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A sequence space model which describes the interplay of mutation and selection in molec
evolution is shown to be equivalent to an Ising quantum chain. Three explicit examples w
representative fitness landscapes are discussed and exactly solved with methods from stati
mechanics. [S0031-9007(96)02027-3]
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One-dimensional systems, and quantum chains in p
ticular, have long been important tools to understand
leastapproximately, various physical situations, and the
is even a recipe “how to reduce practically any proble
to one dimension” [1]. As a complement, we presen
problem of biochemical physics that may be mappedex-
actly onto a quantum chain. Selected examples can t
be solved without approximation.

In the theory of (molecular) biological evolution, var
ous sequence space models are well established, the
known being Kauffman’s adaptive walk [2] and Eigen
quasispecies model [3]. Whereas the former describe
hill-climbing process of a genetically homogeneous pop
lation in tunably rugged fitness landscapes, the latter
cludes the genetic structure of the population due to
balance between mutation and selection. For equal fitn
landscapes, the quasispecies model is thus more diffi
to treat than the corresponding adaptive walk.

Some progress was made in [4] through the identifi
tion of the quasispecies model with a specific, anisotro
2D Ising model: The mutation-selection matrix
equivalent to the row transfer matrix, with the mutatio
probability as a temperaturelike parameter, and er
thresholds corresponding to phase transitions. T
equivalence was exploited to treat simple fitness la
scapes as well as spin-glass Hamiltonians with meth
from statistical mechanics [5–7]. Of these results, m
are approximate or numerical, and the few exact ones
[5] are of limited value as the order parameter was n
calculated correctly.

The quasispecies model assumes mutations to origi
as replication errors on the occasion of reproduct
events. An alternative was introduced in [8] and d
scribes mutation and selection as going on in pa
llel; we would like to abbreviate it as para-mus
(parallel mutation selection) model. In subsequen
investigations [9,10], this model turned out to be bo
more powerful and structurally simpler than the qua
species model. Which is the more appropriate one fr
the biological point of view amounts to the questio
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whether rates of molecular evolution are closer to const
per generation or constant in time—a long-standin
but still unresolved issue [11,12]. Even in the forme
situation, however, the parallel version is an excelle
approximation. Note that both models are sequence sp
versions of the muse equations of classical populat
genetics [13].

In this Letter, we will show that, in the same wa
as the quasispecies model is equivalent to the r
transfer matrix of a 2D Ising model, the para-muse mod
corresponds to the Hamiltonian of an Ising quantu
chain. Methods of statistical mechanics will then b
employed to treat three sample fitness landscapes exa
with emphasis on the correct order parameter. Mo
biological implications will be dealt with elsewhere [14].

Evolution and quantum chain.—In the framework
of sequence space models, genetic information (li
nucleic acid strings) is identified with points in (binary
sequence space, e.g.,h21, 1jN , where N [ N is the
(fixed) length of the string considered; so there aren ­
2N different sequences (or alleles in the language
genetics) termedAi , i ­ 1, . . . , n. The composition of
an (infinite) population of haploid organisms (they car
one copy of every gene only) under the influence
mutation and selection actingindependentlyof each other
is described by the following ODE system (for review, se
[15]):

Ùxi ­ xi

√
ri 2

nX
j­1

rjxj

!
1

nX
j­1

mijxj . (1)

Here,xi denotes the relative frequency ofAi individuals
s1 # i # n ­ 2N d, the ri their (Malthusian) fitness (i.e.,
the difference between reproduction and death rates),
mij the rate at whichAj mutates toAi. When every digit
mutates independently at ratem $ 0, we have

mij ­

8<: m, dij ­ 1
2Nm , i ­ j

0, otherwise
(2)

wheredij :­ dsAi , Ajd is the Hamming distance betwee
Ai and Aj (i.e., the number of positions where the tw
© 1997 The American Physical Society 559
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strings differ). Theri are, as yet, unspecified; their choic
determines the so-called fitness landscape.

The transformation [16]

zistd :­ xistd exp

0BB@ nX
j­1

rj

tZ
0

xjstd dt

1CCA (3)

reduces the ODE (1) to the linear system

Ùz ­ sM 1 Rdz , (4)

whereR :­ diagsr1, . . . , rnd, andM ­ smijd is the (sym-
metric) matrix of mutation rates. The solution of Eq. (
then yields a solution of the original Eq. (1) via

xi ­
zi

nP
j­1

zj

. (5)

The problem is now completely solved as soon as
spectrum of the symmetric matrixH̃ :­ M 1 R is
known. Form . 0, H̃ plus a suitable constant is primi
tive (i.e., some power of this sum has strictly positi
entries only). Consequently, the largest eigenvalue
H̃ is unique. It corresponds to the growth rate (“me
fitness”) of the equilibrium population, the composition
which is given by the Perron-Frobenius (PF) eigenvect

Let us first observe that, owing to our two-lette
alphabet, the possible occupation numbers are0 and 1
at every site. With the canonical basis of≠

N
i­1C2, we

can thus rewriteH :­ H̃ 1Nm in terms of Pauli’s
matrices:

H ­ m

NX
k­1

s
x
k 1 a0' 1

NX
k­1

aksz
k

1

NX
k,k0

akk0 sz
ksz

k0 1

NX
k,k0,k00

akk0k00 sz
ksz

k0sz
k00

1 · · · sterms up toN-fold productsd . (6)

Here,sx :­

µ
0 1
1 0

∂
, sz :­

µ
1 0
0 21

∂
, and

s
a
k :­ ' ≠ · · · ≠ ' ≠ sa ≠ ' ≠ · · · ≠ ' (7)

with a [ hx, zj and sa in the kth place. Thes
x
k flips

the kth digit (“mutation”), ands
z
k measures the value

of the variable (the spin) at sitek. As the products of
s

z
k matrices up toNth order span the space of2N 3 2N

diagonal matrices, the most general fitness landscap
covered. Note that, due to the projective properties
Eq. (1), all Hamiltonians that differ only in their constan
terms lead to the same equilibrium statex.

Obviously, H is, at the same time, the Hamiltonia
of an Ising quantum chain in a transverse magnetic fie
with general interactions within the chain. (With a
automorphism of the Pauli-algebra, namelysx ! sz ,
sy ! sy, sz ! 2sx , one obtains its more familia
form.) Since energies appear with positive sign here,
PF eigenvalue belongs to the ground state. Even w
560
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two-spin interactions only (the “classical” Ising quantum
chain), H provides a very rich (and difficult) range o
fitness landscapes, including e.g. spin-glass landscape
tackled numerically in [7]. Let us, in what follows, focus
on threeexactly solvableexamples from this model class

Mount Fujiyama landscape.—Let us first consider the
following simple Hamiltonian which is composed from
noninteracting one-site HamiltoniansHk :

H ­
NX

k­1

Hk ­
NX

k­1

sms
x
k 1 aksz

kd . (8)

In the evolution model, this is the case of no interactio
between sites, or purely additive fitness [cf. Eq. (1)]:

ri ­
NX

j­1

ajs
sid
j , (9)

wheres
sid
j is the value of the variable at sitej of sequence

Ai. This is similar to Kauffman’s landscape of anN-di-
mensional “Fujiyama” peak [2] (with different scaling).

The spectrum ofH (andH̃ ) may be composed of the

eigenvalues of theHk , lk ­ 6

q
a

2
k 1 m2. (A similar

structure pertains in the transfer matrix of the correspon
ing quasispecies model, as exploited in [5,17].)

For aj ; a, the ground state energy per spin (or mea
fitness of the equilibrium population per site) is:

w :­ l̃maxyN ­ as2h 1
p

1 1 h2d , (10)

where l̃max is the largest eigenvalue ofH̃ , and h :­
mya.

To characterize the genetic structure of the populatio
the average surplusu of sites with value11,

u :­

nP
i­1

ui yi

nP
j­1

yj

, ui :­
1
N

NX
j­1

s
sid
j , (11)

is appropriate,whereyi are the components of the PF
eigenvector ofH . In the present case, we find

u ­
1

h 1
p

1 1 h2
­

w
a

(12)

as it must be, since fitness is proportional to the surplus
this case [cf. Eq. ((9)]. Bothw and u vanish smoothly
when m ! `, and no phase transition occurs in th
macroscopic (or thermodynamic) limit (see Figs. 1 and

Onsager landscape.—The previous example relied on
a landscape with a single global maximum that can
reached from any sequence in the space by mutatio
steps each of which increases fitness. As a case study
more rugged (and more realistic) landscape, let us disc
the well-known Ising quantum chain in a transverse fie
with constant couplingg of nearest-neighbor spins,

H ­ m

NX
k­1

s
x
k 1 g

NX
k­1

sz
ksz

k11. (13)
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FIG. 1. Mean fitness per spin (w) as defined in Eq. (10)
Dotted line: Fujiyama landscape (withaj ; a ­ 1); dashed
line: Onsager landscape (withg ­ 1); solid line: mean-field
landscape (witha ­ 0, g ­ 2).

We assume cyclic boundary conditions, i.e.,s
z
N11 ­ s

z
1 .

Let ki be the number of domain walls in a given seque
Ai . Then, ri ­ gsN 2 2kid. For g . 0 and N even
(to which we will restrict ourselves for simplicity), th
sequences of highest fitness are6s1, . . . , 1d. A spin flip
at site j implies a change in fitness of22sjssj21 1

sj11d. Let LsAid be the length of the shortest doma
in Ai. Then, L is the minimum number of mutation
required to reach, fromAi, a sequence with higher fitnes
In particular, anyAi with LsAid . 1 is a ridge (i.e.,
mutations are either deleterious or selectively neutral).

As is well-known [18–20], the Hamiltonian (13) i
solvable and can be transformed into a system of n
interacting fermions with energies2gLk where

Lk ­

∑
1 1 h2 1 2h cos

µ
kp

N

∂∏1y2

, 0 # k , N ,

(14)

and h ­ myg . In the thermodynamic limit, one obtain

for the ground state energy per spin offH :

w ­
2g

p
s1 1 hdE

µ
p

2
, u

∂
2 m, u2 ­

4h
s1 1 hd2

(15)

FIG. 2. Average surplus of sites with value11 (u) as
defined in (11), in the macroscopic limit. Dotted line: Fujiyam
landscape; dashed line: Onsager landscape; solid line: m
field landscape. Parameters as in Fig. 1.
e

.
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with Espy2, ud the complete elliptic integral of the second
kind; see Fig. 1. Let us recall that, in the thermodynam
limit, the system has a second-order phase transition
h ­ 1 with conformal invariance.

Again, the surplusu (or order parameter) as defined in
Eq. (11) is the proper quantity to characterize the biolog
cal population. It is similar but not directly related to th
physical magnetization; although it is not an observable
the usual (quantum mechanical) sense, it is nevertheles
observable quantity. Going through the somewhat pain
exercise of calculating the eigenvectors corresponding
the largest and second-largest eigenvalues [18,19], we fi
that, in the thermodynamic limit,

u ­

Ω
s1 2 hd1y2, 0 # h , 1
0, h $ 1

(16)

in contrast to the (physical) magnetization,which is [19
m ­ s1 2 h2d1y8 for 0 # h # 1 (see Figs. 2 and 3).

Mean-field landscape.—Nearest neighbor interaction
has provided us with a fitness landscape with ridges a
neutrality, but it should not be taken too literally as
model of biological interaction. After all, DNA strings
serve as templates for proteins, which then fold in thr
dimensions, thus giving rise to interactions that are lon
range and very complicated in the sequence picture.

Let us therefore, as a representative model with lon
range interaction, consider the mean-field Hamiltonian

H ­ m

NX
k­1

s
x
k 1 a

NX
k­1

sz
k 1

g

2N

NX
k,,­1

sz
ks

z
, . (17)

In the context of evolution, this is a realistic example o
fitness landscapes that are invariant under permutation
sites, which are also relevant to the multilocus theo
of population genetics (for review, see [21]). Forg , 0
(g . 0), the fitness landscape is concave (convex). T
case ofg , 0 is the quadratic optimum model extensivel
used in quantitative genetics (cf. [22]).

It is worth emphasizing that, in contrast to the situatio
in physics, where interaction is inherently local and
mean-field Hamiltonian is an approximation, Eq. (17) is
modelas such in the evolutionary context. Thus, we ma

FIG. 3. Physical magnetization (m) and surplus (u) for the
Onsager landscape. Solid lines: macroscopic limit; dash
lines: numerical finite-size calculation forN ­ 8.
561
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directly use mean-field theory (which is rigorous [23,2
in the thermodynamic limit) to reduce the desired solut
of a pure phase equilibrium state to that of a one-s
Hamiltonian in a self-consistent field:

hsrd ­ msx 1 asz 1 gmsz , (18)

where m ­ trsr szd. (The spectral problem ofH 1
Ng

2 m2' is solved through tensor products of thes
The statistical operatorr with minimal free energy
density fulfils the self-consistency equation for the inve
temperatureb:

r ­
expfbhsrdg

trhexpfbhsrdgj
. (19)

We need b ! ` here, wherer boils down to a
projector onto the PF eigenvector ofh. (Let us remark
that we letb ! ` prior to the thermodynamic limit.) For
g . 0, a ­ 0, one finds the explicit solution (h ­ myg):

m ­

Ω
6

p
1 2 h2, 0 # h , 1

0, h $ 1 .
(20)

From h, one obtains theexcitationspectrum ofH (and
also ofH̃ ). The correct ground state energy per spin
H̃ requires the subtraction of the (parameter-depende
constant termg

2 m2 1 m, which finally yields

w ­

Ω
g

2 s1 2 hd2, 0 # h , 1
0, h $ 1 .

(21)

For the surplus, one obtains for this landscape

u ­

8<:
µ

12h
11h

∂1y2

, 0 # h , 1

0, h $ 1 .
(22)

As in Eq. (16), the exponent of the singular behavior
1y2. This should not come as a surprise sinceu is related
to the surface(as opposed to bulk) magnetization (com
pare [7]). The curves ofw and u are drawn in Figs. 1
and 2. A second-order phase transition occurs ath ­ 1.
Here, the population loses its genetic structure, and
mean fitness reaches the minimum value; conseque
selection ceases to operate. Fora fi 0, theZ2-symmetry
is broken and no phase transition can occur; more in [2

For g , 0, a ­ 0, both w and u vanish for allm in
the thermodynamic limit. No phase transition occurs, a
what is more, the system is unaffected by mutation (a
hardly affected by it in simulations withN . 50).

In conclusion, we have demonstrated how the Is
quantum chain can be employed to obtain exact so
tions of muse models. The idealized fitness landsca
treated explicitly represent frustration-free situations wi
out, with short-range, and with extremely long-ran
interaction. Genetic structure fades away gradually w
562
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increasing mutation in the (unrealistic) case of indepe
dent sites, but vanishes abruptly at finitem when sites
interact, thus imposing an upper limit on the mutation ra
in an evolving population. This may be conjectured
be typical of situations with two-site interactions withou
frustration. However, more realistic multipeaked lan
scapes must be treated in the future.

It is our pleasure to thank T. Gerisch for an introductio
to the rigorous treatment of mean-field quantum Ham
tonians, and J. Bellissard and A. Gierer for stimulatin
discussions.
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