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Low temperature dynamics of thfie= % Heisenberg chain is studied via a simple ansatz generalizing
the conformal mapping and analytic continuation procedures to correlation functions with multiplicative
logarithmic factors. Closed form expressions for the dynamic susceptibility and the NMR relaxation
rates1/T; and1/T,; are obtained, and are argued to improve the agreement with recent experiments.
Scaling ing/T andw /T are violated due to these logarithmic terms. Numerical results show that the
logarithmic corrections are very robust. While not yet in the asymptotic low temperature regime, they
provide striking qualitative confirmation of the theoretical results. [S0031-9007(96)02151-5]

PACS numbers: 75.10.Jm, 75.40.Gb, 75.50.Ee, 76.60.—k

In recent years there has been much interest in quamic corrections at” = 0 [7]:
tum critical (QC) phenomena, particularly in the context of D
quasi-2D cuprate antiferromagnets. In field theory, finite- (8(0,0)S(x, 1))r=0 = (1) —=
temperature QC behavior can be described in a manner VX2 = (ct)? 12
analogous to finite-size scaling, with the inverse tempera- % (In Vx2 — (ct)? ) (1)
ture B being the length of the system in imaginary time ro )

[1]. In nature, QC points in quasi-2D systems are rare . . .
their relevance to real materials arising primarily from theHereC. is the spin wave velocity, amD anq To are
fact that they also control the finite-temperature propertiefcﬁ,lonun'VersaI constants. Recently, this logarithmic factor

of weakly ordered or weakly gapped systems [1]. In con\vas also found in the exact two-spinon contribution to

trast, half-integer spin chains with continuous symmetr)}he dynamic structure f".iCtor [9] and was shown to be
are generically critical & = 0, and thus many real quasi- 'mPortant for understanding coupled spin chains [10].

1D antiferromagnets exhibit QC behavior in a wide tem-, The temperatured!ntro_(juce? ?]fm'te ClljtoﬁTl n th_e
perature regime. The situation is, however, complicated"a9!nary t'rr?e(T) h Irection (I) the complex ]Ba_me _f

by the presence of marginally irrelevant operators, whict ™ i¢7- Thus, the natural extension to finite of
lead to logarithmic corrections to most observables. Thesg'® generall.zed finite-size scaling ansatz with Iogar'lthmlc
corrections can be considerable, especially in the temperi2ctors, which was proposed and tested 7at= 0 in

ture regime where QC behavior is realized in quasi-1 ef. [11], is
materials, for, at low enough temperatures, interchain cou- B B T
plings always lead to 3D behavior. (8O)SCx, 7)r = (=1'D X (2T /¢)

In this Letter, we present new results for the loga-
rithmic corrections to the finite-temperature dynamic sus- X [In[ToX(l2IT/)/TTI'?, - (2)
ceptibility x(¢, w) of the standard spin-half Heisenberg where the scaling functionX(|z|T/c)/T — |z| asT —
chain. This quantity is directly accessible in neutron scatd. For a givenT, there is a range ofz| such that
tering experiments [2], and its — 0 limit determines the  In(7,/T) > InX(|z|T/c), and the square root of the
spin-lattice relaxation rate measured in NMR and nuclealogarithm can be expanded ftn(7,/T)]"/2X°(|z|T /¢),
quadrupole resonance [3]. We show that logarithmic cors~! = 2In(T,/T), up to O[1/In(T,/T)] corrections.
rections lead to measurable deviations from QC scalin€ombined with the well-known conformal mapping of
even at very low temperatures and are important for unthe infinite complex plane to the stripe; * ict —

derstanding the NMR experiments. — sin{#T (> = 7)], this leads to the expression
Conformal field theory provides a powerful machinery ST T2

to study the finitel" correlation functions of systems with  (5(0,0)S(x, 7))y = (—1)*D <In —°>

power-law correlations in the ground state, allowing for ¢ T

essentially exact calculations of the dynamic structure fac- 27 Tx A

tor [4—6]. However, the spin chain problem is compli- X <COSh c COSZWTT) )

cated by the marginally irrelevant operator, present in the 3)
bosonized Hamiltonian, which describes umklapp scatter-

ing between left and right movers [7,8]. This violates Equation (3) is valid forx < £InTy/T, and allows us
conformal invariance and leads to multiplicative logarith-to study the spin correlations both above and below the
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correlation lengthé (see below). The high-energy cutoff ' ' ‘ ' '

is given byT, = /2 7c/ry. Note the appearance of an 0P8, MC  +p=8, HTE
effectivetemperature-dependeantaling dimension 1.0 Bk o B=4, MC X =6, HTE |
{ | * B=4, HTE
= — — — Ea.(7), T=4.5
A=y (1 2ln%>’ @ s

in agreement with a number of renormalization group cal-
culations on finite systems [8,11]. An immediate conse- o9 |
quence of this is that the correlation length also acquires 5
a logarithmic temperature dependence, in agreement witt &

Bethe ansatz calculations [12,13]: Cg
-1 T 1 g
& =—11- 7 | (5) T 08 f°
From Eq. (3) the static structure factor is found to be ™
To\1/2
S(g) = 22A+1/2D<In ?(’) (1 — 4A)
0.7
o« rd _L@A — sy )
[l —2A —iszk))’
where ¢ is measured from the antiferromagnetic vector oo
7. Note that the entireg dependence of(g) is due to S
the 1/In(Ty/T) corrections to thel' = 0 value of A = %850 05 10 15 2.0
1/4. Equation (6) implies thaf§(q)/S(0) is no longer a cq/T

universal function ot:q/T.

Fourier transformation and analytic continuation to reafF!G- 1. The static susceptibility normalized to it = 0
value. Symbols represent numerical data from high temperature

frequencies [4-6] give the staggered susceptibility expansions (HTE) and QMC simulations (MC). Solid lines
22A-3/2p To\'/2 ) are predictions of Eq. (7) witlfy, = 4.5, and the dashed line
x(q,w) = T Sln(ZWA)<|n T ) I“(1 — 24) shows the universal scaling function with = 1/4 [15]. The
g inset shows the QMC data over a larger range8oénd cq/T
. w— L w+ . . A .
(A —i “:”T;q rA—i “:m;q) together with the universal scaling function.

FI-A—iG )T - A -4’

() possible reason is tha(g) is dominated by contribu-

which also lacks universality due #© dependence ah. tions (divergent ai’ = 0) from short distances, where our

Next, we test the expressions derived above againstsymptotic expression (3) breaks down. It is, thus, bet-
numerical results for the spin-half chain obtained usinger to compare the equal-time real-space spin correlations,
a “stochastic series expansion” quantum Monte Carld(x), with the theoretical expressions. It is well known
(QMC) method [14] (for systems with up to 1024 spins)that the correlation function, in addition to the domi-
and high temperature expansions (HTE). Most resultslant staggered piece, has a uniform contribution, given
from the two methods agree downTgJ = 1/8. Below e Gy eyt Smh(ﬂx 5)* at finite T [15]. It is appropriate to
that temperature, we rely on QMC data alone. subtract this (rom the numerical data before comparing

We begin with they = 0 susceptibility, shown in Fig. 1. with the scaling theory. As shown in Fig. 2, our results
The ratio x(¢,0)/x(0,0) appears to converge towards afor S(x) agree very well with Eq. (3), witlly, = 4.5 and
scaling form as the temperature is lowered, buteveghat D = 0.075. The inset shows a comparison of the ratio of
32 it is far from the universal scaling function expected correlation functions at two temperatures. With fixed
in the absence of logarithms [15]. In the rangé >  from the susceptibility data, this parameter-free agreement
T >1/8 the numerical results have high accuracy, ands quite striking. Deviation of the theoretical results at
the QMC and HTE data agree very well. The deviationsshort distances is also apparent and is the reasors that
from scaling are clearly systematic, and well described byannot be explained. The theoretical results also imply
Eqg. (7) withTo =4.5. Note that the parametdj, should  $(0) ~ (In 8)*2 and x(0,0) ~ B(InB)!/2 asT — 0, in
be considered agffectiveone. As the study of logarithmic agreement with numerical data [17].
corrections to the uniform susceptibility shows [16], the From Eq. (7) we obtain the NMR relaxation rates [18]
true value of Ty, may be reached only &t = 0.01.

. L 5/2-28 2 1/2
Data for S(¢) show substantiay dependence, in dis- 1_ Msin@rmllm)(ln E) i
agreement withA = 1/4 scaling predictions. However, T, mC T
the results are not well explained by Eq. (6) either. A (8)
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FIG. 2. Comparison of QMC data for real-space correlation .

functions (symbols) and Eq. (3) (solid lines) with, = 45  FIG. 3. The ratiols/vT T; versusT from Egs. (8) and (9).
and D = 0.075. The inset shows the ratio of the equal-time The 7' = 0 limit of the ratio is1.68. The inset shows a linear
correlation functions ag = 16 and 32 compared with Eq. (3) variation with1/In(8). QMC and HTE data for the ratio with

and the expression with = 1/4 [15]. full T,; and with only the scaling part included are shown by
the symbols.
—34+2A 42
TL = % Sin27A)T*(1 — 2A)1(A) not subtracted] [20]. The two should converge in the
26 scaling limit, and thdatter should be compared with the
w & In Ty . 9) theory. We found that QMC and HTE results fo¢; agree
\/ T T completely; deviations arise from the analytic continuation

. e X 5 _ needed to gefl/T;, which is more uncertain for QMC
Here tr}?Air:j?gralsll(A) = Jodx g and LA = 4o0 [21]. The difference between the curves based on

4[5 Itnoaml* have weak temperature dependencesthe full 7o and the scaling part of>; shows that the
In deriving Eq. (9), we have kept only the scaling part ancresults are not yet in the scaling limit. However, the
dropped the term{~x?(x = 0, = 0)] compensating theoretical results are supported by the convergence of
on-site self interactions as it is down by a factiin %)2 the more accurate (in the temperature regime shown) HTE
and is beyond the limits of the scaling theory. We finddata to the predicted form. The presence of nonasymptotic
that Eq. (8) shows weaker thafin(7,,/T) variations with  contributions in the fullT>; and the apparent tendency of
T. This result is in qualitative agreement with the recentQMC + max-ent to slightly overestimaig' T, explain the
measurement of /T, in Sr,CuO; by Takigawaet al. [3].  discrepancy in the numerical result previously reported for
Figure 3 shows the ratidg/TT,. In the T — 0  Tog/JT Ty [21,22].
limit our expressions (8) and (9) coincide with those of We also note that the experimenialT; was found to
Sachdev [15]. However, we find that tffe = 0 limit  be about30% lower than the numerical result g =
of To/~T T, is approached with infinite slope, similar 300 K [3,22], which is now also largely reconciled by
to the behavior of the uniform susceptibility [16]. The more accurate QMC + max-ent results [21]. Considering
behavior is consistent with the slow rise of this quantityalso the good agreement found previously fbfTs,
seen forSr,CuO; around?” = J/10 [3]. without adjustable parameters [3,22], the spin-half chain
Numerical results fory” are obtained from QMC data indeed very well describes the low-frequency dynamics
using the maximum-entropy (max-ent) method [19], andof Sr,CuOs.
from HTE via the recursion method [17]. In Fig. 3, data The frequency-dependent quantities also do not
are presented for the ratio with the fulhs and with  show universality in the scaled variable/T. For
only the scaling part [where-y?(x = 0,0 = 0) term is  example, the imaginary part of the local susceptibility
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[x(w) = [". j—g x(q, w)]is given by data forSr,CuO; [3]. Numerical results, although not in
22A-1/2p o\ the asymptotic low temperature regime, confirm various
x'(w) = — sin(27rA)<In 7) I'(1 — 4A) theoretical expressions including violation of scaling in the
¢ o variablescq/T andw /T. We expect these effects to di-
( I@A — i ml _ Hc) (10) minish and scaling to be restored if the second-neighbor
' —2A—-isz) interactions are tuned to the point where the marginal in-

teraction is absent [24].
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However, in thel' — 0 limit, it factorizes into a product
of a nonuniversal amplitude and a universal function [4]
of w/T, (IN2)1/2 x T2 tank( ).

QMC + max-ent data and theoretical results ¥d¥0, w)
are compared in Fig. 4, where the value &f is from
the fit of the static susceptibility. At low frequencies, the
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