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Symbolic Analysis of Chaotic Signals and Turbulent Fluctuations
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The symbolic analysis introduced in this paper allows quantitative description of dynamical cou
between different time signals. In order to demonstrate how this method works we applied it
explicit examples of chaotic signals. Our results appear to be quite robust when external n
added. [S0031-9007(96)01857-1]
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The purpose of this paper is to introduce the meth
for identification of fluctuations governed by the same d
namics. The methods of correlation functions and Fou
transform that are often used for the analysis of fluctuati
in fluids, plasmas, etc., are inadequate for this purpose
order to demonstrate how our method works we shall
the explicit examples of chaotic signals. The first exa
ple is presented in Fig. 1. These are the time record
Xstd andZstd generated by the Lorenz model [1] and a
related to fluid velocity and temperature fluctuations in
simplified model of Bénard thermal convection. These t
signals look quite different, but as we know they are re
resentations of the one attractor, governed by the same
namics. Very little could be learned from the study of t
cross-correlation functionCxzstd ­ kXst 1 tdZstdl (here
the averaging is done over the timet) or Fourier transforms
of Xstd andZstd. Using the symbolic analysis presente
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in this paper we will be able to demonstrate that sign
Xstd andZstd correspond to the same dynamical proce
There also exists a geometrical method which allows o
to reconstruct the phase space dynamics from a sin
variable [2]. The advantages of our method are that it do
not require the determination of dynamical system dime
sion and it works well in the presence of noise. A diffe
ent method of symbolic analysis of noisy chaotic signa
is presented in Ref. [3].

We begin with discretization of our signals,

Xn ­ X st0 1 ntd ,

Zn ­ Z st0 1 ntd .
(1)

Here n ­ 0, 1, 2, . . . . In the computations below we
chooset ­ 1 because around this value our main res
presented at Fig. 2 appears to be the most pronounced
FIG. 1. Time records ofXstd andZstd generated by the Lorenz model.
© 1996 The American Physical Society
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FIG. 2. Conditional entropy as a function of shift parametern0. Heret ­ 1 and noise ratio parameterR ­ 0 (a), R ­ 0.5 (b),
R ­ 1 (c), andR ­ 1.5 (d).
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In order to recognize time patterns in complex dynam
ical processes we need to have a language in which
expressexpress these patterns. That is, one has to su
tute actual signalsXn, Zn with their symbolic representa-
tion [4]. We will be using a simple example of symbolic
dynamics, defined by the following symbols:

Sn ­

266664
A s0d Xmin , Xn , XC1

B s1d XC1 , Xn , XC2

C s2d XC2 , Xn , XC3 , Xmax
...

, (2)

The range of the variableX has been divided into
domains, separated by the critical pointsXCi

. In the
computations below we will often use integer numbe
instead of symbols. The coarseness of this representa
makes it clear that a very small choice for the tim
step Dt would not make this number series contai
more information; it would simply make each numbe
repeat several times before changing. The number
critical points necessary to obtain a faithful symboli
representation of the dynamics depends on the syst
studied. We describe below how this is determined. Th
symbolic dynamics for variableZ is defined in a similar
manner, with critical pointsZC1 , ZC2 , . . . .

The resulting long symbolic series we partition into
short sequences of a given lengthL (L ­ 5 in the example
below),

For ease of reference and identification it is convenient
identify every short sequence uniquely by just one integ
[5,6].
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i­1

ML2iSi . (3)

Here M is a number of different symbols, which w
defined as integers according to Eq. (2).

The information content in the symbolic series can
quantified through the introduction of the entropy [7].

E ­ 2
1
L

X
,

P, lnP, . (4)

Here P, is the probability of finding a particular se
quence, that is the number of times this sequence can
found in the long symbolic time series divided by the nu
ber of all short sequences. The coding ability of the tr
language defined by Eq. (2) depends strongly on the
ues ofXCi . We performed a computer search to find o
the optimum language which maximizes the entropy.

To maximize the entropy we introduce a given numb
of critical points (one, two, etc.) and study the entro
as a function of the placement of these critical points,
calculating the entropy for a given random placement
the XCi . A placement of these points is readily foun
which maximizes the entropy for a given number
critical points. If the number of critical points is to
small, the symbolic language will, however, not conta
the full information content of the signal. This is appare
by the fact that the entropy will increase substantia
when a new critical point is added. When sufficie
critical points are present, the symbolic signal will conta
essentially all the information contained in the origin
signal, and this is reflected by the fact that the addit
of another critical point does not increase the entro
At this point the setXCi can be said to give a faithfu
symbolic representation of the original signal, and
symbolic language can be called optimum. As we w
55
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see later, only a rough approximation to the optimu
language is required.

The sequences, can be used for symbolic coarse grai
ing of the phase space of the dynamical system [5
Namely, to every sequence, corresponds a cell volume
of the phase spaceD,. In the case of degeneracy the
can be several cells corresponding to one sequence,. We
found numerically that the better approximations to the o
timum language correspond to the less degenerate co
grainings.

Now we are ready to do comparative analysis of t
Xn andZn data, presenting them as symbolic states,xsnd,
,zsnd. If Xstd and Zstd fluctuations are governed b
different dynamics, then the evolution of,xsnd and,zsnd
states is not correlated. Namely, every time the varia
X occupies the state,0, the variableZ could occupy any
of the states available to it. On the other hand, ifXstd
and Zstd are governed by the same dynamics, then
will observe the following relationship between,xsnd and
,zsnd: Everytime the variableX occupies the state,0, the
variable Z can occupy only neighboring states. This
due to the fact that these states are just different symb
coarse grainings of the same orbit [5,6]. We can eas
destroy such a correlation by time shifting:,xsnd, ,zsn 1

n0d. In order to check this effect we have computed t
conditional entropy defined as

EsZjXd ­ 2
1

N,

X
,x

1
L

X
,z j,x

Ps,zj,xd lnPs,z j,xd . (5)

HerePs,zj,xd is a conditional probability for the variable
Z to occupy state,z while the variableX occupies state,x ,
N, is the total number of different,x sequences; the firs
summation in Eq. (5) is done over all dynamically acce
sible,z states and fixed,x states. The result of these com
putations is presented in Fig. 2(a). The sharp minimum
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the conditional entropy as a function of a shift paramet
n0 is a clear demonstration of the effect described abov
For these computations we maximize entropy (4) with on
one critical pointsXc ­ 0.07, Zc ­ 21.24d while the full op-
timization requires approximately three critical points. O
the other hand, without optimization, if we choose som
symbolic language with a relatively low entropy, then th
minimum in Fig. 2(a) becomes much less pronounced
disappears.

We have also studied the effect of external noise. Th
equation of motion for Lorenz’s model [1] in the presenc
of additive noise can be written as

dXydt ­ 2aX 1 aY 1 dX , (6)

dYydt ­ 2XZ 1 rX 2 Y 1 dY , (7)

dZydt ­ XY 2 bZ 1 dZ . (8)

Here a ­ 10, b ­ 8y3, and r ­ 28 and the termsdX,
dY, and dZ correspond to additive noise. We have
solved Eqs. (1)–(3) by fourth-order Runge-Kutta numer
cal procedure withDt ­ 0.005, X0 ­ 6.0, Y0 ­ 6.0, and
Z0 ­ 13.5. Every time stepDt we added toXstd, Y std,
andZstd a random variable with a Gaussian distribution
The variances of all 3 random variables were equal a
parametrized in the following way:

sx ­ sy ­ sz ­ R
q

ksDY d2l ,q
ksDXd2l ­ 0.212;

q
ksDYd2l ­ 0.325; (9)q

ksDZd2l ­ 0.392 .
FIG. 3. Time records of signals 1 and 7 for the high dimensional Lorenz modelK ­ 10, M ­ 15.
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FIG. 4. Conditional entropy as a function of shift parametern0 for the high dimensional Lorenz model.
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Here the average value has been computed along
orbits without noise. The Figs. 2(b)–2(d) correspond
noise ratioR ­ 0.5, 1, and 1.5. Thus we conclude tha
symbolic analysis presented in this paper appears to
quite robust in the presence of external noise.

In the conclusion of this paper we would like to de
scribe briefly the application of our symbolic method fo
the analysis of a more complex chaotic signal presen
in Fig. 3 and generated by a high dimensional model [8
The equations of motion are

dXk

dt
­ 2Xk22Xk21 1 Xk21Xk11 2 Xk 1 F . (10)

Here k is an integer and variablesXk may be thought
of as values of some atmospheric quantity inK sectors
of a latitude circle with periodic conditionXk1K ­ Xk .
Even though Eq. (10) is not much like those of the atmo
phere, it models the basic physics of a turbulent syste
The external forcing and internal dissipation are sim
lated by the constantF and linear terms, the quadratic
terms simulate advection, which conserves the total e
ergy of the systemX2

1 1 X2
2 1 · · · X2

K . All variables in
Eq. (10) have been scaled to reduce the coefficients
derivative, the quadratic, and linear terms to unity. Si
nals presented in Fig. 3 are the solutions of Eq. (10) f
the values of parametersK ­ 10 andF ­ 15. To obtain
these solutions we used fourth-order Runge-Kutta nume
cal procedure withDt ­ 0.01. The results of application
of the symbolic analysis to these signals are presented
Fig. 4. It is clear that symbolic method is working fo
this example as well.
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Note added.—We would also like to report the firs
application of our method for the analysis of turbule
fluctuations measured in tokamak plasma with microwa
reflectometry [9]. Our preliminary results are demonstr
ing that the method could be used for the analysis of r
turbulent data [10].
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