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Symbolic Analysis of Chaotic Signals and Turbulent Fluctuations
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The symbolic analysis introduced in this paper allows quantitative description of dynamical coupling
between different time signals. In order to demonstrate how this method works we applied it to the
explicit examples of chaotic signals. Our results appear to be quite robust when external noise is
added. [S0031-9007(96)01857-1]

PACS numbers: 47.27.Eq, 05.40.+j, 05.45.+b, 47.11.4j

The purpose of this paper is to introduce the methodn this paper we will be able to demonstrate that signals
for identification of fluctuations governed by the same dy-X(¢) andZ(¢) correspond to the same dynamical process.
namics. The methods of correlation functions and FourieiThere also exists a geometrical method which allows one
transform that are often used for the analysis of fluctuationto reconstruct the phase space dynamics from a single
in fluids, plasmas, etc., are inadequate for this purpose. Imariable [2]. The advantages of our method are that it does
order to demonstrate how our method works we shall usaot require the determination of dynamical system dimen-
the explicit examples of chaotic signals. The first exam-sion and it works well in the presence of noise. A differ-
ple is presented in Fig. 1. These are the time records adnt method of symbolic analysis of noisy chaotic signals
X(r) andZ(z) generated by the Lorenz model [1] and areis presented in Ref. [3].
related to fluid velocity and temperature fluctuations in a We begin with discretization of our signals,
simplified model of Bénard thermal convection. These two

signals look quite different, but as we know they are rep- Xn = X (to + nr), 1
resentations of the one attractor, governed by the same dy- - 1)
! _ Z,=Z (ty + n7).
namics. Very little could be learned from the study of the
cross-correlation functiod',,(7) = (X(t + 7)Z(t)) (here Here n = 0,1,2,.... In the computations below we

the averaging is done over the tim)@r Fourier transforms chooser = 1 because around this value our main result
of X(r) andZ(z). Using the symbolic analysis presented presented at Fig. 2 appears to be the most pronounced.
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FIG. 1. Time records ok () andZ(t) generated by the Lorenz model.
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FIG. 2. Conditional entropy as a function of shift parametgr Here~ = 1 and noise ratio paramet& = 0 (a), R = 0.5 (b),
R =1 (c), andR = 1.5 (d).

In order to recognize time patterns in complex dynam- ¢ — < ML
ical processes we need to have a language in which to - Z Si.
expressexpress these patterns. That is, one has to sub
tute actual signal¥,, Z, with their symbolic representa-
tion [4]. We will be using a simple example of symbolic
dynamics, defined by the following symbols:

3)
i=1

ﬂ'ére M is a number of different symbols, which we
defined as integers according to Eq. (2).

The information content in the symbolic series can be
quantified through the introduction of the entropy [7].

A (0) Xmin < X < XC, . 1
B (1) X¢, < X, < Xc, E=-— %Pglnpg. (4)

Si=1CQ) Xe, <Xy < Xe, < Xmax » (D)
_ @) X, & Here P, is the probability of finding a particular se-

quencel that is the number of times this sequence can be
. . . found in the long symbolic time series divided by the num-
ghe range of tf;edvgrlatt:]lex h?s Ibeenﬂdwﬂ:ed tr']nto ber of all short sequences. The coding ability of the trial
omains, separated Dy the criical poimz;. 1n the language defined by Eq. (2) depends strongly on the val-
computations below we will often use Integer number_sUeS ofXc¢.. We performed a computer search to find out
instead of symbols. The coarseness of this representatiqp,, optimhm language which maximizes the entropy
makei It clelzr that a I\(/eryh_small CSO'Ce f(_)r the time " 1o maximize the entropy we introduce a given number
step At fWOU . ngt_ ma ?dt IS r?um e|£ seneﬁ Contt‘;’“nof critical points (one, two, etc.) and study the entropy
more information; it would simply make each number ,q 5 fnction of the placement of these critical points, by

re'p.ea} seyeral times before Cg‘af.‘g'”g-f 'mel numtt))e:' alculating the entropy for a given random placement of
critical points necessary to obtain a faithful symbolic o Xc,. A placement of these points is readily found

reprc_—zsentation of t_he dynamics de_pe_nds on Fhe SYS®{hich ‘maximizes the entropy for a given number of
studied. We describe below how this is determined. Th%ritical points. If the number of critical points is t00

symbolic d'ynami'cs for _variablz is defined in a similar small, the symbolic language will, however, not contain
manner, W'th. critical pointEc,, Zc,, .. - - ... the full information content of the signal. This is apparent
The resulting long _symbohc series we partition Into by the fact that the entropy will increase substantially
short sequences of a given lengtkZ. = 5 in the example when a new critical point is added. When sufficient
below), critical points are present, the symbolic signal will contain
essentially all the information contained in the original
signal, and this is reflected by the fact that the addition
of another critical point does not increase the entropy.
For ease of reference and identification it is convenient tét this point the setX., can be said to give a faithful
identify every short sequence uniquely by just one integesymbolic representation of the original signal, and the
[5,6]. symbolic language can be called optimum. As we will

|B|c A B C|B|B|A B....
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see later, only a rough approximation to the optimumthe conditional entropy as a function of a shift parameter
language is required. ng is a clear demonstration of the effect described above.
The sequenceécan be used for symbolic coarse grain- For these computations we maximize entropy (4) with only
ing of the phase space of the dynamical system [5,6]one critical poin{X,. = 0.07, Z. = 21.24) while the full op-
Namely, to every sequendecorresponds a cell volume timization requires approximately three critical points. On
of the phase spaca&,. In the case of degeneracy there the other hand, without optimization, if we choose some
can be several cells corresponding to one sequénd®¥e  symbolic language with a relatively low entropy, then the
found numerically that the better approximations to the opminimum in Fig. 2(a) becomes much less pronounced or
timum language correspond to the less degenerate coardisappears.
grainings. We have also studied the effect of external noise. The
Now we are ready to do comparative analysis of theequation of motion for Lorenz’s model [1] in the presence
X, andZ, data, presenting them as symbolic statgs), of additive noise can be written as
€.(n). If X(r) and Z(¢) fluctuations are governed by

different dynamics, then the evolution 6f(n) and ¢, (n) dX/dt = —aX + a¥ + 08X, (6)
states is not correlated. Namely, every time the variable
X occupies the staté, the variableZ could occupy any dY/dt = —XZ + rX — Y + oY, @

of the states available to it. On the other handX({f)
and Z(r) are governed by the same dynamics, then we
will observe the following relationship betweén(n) and dz/dt = XY — bZ + 8Z. (8)

¢.(n): Everytime the variabl& occupies the staté,, the Herea = 10, b = 8/3, andr — 28 and the terms>X,

variable Z can occupy only neighboring states. This is o .

due to the fact that these states are just different symboli‘éy’ and 5Z correspond fo additive noise. We ha"‘?
L . . solved Egs. (1)—(3) by fourth-order Runge-Kutta numeri-

coarse grainings of the same orbit [5,6]. We can easil

Y i _ — _
. ; AP cal procedure withAt = 0.005, X, = 6.0, Yy = 6.0, and
destroy such a correlation by time shifting:(n), €,(n + Zy — 13.5. Every time stepht we added tax(r), ¥(z),

o). _In order to CheCk.th'S effect we have computed theand Z(t) a random variable with a Gaussian distribution.
conditional entropy defined as . )
1 1 The variances of all 3 random variables were equal and
E(Z|X) = - Z T Z P(€.1¢)InP(¢,|¢,). (5) Parametrized in the following way:
S AT

HereP(¢£.]¢,) is a conditional probability for the variable oy =0y = 0, = R\((AY)?),

Z to occupy staté, while the variableX occupies staté,,

N¢ is the total number of different, sequences; the first [ N o N )
summation in Eq. (5) is done over all dynamically acces- (AX)%) = 0212; (AY)%) = 0.325; 9)

sible ¢, states and fixed, states. The result of these com-
putations is presented in Fig. 2(a). The sharp minimum of V{((AZ)?) = 0.392.

Signal 1

Sigmal 7

FIG. 3. Time records of signals 1 and 7 for the high dimensional Lorenz nfodel 10, M = 15.
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FIG. 4. Conditional entropy as a function of shift parametgfor the high dimensional Lorenz model.

Here the average value has been computed along they the U.S. Department of Energy under the Contract
orbits without noise. The Figs. 2(b)—2(d) correspond toNo. DE-FG0291ER54130.
noise ratioR = 0.5, 1, and 1.5. Thus we conclude that Note added—We would also like to report the first
symbolic analysis presented in this paper appears to kepplication of our method for the analysis of turbulent
quite robust in the presence of external noise. fluctuations measured in tokamak plasma with microwave
In the conclusion of this paper we would like to de- reflectometry [9]. Our preliminary results are demonstrat-
scribe briefly the application of our symbolic method foring that the method could be used for the analysis of real
the analysis of a more complex chaotic signal presentetiirbulent data [10].
in Fig. 3 and generated by a high dimensional model [8].
The equations of motion are
dXy
2 XXt XXy = Xy F (10) [1] E.N. Lorenz, J. Atmos. ScR0, 130 (1963).
Here k is an integer and variable¥;, may be thought [2] N.H. Packard, J.P. Crutchfield, J.D. Farmer, and R.S.
of as values of some atmospheric quantityKirsectors Shaw, Phys. Rev. Lett5, 712 (1980).
of a latitude circle with periodic conditioX;x = X;. [3] X.Z. Tang, E.R. Tracy, A.D. Boozer, A. deBrauw, and
Even though Eq. (10) is not much like those of the atmos- _ R. Brown, Phys. Rev. 51, 3871 (1995).
phere, it models the basic physics of a turbulent system:[4] A-N. Kolmogorov, Dokl. Akad. Nauk. SSSR19, 861
The external forcing and internal dissipation are simu- (slggg)ilzbz;d%51334{17955%1959)’ Y. Sinai, Dokl. Akad. Nauk.
lated by the constanfE and linear terms, the quadratic i

. . . [5] A.B. Rechester and R. B. White, Phys. Lett. 166, 419
terms simulate advection, which conserves the total en- (1991).

2 2 2 : .
ergy of the systenkj + X; + ---Xk. All variables in 5] A B. Rechester and R.B. White, Phys. Lett. 8 51
Eqg. (10) have been scaled to reduce the coefficients in ~ (1991).
derivative, the quadratic, and linear terms to unity. Sig- [7] C.E. Shannon and W. Weaver, The Mathematical Theory
nals presented in Fig. 3 are the solutions of Eq. (10) for  of Communication (University of lllinois Press, Urbana,

the values of parametefs = 10 andF = 15. To obtain IL 1949). _
these solutions we used fourth-order Runge-Kutta numeri-[8] This model was kindly suggested to us by Professor
cal procedure with\r = 0.01. The results of application Edward N. Lorenz as an example of many dimensional

chaotic systems. It was first published FRmedictability,

of the symbolic analysis to these signals are presented in X .
Proceedings of a Seminar at the European Center for

::f:? 4)'( rlr: lIS Cle?,\'; tll?at symbolic method is working for Medium Range Weather Forecas{®eading, England,
S example as well. 1995),Vol. I, pp. 1-18.
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