as discrete multip
eigenvalue states of the time dependent Schröding
equation.

In the case when the eigenfunctionmskd consists only
of simple poles, substitution ofm given by (6a) into the
integral equation (4), noting that the eigenfunctionsfm

are homogeneous solutions of the integral equation, a
using properties of the Greens function and Fredhol
theory, the following equation is found [2]:

nskjd ­ 2ifskjdfj , (10)

where in general we denotenskjd ; limk!kj (m-singular
part of m); in this casenskjd ­ limk!kj

fm 2 fjyk 2

kjdg. In addition, the constraintQskj , fjd ­ 1 is required,
571
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Qskj , fjd ;
i

2p
sgnsImkjd

Z Z
ufj dx dy . (11)

We call Qskj , fjd the charge or index; we discuss th
more fully later. Thus for simple poles, which are relat
to usual lumps of KPI,Qskj , fjd ­ 1.

Other eigenfunctions with higher order poles can be
scribed within this framework. We define the charge
the same way. Then, substitution of the eigenfunctionm,
with a double pole in the upper half plane/single in t
lower half plane, given by (7), into the integral equatio
(4) with the coefficientsC2, F1 being homogeneous solu
tions, and again using the properties of the Greens fu
tion and Fredholm theory yields the following equations

(a) At k ­ k1,

F1 ­ 2ifsk1dC2; nsk1d ­ 2gC2y2 , (12a)

with the constraintsQsk1, F1d ­ 2 and
R R

uC2dxdy ­
0;

(b) atk ­ k1,∑
dn

dk
1 ifskdn

∏
k­k1

­
1
2

gF1 , (12b)

with Qsk1, F1d ­ 2, whereg and the definition ofn are
given above,

nsk1d ­ lim
k!k1

fm 2 C2ysk 2 k1d2 2 F1ysk 2 k1dg ,

nsk1d ­ lim
k!k1

fm 2 F1ysk 2 k1dg .

Inserting the representation form, Eq. (7), into Eqs. (12a)
and (12b) fornskd yields the system of equations (8) an
t
s

s

a

e
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the reflectionless potential/multipole lump order-2 give
by Eq. (9). We say that this solution has charge=
We see that the quantitiesQ may take on other values
different than 1, which was the case for standard simp
pole-lump solutions.

The method extends to higher order multipoles. T
main results are the following. The eigenfunctionmskd
has the expansion

mskd ­ 1 1
C3

sk 2 k1d3 1
C2

sk 2 k1d2 1
F1

k 2 k1

1
F1

k 2 k1
. (13)

Substituting (13) into (4) and noting that the function
C3, F1 are homogeneous solutions yields the followin
equations and constraints:

(a) At k ­ k1,

C2 ­ 2is fygdF1 ­ 2ifC3, nsk1d ­ 2shy3gdF1

with Qsk1, F1d ­ 3 and
R R

uCjdxdy ­ 0; j ­ 2, 3;
(b) atk ­ k1,∑

d2n

dk2 1 2if
dn

dk
2 gn 1

1
3

hF1

∏
k­k1

­ 0 ,

with Qsk1, F1d ­ 3. In the above formulas, g
was given earlier, and we definehsk1d ; h ;
if3 1 f3idstd 1 6ygf 1 bstd. From Eq. (6) we obtain
the reflectionless potential/multipole lump order-3 of KP
u ­ 2
≠2

≠x2
ln F3

F3 ­ fz03 2 12b2y02z0 1 3z0sdR 2 24btd 1 6by0sdI 2 2y0d 1 bR 2 24tg2

1 f8b3y03 2 6bz02y0 1 3z0sdI 2 2y0d 2 6by0sdR 2 24btd 1 bI g2
(14)

1
9

4b2

∑µ
z02 2 4b2y02 1 dR 2 24bt 2

z0

b
1

1
2b2

∂2

1 s4y0bz0 2 dId2 1
1

b2

µ
z0 2

1
b

∂2

1 4y02 1
1

4b4

∏
,

i

s
e

will
ns
ple,
where we note that the time dependence of the KP solu
is obtained from Eq. (3);gstd, dstd is determined to be a
given before, andbstd ­ 24it 1 b0. Since the charges
Qsk1, F1d ­ Qsk1, F1d ­ 3 we say that this solution ha
charge=3.

This multipole order-3 configuration for the KPI equ
tion is composed of three mutually interacting hump
which move with distinct asymptotic velocities. For larg
t the maxima of the humps are located approximat
at the zeros ofF3. As t ! 6` the three maxima are
located at (assumingb . 0) sx0

1, y0
1d, sx0

0, y0
0d, sx0

2, y0
2d,

wherex0
0 ­ 12sa2 1 b2dt 1 x0, y0

0 ­ 12at 1 y0, and as
t ! 2` x0

6 , x0
0 2 4y3b, y0

6 , y0
0 6

p
18jtjyb, and as

t ! 1`, x0
6 , x0

0 6
p

72bt 1 1ys6bd, y0
6 , y0

0.
on

-
,

ly

Higher order multipole lumpsm . 3 can be con-
structed in the same manner as outlined here, but we
not dwell on that. Moreover, other classes of solutio
can also be obtained via similar techniques. For exam
if the eigenfunctionm has the spectral structure

m ­ 1 1
C2

sk 2 k1d2 1
F1

sk 2 k1d
1

C2

sk 2 k1d2

1
F1

sk 2 k1d
, (15)

with Qsk1, F1d ­ Qsk1, F1d ­ 3, then the following so-
lution results,u ­ 2≠2sln G3dy≠x2, where
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G3 ­ sz03 2 12b2y02z0 1 12t 1 bRd2 1 s8b3y03 2 6bz02y0 1 bId2

1
9

4b2

Ω∑µ
z0 2

1
2b

∂2

1 4b2y02 1
1

4b2

∏ ∑µ
z0 1

1
2b

∂2

1 4b2y02 1
1

4b2

∏æ
, (16)
th
l
o
r
c
th

o
i

e

in
n

e

.

r.
g

m

he

t
d

n

s.

,

with
R R

uCj dx dy ­ 0, j ­ 2, 2.
These real, nonsingular, reflectionless potentials of

time dependent Schrödinger operator/multipole-lump so
tions of KPI are most simply characterized by the order
the pole in the spectral theory and their associated cha
or index. Furthermore, consideration of spectral fun
tions formed by superposition of, say, terms like (7) wi
(double) poles atk1, . . . , kr and single poles atk1, . . . , kr

with Q1, . . . , Qr ­ 2 implies a 2r 3 2r linear system
whose solution yields a2r hump interacting solution of
KPI. Similar considerations apply to superposition
terms like, say, (13) or (15). One can also consider a m
ture of multiple poles with different chargesQ1, . . . , Qj.
The equations which define the solution and overall int
action of humps can be found via the above method.
this way a broad class of new real, nonsingular decay
solutions of KPI with interesting physical properties ca
be obtained.

Finally, we discuss the notion of the charge or ind
Q. Interestingly, this quantityQ has a topological
interpretation. Indeed, for lump solutions the residueF

of the pole at, say,k1 has the asymptotic formF ­
sln hd0 1 Os1yr2d, r ;

p
x2 1 y2, where the derivative

is taken along a contourG` that surrounds the origin once
Then:Q ­ index h.

For example, Eq. (10) callingfj ; F, kj ; k, fj ;
f implies thatF ­

i
f 1 Os 1

r2 d. UsingFxx 1 2ikFx 1

iFy 1 uF ­ 0 and Green’s theorem we have

Qsk, Fd ;
i

2p
sgnsImkd

Z Z
uF dx dy

­
21
2p

Z
G`

dx 2 2kdy
f

­
1

2pi

Z
G`

df
f

­
1

2pi

Z
fsG`d

dz
z

­ 1 , (17)
e
u-
f

ge,
-

f
x-

r-
In
g

x

and we see from (17) thatQ ­ winding number off.
The method for the double pole with charge=2 is simila
Substituting the representation (7) into (1) (recallin
c ­ m expfiskx 2 k2ydg, integrating overx, y and using
Green’s theorem and the properties of the solution fro
(12a) yields, in the same manner as (17),

Qsk1, F1d ­
1

2pi

Z
G`

dg
g

­
1

2pi

Z
gsG`d

dz
z

­ 2 .

(18)
Hence from (18),Qsk1, F1d is the winding number ofg.
From the definition of charge andu ­ 22is≠y≠xd sF1 1

F1d, it follows that Qsk1, F1d ­ Qsk1, F1d. One pro-
ceeds in a similar manner for higher charges. For t
examples discussed earlier it is also clear thatQ ­
sindexFdy2 whereF is defined by Eqs. (6b) or (9b), etc.

Full details will be published separately.
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