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Solutions to the Time Dependent Schrodinger and the Kadomtsev-Petviashvili Equations
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A method to obtain a new class of discrete eigenfunctions and associated real, nonsingular,
decaying, “reflectionless” potentials to the time dependent Schrédinger equation is presented. Using the
inverse scattering transform, related solutions of the Kadomtsev-Petviashvili equation are found. The
eigenfunctions have poles of order, m > 1 in the complex plane and are also characterized by an
index, or “charge,” which is obtained as a constraint in the theory. [S0031-9007(96)02189-8]

PACS numbers: 03.40.Kf, 02.30.Jr, 03.65.Ge, 03.80.+r

In this Letter we describe a method to obtain a new clasgaken in the form
of decaying potentials and corresponding solutions to the i, + Yo + up = 0. 1)
time dependent Schrédinger and Kadomtsev-Petviashvili-| ’ N

(KPI) equations. Both of these equations have wide appliYV€ usey as the “time” variable in Eq. (1) because, via

cation in physics. The Schradinger operator is centrallyST: ¥ Plays the role of the transverse coordinate in the
important in quantum mechanics and the KP equation isolutionu(x, y, 7) of the KPI equation:
a ubiquitous nonlinear wave equation governing weakly (uy + Ouuy + tyer)r = 3utyy . 2

nonlinear_lo_ng waves in two dimensions with slow _tranS'Equation (2) is obtained from the compatibility of (1) and
verse variations. It is well known that the nonstationary

Schrddinger operator can be used to linearize the KPI equa- Yo + Ao + Ouipe + 3uy -
tion via the inverse scattering transform [IST; (see e.g., N , B
[1])]. In[2]it was shown by IST that certain discrete states 3i LW dx' | + ap =0, ©)

associated with complex conjugate pairs of simple eigen- i )
values of the Schrédinger operator are related to lump typ®/N€réa is an arbitrary constant. ,
soliton solutions which decay a(1/r2), r> = x* + y2. The discrete states we are concerned with here are the

The lump solutions of KPI have been extensively studiedti9envalues of the Fredholm integral equation,
since they were first found by direct methods [3]. L (" / .

Here we demonstrate that there are real, nonsingular‘f(x’y’k) =1+ f,m f,mG(x T XLy Tk
decayin otentials of the Schrodinger operator which ;o I
corre{:pgng to discrete states with n?ultiplg eigenvalues. X (up) (', y's k) dx'dy” (4)
Corresponding to real potentials, one class of these eigefbereafter the limits on all double integrals are from
functions has poles/eigenvalues in the upper (lower) half-,%), where ¢ = wexdi(kx — k2y)], w(x,y;k) =
plane of multiplicity, ordem (m > 1), but in the lower k), andG(x, y; k) = [1/2m)*] [ [ G(p, k) explipx +
(upper) half plane the conjugate eigenvalue is simpleiqy) dp dg, with G(p,q;k) = 1/(p* + 2pk + q). For
We give explicit formulas forn = 2,3. These solutions realk there are two limitsG+ (k), where = denotes the
decay asO(1/r?). Thus, unlike the time independent limit from Imk > 0 and Imk < 0, respectively;G- (k)
Schrédinger equation, there are real, decaying potentiaRe analytic in their respective half planes (cf. [1,2]).
of the time dependent Schrédinger equation which aré&rom Eg. (4) andG- (k) one constructs two eigenfunc-
related to eigenvalues with multiplicity. We note, how- tions u(k) which are meromorphic in the upper/lower
ever, that these potentials are not absolutely integrabld®alf k-planes. These eigenfunctions lead to a nonlocal
and this underlies the fact that the potentials are charadriemann-Hilbert problem from which the inverse scatter-
terized by the order of the pole and a topological numbering is carried out. For ease of discussion, here we will
an index or winding number, which we refer to as theconcern ourselves with pure pole solutions of where

charge. m+ = u—. Continuous spectrum can be added, but we
The properties of the multilump solutions are interest-shall not do so here. _
ing. They can be thought of as a collection mfindi- The usual discrete states/lump solutions can be found

vidual humps which interact in a nontrivial manner. Theyby solving the following linear algebraic system of

havem maxima which move with different asymptotic ve- €quations (see, e.g., [1,2]),
2n

locities ast — *«. b . o
In what follows we outline the methods and give the ! * Z& K=k —ifj¢;,  J=1...2n, (5
main results. The nonstationary Schrédinger equation is mej
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where f; = f(k;) = x — 2k;y + v;(r) and the eigen-
function (k) of (4) is written

Finally, the solution, a reflectionless potential or a mul-
tipole lump order-2 to the KPI equation, is obtained

2n b from (6b),
wk) =1+ " — i (6a) 92
m=1 ( = km) u(x,y,t) = Zﬁlan (93.)
The corresponding “reflectionless” potentials are given *
by Fy = (2" — 4b%y" — 24bt + 8g)?
9 2n 32 2
u= -2 Z1 $m =25 INF, (6b) + [Zy/(l + 2b7') + % — 61}
where F is the determinant of the coefficient matrix of 1, 1Y) 20 1
the system (5). Real, nonsingular potentials are obtained + |\ 7 g +4bTy”T + 4p2 |’ (9b)

Whenkj+,1 = Ej andyj+n(t) = 71-,‘]. =1,...,n. Lumps wherek, = a + ib, 7 =x - 2ay/’ x = x - 12(612 +
for KPI are obtained when one inserts the proper timebz)t —x0, ¥ =y — 12at — yo, xo = (yra — yrb)/b
dependence fory;(r), obtained from (3). It is found | °_ y1/2,b. ' ’

thaty, (1) = 12kj1 + o, wherey;o = y,(r = 0). We Actually this particular solution of KPI was constructed
now describe for the case = 2 in the above formulas some time ago [4], but without reference to the underlying
(two pairs of conjugate eigenvalues in the upper/lowekcattering problem. It was studied more recently in [5],
half planes) how, by appropriately coalescing the simpl&gain purely in terms of KP solutions and related dynamics.
eigenvalues of the Schrddinger operator, we can find disthe present approach serves to put the class of multipole
crete states which correspond to eigenvalues of multiplicrump solutions into a unified framework via scattering
ity 2 in (say) the upper half plane and simple eigenvaluegheory of the time dependent Schrodinger operator.

in the lower half plane. In the limiting process we take This multipole order-2 configuration for the KPI

ki =k + &, ks = ki, ks = ko, ki = a + ib, |le| < 1,
expand as follows:
(=1

b= P 4 40 4 e+
t]
(=1 (0) (1
Ym0 = Ym0 /8+')/m,0+')/m,08+~--’ m=17-~-4a

equation is composed of two mutually interacting humps,
each of which moves with distinct asymptotic velocities.
For larger the maxima of the humps are located approxi-
mately at the zeros af. Both humps have a maximum
amplitude u(x~,y+) ~ 16b> as t — *o. Assuming

b >0, ast — —x the two maxima ¢ denotes fast;-

and substitute these expansions into Eq. (5). At ordeflénotes slower hump) are located at

1/&? there are various possibilities. But reality forces

a condition onyf,,_,ol). We restrict to;xfol) = yf[ol) =
(=1 (=1) .
= ~Y30 = L

(=1 (=1 (=1 (=1
¢ T+ Py =3 T+ hs =0

! In order for u to have a
finite limit as ¢ tends to zero, we are forced to take
Proceeding to and ast — 4+, x+ ~ 12(6[2 + bz)t * 24bt + x¢ +

x+ ~ 12(a®> + Pt =

+ 2ayy — 1/2b,

y+ ~ 12at * 4/6lt|/b + yo.

24a2|t|/b + xo

subsequent orders is straightforward. It is convenient t@@Yo, y+= ~ 12at + yo.

define new variables;bfo) + ¢£o> = @, ¢§O) + ¢

4

o5, o) =W, We find that ¢§ = ¢i " =0,
—1 . o

by =i /(] + ), 0 f=flk),

0 _

7(0) =710
¢§0) = ¢§O), and in the limite — 0 the eigenfunctionu
then has the following spectral structure:

v, D, b7

=1+ + + =—. (7
# AR BT AR
The following system of equations is obtained:
L » S
2a’ az< 1 1 > } g
— + —|=+t=)-a|® + z=P7=1, (8b
[ff i\f f T (80)

where

1
ki — ki’
5(t) = 8O0 + 24ik, 1,

g = glky) = f> + 8(t) — 2iy,

1) 1)
(89 = y10 — ¥20)-

a =

These results clearly show that the humps display a
nontrivial interaction. Ast — *o the humps diverge
from one another, proportional to|'/2. This situation
is different from the “pure” lump case where each lump
has the same velocity as— *o.

We next outline how the class of multipole lump
solutions can be obtained directly as discrete multiple
eigenvalue states of the time dependent Schrodinger
equation.

In the case when the eigenfunctige{k) consists only
of simple poles, substitution gf given by (6a) into the
integral equation (4), noting that the eigenfunctiapg
are homogeneous solutions of the integral equation, and
using properties of the Greens function and Fredholm
theory, the following equation is found [2]:

viky) = —if (k));, (10)
where in general we denotgk;) = lim;—;, (u-singular
part of w); in this casev(k;) = limi—;[u — ¢;/k —
k;)]. In addition, the constrair®@(k;, ¢;) = 1 is required,
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where the reflectionless potential/multipole lump order-2 given
i by Eg. (9). We say that this solution has charge=2.
k), ¢)) = Esgr(lmkj)ff ugjdxdy. (11)  We see that the quantitie@ may take on other values

different than 1, which was the case for standard simple
pole-lump solutions.

The method extends to higher order multipoles. The
main results are the following. The eigenfunctigiik)
has the expansion

We call Q(k;, ¢;) the charge or index; we discuss this
more fully later. Thus for simple poles, which are related
to usual lumps of KPIQ(k;, ¢;) = 1.

Other eigenfunctions with higher order poles can be de
scribed within this framework. We define the charge in
the same way. Then, substitution of the eigenfuncgign W, v, @,
with a double pole in the upper half plane/single in the — #(k) =1 + k — k) + k — k)2 +  — &
lower half plane, given by (7), into the integral equation ! ! !

(4) with the coefficientsl,, ®7 being homogeneous solu- + q)T_ . (13)
tions, and again using the properties of the Greens func- k — ki
tion and Fredholm theory yields the following equations: o ] ] ]

(@) Atk = ki Substituting (13) into (4) and noting that the functions

V5, ®7 are homogeneous solutions yields the following

Py = —if (k)W vik) = —g¥2/2,  (12a) equations and constraints:

with the constraint® (k;, ®;) = 2 and [ [uW,dxdy = (@) Atk = ki,
0; B
(b) atk = &, Wy = 2i(f/g)®1 = —if Vs, v(k)) = —(h/3g)P,
d 1
[d_: * if(k)v} = 8%, (12b)  with Q(ki,®)) = 3and [ [uW¥;dxdy = 0; j = 2,3;
_ = (b) atk = ki,
with Q(kq, &7) = 2, whereg and the definition ofv are )
given above, [d_’; + 2ifd—v —gv + lﬁq)d =0,
p(k) = im [ = Wa/(k = k1)* = ®1/(k = k)], dk dk 3 ek
v(k)) = lim[u — ®7/(k — ky)]. with Q(k;,®7) = 3. In the above formulas,g
k—k, was given earlier, and we definei(k;)) =h =

Inserting the representation far, Eq. (7), into Egs. (12a) if3 + [3i6(t) + 6y]f + B(t). From Eq. (6) we obtain
and (12b) forrv (k) yields the system of equations (8) aqd the reflectionless potential/multipole lump order-3 of KPI,

82
=2—InF
! ax2
F3 = [z — 12b%y"%7' + 37/(8xg — 24bt) + 6by'(8; — 2y') + Bg — 241

+[8b3 /3_6b/2l+3/ _ n _ ! _ 2 (14)
y 2%y 4 32'(8; — 2y) — 6by'(6r — 24b1) + Bi]

+ i[(# — 4b%y"? + 8 — 24bt — Z L)2 + (4y'bz' — &) + i(ﬂ - i>2 + 4y? + L}
42 \* K b 2b2 ' ! »2\* b 4b4 ]

where we note that the time dependence of the KP solution Higher order multipole lumpsn > 3 can be con-

is obtained from Eq. (3)y(z), 8(¢) is determined to be as structed in the same manner as outlined here, but we will
given before, an@3(r) = 24ir + By. Since the charges not dwell on that. Moreover, other classes of solutions
Q(ky, @) = Q(k;, ®7) = 3 we say that this solution has can also be obtained via similar techniques. For example,

charge=3. if the eigenfunctionu has the spectral structure
This multipole order-3 configuration for the KPI equa-
tion is composed of three mutually interacting humps, v, D, 5

which move with distinct asymptotic velocities. For large p=1+ (k — k)2 + (k — ky) * (k — &))?
t the maxima of the humps are located approximately B

at the zeros off;. As r — *=o the three maxima are + Ll_
located at (assuming > 0) (x;,y%), (xb,v0), (x",y"), (k — ky)
wherex) = 12(a® + b?)t + xo, o = 12at + yo, and as

t— —wxh ~x) — 4/3b, y,. ~ vy = /18]t]/b, and as  with Q(k;, ®;) = Q(k;, 1) = 3, then the following so-
t — 4o, x\ ~ x( * /72bt + 1/(6b), y. ~ y{. lution resultsy = 202%(In G3)/dx2, where

(15)
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G3 — (Z/3 _ 12b2y/2Zl + 12¢ + BR)Z + (8b3y/3 _ 6bz/2y/ + BI)Z

9 / 12 2.2 1 / 12 2.2 1
+M Z—E + 4b“y +m Z+% + 4b“y +M R (16)

with [ [uW;dxdy =0, j = 2,2. | and we see from (17) thap = winding number off.
These real, nonsingular, reflectionless potentials of th@he method for the double pole with charge=2 is similar.

time dependent Schrédinger operator/multipole-lump soluSubstituting the representation (7) into (1) (recalling

tions of KPI are most simply characterized by the order ofyy = wexdi(kx — k*y)], integrating over, y and using

the pole in the spectral theory and their associated charg&reen’s theorem and the properties of the solution from

or index. Furthermore, consideration of spectral func{12a) yields, in the same manner as (17),

tions formed by superposition of, say, terms like (7) with

(double) poles ak;,...,k, and single poles &, ...k, Ok, @) = 1 dg 1 dz _ )
with Qy,...,Q, = 2 implies a2r X 2r linear system b 27i Jr. g 2mwi Jor.) 2 '
whose solution yields &r hump interacting solution of (18)

KPI. Similar considerations apply to superposition of . __—
terms like, say, (13) or (15). Ongrt):gn also (r:)onzider a mixHence from (.1.8.)’Q(k1’ @) is the W'”d'”;q number of.
ture of multiple poles with different charge;, ..., Q;. Fr_om.the definition of charge ‘3_”“=__21£3/ax) (@ +
The equations which define the solution and overall inter P7), it follows that Q(k;, ;) = Q(k;, ©7). One pro-
action of humps can be found via the above method. Ipeeds in a §|m|Iar manner fo_r hlgher charges. For the
this way a broad class of new real, nonsingular decayin?Xamples d|scusse(_:1 ear_ller it is also clear tight=
solutions of KPI with interesting physical properties can |ndexF)/2_whgreF IS deflned by Egs. (6b) or (9b), etc.
be obtained. Fu!l details will be pL_JbIlshed separately.

Finally, we discuss the notion of the charge or index This work was partially supported by AFOSR Grant
0. Interestingly, this quantity0 has a topological No. F49620-94-0120, NSF Grant No. DMS-9404265, a.nd
interpretation. Indeed, for lump solutions the residbe by CICYT 0028/95 and Junta de Castilla-Leon JO 127 in

of the pole at, sayk, has the asymptotic formb = pain.
(Inn) + 0(1/r?), r = \/x2 + y2, where the derivative

is taken along a contodr.. that surrounds the origin once.
Then:Q = index 7.
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