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Ising Quantum Chain is Equivalent to a Model of Biological Evolution
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A sequence space model which describes the interplay of mutation and selection in molecular
evolution is shown to be equivalent to an Ising quantum chain. Three explicit examples with
representative fitness landscapes are discussed and exactly solved with methods from statistical
mechanics. [S0031-9007(96)02027-3]

PACS numbers: 87.10.+e, 05.50.+q, 64.60.Cn, 75.10.-b

One-dimensional systems, and quantum chains in pawhether rates of molecular evolution are closer to constant
ticular, have long been important tools to understand, gber generation or constant in time—a long-standing,
leastapproximately various physical situations, and there but still unresolved issue [11,12]. Even in the former
is even a recipe “how to reduce practically any problensituation, however, the parallel version is an excellent
to one dimension” [1]. As a complement, we present aapproximation. Note that both models are sequence space
problem of biochemical physics that may be mappa&d versions of the muse equations of classical population
actly onto a quantum chain. Selected examples can thegenetics [13].
be solved without approximation. In this Letter, we will show that, in the same way

In the theory of (molecular) biological evolution, vari- as the quasispecies model is equivalent to the row
ous sequence space models are well established, the bé&sinsfer matrix of a 2D Ising model, the para-muse model
known being Kauffman’s adaptive walk [2] and Eigen’s corresponds to the Hamiltonian of an Ising quantum
quasispecies model [3]. Whereas the former describes @ain. Methods of statistical mechanics will then be
hill-climbing process of a genetically homogeneous popuemployed to treat three sample fithess landscapes exactly,
lation in tunably rugged fithess landscapes, the latter inwith emphasis on the correct order parameter. More
cludes the genetic structure of the population due to théiological implications will be dealt with elsewhere [14].
balance between mutation and selection. For equal fithess Evolution and quantum chair-In the framework
landscapes, the quasispecies model is thus more difficutf sequence space models, genetic information (like
to treat than the corresponding adaptive walk. nucleic acid strings) is identified with points in (binary)

Some progress was made in [4] through the identificasequence space, e.d+ 1,1}, where N € N is the
tion of the quasispecies model with a specific, anisotropi¢fixed) length of the string considered; so there are
2D Ising model: The mutation-selection matrix is 2" different sequences (or alleles in the language of
equivalent to the row transfer matrix, with the mutationgenetics) termedi;, i = 1,...,n. The composition of
probability as a temperaturelike parameter, and erroan (infinite) population of haploid organisms (they carry
thresholds corresponding to phase transitions. Thisne copy of every gene only) under the influence of
equivalence was exploited to treat simple fitness landmutation and selection actingdependentlpf each other
scapes as well as spin-glass Hamiltonians with methods described by the following ODE system (for review, see
from statistical mechanics [5-7]. Of these results, mosf15]):
are approximate or numerical, and the few exact ones in n n
[5] are of limited value as the order parameter was not Xi = xi(’”i - Z rij) + Z mijxj . (1)
calculated correctly. j=1 j=1

The quasispecies model assumes mutations to originatéere, x; denotes the relative frequency 4f individuals
as replication errors on the occasion of reproductiorfl =i = n = 2V), ther; their (Malthusian) fitness (i.e.,
events. An alternative was introduced in [8] and de-the difference between reproduction and death rates), and
scribes mutation and selection as going on in paraz; the rate at which; mutates to4;. When every digit
llel: we would like to abbreviate it as para-muse Mutates independently at rate= 0, we have
(pardlel mutation-sdection) model. In subsequent 7 dij =1
investigations [9,10], this model turned out to be both mij =1 -Nw, =] ()
more powerful and structurally simpler than the quasi- 0, otherwise
species model. Which is the more appropriate one fromvhered;; := d(A;,A;) is the Hamming distance between
the biological point of view amounts to the questionA; and A; (i.e., the number of positions where the two
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strings differ). Ther; are, as yet, unspecified; their choice two-spin interactions only (the “classical” Ising quantum

determines the so-called fitness landscape. chain), H provides a very rich (and difficult) range of
The transformation [16] fitness landscapes, including e.g. spin-glass landscapes as
. t tackled numerically in [7]. Let us, in what follows, focus
R , _ on threeexactly solvablexamples from this model class.
u(t) = xi()exp ,:ZI g f xi(r)dr ®) Mount Fujiyama landscape-Let us first consider the
' 0 following simple Hamiltonian which is composed from
reduces the ODE (1) to the linear system noninteracting one-site Hamiltoniadd :
z=(M + R)z, 4

N N
H =D H =D (noi + arai). (8)
k=1 k=1
In the evolution model, this is the case of no interaction
between sites, or purely additive fitness [cf. Eq. (1)]:
Xp = o (5) < 0
RS ri= 2 ajsj, 9)
=1 =

whereR := diagry,...,r,), andM = (m;;) is the (Sym-
metric) matrix of mutation rates. The solution of Eq. (4)
then yields a solution of the original Eq. (1) via

Zi

The problem is now completely solved as soon as thavheresy) is the value of the variable at sijeof sequence

spectrum of the symmetric matri{ := M + R is A;. This is similar to Kauffman’s landscape of andi-
known. Foru > 0, H plus a suitable constant is primi- Mmensional “Fujiyama” peak [2] (with different scaling).
tive (i.e., some power of this sum has strictly positive The spectrum ofH (and ') may be composed of the

entries only). Consequently, the largest eigenvalue ogigenvalues of theH, A, = i,/a,f + u?. (A similar

H is unique. It corresponds to the growth rate (“meanstructure pertains in the transfer matrix of the correspond-

fitness”) of the equilibrium population, the composition of ing quasispecies model, as exploited in [5,17].)

which is given by the Perron-Frobenius (PF) eigenvector. For a; = «a, the ground state energy per spin (or mean
Let us first observe that, owing to our two-letter fitness of the equilibrium population per site) is:

alphabet, the possible occupation numbers @ar@nd 1 .

at every site. With the canonical basis ®f_;C?, we W= Amax/N = a(—h + V1 + h?), (10)

can thus reWritej'[ = H+N/L in terms of Pauli's where ;‘max is the |argest eigenvalue dj:[’ and h :=

matrices: wla.
N N To characterize the genetic structure of the population,
H=p Z o + apl + Z aol the average surplus of sites with value+1,
k= k= S
l\j lN i=1 Ui vi 1 N (i)
pyp— = . = — .l
+ Z A oo+ Z Qpkrkr TR T} O o T T TN Zis] ’ D
k<k' k<k'<k" Zl vj /
+ ... (terms up taV-fold products. (6) ~
0 1 1 0 is appropriate,where); are the components of the PF
X o— JA— 1 i
Here, o™ : <1 0>’ T <0 1)’ and eigenvector off{ . In the present case, we find
of =1 ®---®1®0c°®1®---081 (7) y = 1 _w (12)
with a € {x,z} and ¢ in the kth place. Theo} flips h+~N1+h o«

the kth digit (“mutation”), and o measures the value as it must be, since fitness is proportional to the surplus in
of the variable (the spin) at site. As the products of this case [cf. Eq. ((9)]. Bothw andu« vanish smoothly

o matrices up tavth order span the space @ x2¥  when u — %, and no phase transition occurs in the

diagonal matrices, the most general fithess landscape fBacroscopic (or thermodynamic) limit (see Figs. 1 and 2).
covered. Note that, due to the projective properties of Onsager landscape-The previous example relied on

Eg. (1), all Hamiltonians that differ only in their constant @& landscape with a single global maximum that can be
terms lead to the same equilibrium state reached from any sequence in the space by mutational

Obviously, # is, at the same time, the Hamiltonian steps each of which increases fitness. As a case study of a
of an Ising quantum chain in a transverse magnetic fieldnore rugged (and more realistic) landscape, let us discuss
with general interactions within the chain. (With an the well-known Ising quantum chain in a transverse field,
automorphism of the Pauli-algebra, namely — o<,  With constant coupling of nearest-neighbor spins,
oY — o, o — —g*, one obtains its more familiar N N
form.) Since energies appear with positive sign here, the H=pn) of +v> oiois. (13)

PF eigenvalue belongs to the ground state. Even with k=1 k=1
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with E(7 /2, 6) the complete elliptic integral of the second
kind; see Fig. 1. Let us recall that, in the thermodynamic
limit, the system has a second-order phase transition at
h = 1 with conformal invariance.

Again, the surplus: (or order parameter) as defined in
Eq. (11) is the proper quantity to characterize the biologi-
cal population. It is similar but not directly related to the
physical magnetization; although it is not an observable in
the usual (quantum mechanical) sense, it is nevertheless an
observable quantity. Going through the somewhat painful
exercise of calculating the eigenvectors corresponding to

FIG. 1. Mean fitness per spinw] as defined in Eq. (10). the largest and second-largest eigenvalues [18,19], we find
Dotted line: Fujiyama landscape (with; = o = 1); dashed that, in the thermodynamic limit,
line: Onsager landscape (with = 1); solid line: mean-field L {(1 . h)1/2, 0=h<1

0 1 h 2

landscape (withe = 0, y = 2). 0 b= 1

in contrast to the (physical) magnetization,which is [19]
We assume cyclic boundary conditions, i€%., = of. m = (1 — h?)/8for0 = h = 1 (see Figs. 2 and 3).
Let k; be the number of domain walls in a given sequence Mean-field landscape-Nearest neighbor interaction
A;. Then,r; = y(N — 2k;). Fory >0 and N even has provided us with a fitness landscape with ridges and
(to which we will restrict ourselves for simplicity), the neutrality, but it should not be taken too literally as a
sequences of highest fitness atél,...,1). A spin flip  model of biological interaction. After all, DNA strings
at site j implies a change in fitness of2s;(s;-1 +  serve as templates for proteins, which then fold in three
sj+1). Let L(A;) be the length of the shortest domain dimensions, thus giving rise to interactions that are long-
in A;. Then, L is the minimum number of mutations range and very complicated in the sequence picture.
required to reach, from;, a sequence with higher fitness.  Let us therefore, as a representative model with long-
In particular, anyA; with L(A;) > 1 is a ridge (i.e., range interaction, consider the mean-field Hamiltonian

(16)

mutations are either deleterious or selectively neutral). N N N

As is well-known [18-20], the Hamiltonian (13) is H = pu Z o + «a Z o + v Z oioi. (A7)
solvable and can be transformed into a system of non- k=1 k=1 2N =
interacting fermions with energi@sy A, where In the context of evolution, this is a realistic example of

k 1/2 i . . .
A = [1 LR+ oon cos(—wﬂ  0=k<N. flfmess Iandscapes that are invariant under permutation of
sites, which are also relevant to the multilocus theory

of population genetics (for review, see [21]). Fpr< 0

o (14)_ (v > 0), the fitness landscape is concave (convex). The
and/ = u/y . In the thermodynamic limit, one obtains case ofy < 0 is the quadratic optimum model extensively
for the ground state energy per spinf used in quantitative genetics (cf. [22]).

2y T 5 4h It is worth emphasizing that, in contrast to the situation
w=—(1+ h)E<?9> o 07 = EWE in physics, where interaction is inherently local and a

mean-field Hamiltonian is an approximation, Eq. (17) is a
(15  modelas such in the evolutionary context. Thus, we may
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FIG. 2. Average surplus of sites with valuel (u) as

defined in (11), in the macroscopic limit. Dotted line: Fujiyama FIG. 3. Physical magnetizationn) and surplus «) for the
landscape; dashed line: Onsager landscape; solid line: mea®nsager landscape. Solid lines: macroscopic limit; dashed
field landscape. Parameters as in Fig. 1. lines: numerical finite-size calculation for = 8.
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directly use mean-field theory (which is rigorous [23,24]increasing mutation in the (unrealistic) case of indepen-

in the thermodynamic limit) to reduce the desired solutiondent sites, but vanishes abruptly at finjte when sites

of a pure phase equilibrium state to that of a one-siténteract, thus imposing an upper limit on the mutation rate

Hamiltonian in a self-consistent field: in an evolving population. This may be conjectured to

(18) be typical of situations with two-site interactions without
frustration. However, more realistic multipeaked land-

v}yhere m = tr(p o). (The spectral problem ofH +  scapes must be treated in the future.

—+m?1 is solved through tensor products of these.) Itis our pleasure to thank T. Gerisch for an introduction

The statistical operatop with minimal free energy to the rigorous treatment of mean-field quantum Hamil-

density fulfils the self-consistency equation for the inverseonians, and J. Bellissard and A. Gierer for stimulating

H(p) = po* + ac® + ymo?,

temperatures: discussions.
_ _elBbip)] 1)
tr{exp[BH(p)]}
We need B8 — « here, wherep boils down to a
projector onto the PF eigenvector bf (Let us remark *Present address: Zoologisches Institut, Universitat
that we letg — o prior to the thermodynamic limit.) For Miinchen, Luisenstrasse 14, D-80333 Miinchen,
v > 0, @ = 0, one finds the explicit solutior(= w/v): Germany.
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