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Quantum Critical Scaling and Temperature-Dependent Logarithmic Corrections
in the Spin-Half Heisenberg Chain
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Low temperature dynamics of theS ­ 1
2 Heisenberg chain is studied via a simple ansatz generalizing

the conformal mapping and analytic continuation procedures to correlation functions with multiplicative
logarithmic factors. Closed form expressions for the dynamic susceptibility and the NMR relaxation
rates1yT1 and1yT2G are obtained, and are argued to improve the agreement with recent experiments.
Scaling inqyT andvyT are violated due to these logarithmic terms. Numerical results show that the
logarithmic corrections are very robust. While not yet in the asymptotic low temperature regime, they
provide striking qualitative confirmation of the theoretical results. [S0031-9007(96)02151-5]
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In recent years there has been much interest in qu
tum critical (QC) phenomena, particularly in the context
quasi-2D cuprate antiferromagnets. In field theory, finit
temperature QC behavior can be described in a man
analogous to finite-size scaling, with the inverse tempe
ture b being the length of the system in imaginary tim
[1]. In nature, QC points in quasi-2D systems are ra
their relevance to real materials arising primarily from th
fact that they also control the finite-temperature propert
of weakly ordered or weakly gapped systems [1]. In co
trast, half-integer spin chains with continuous symmet
are generically critical atT ­ 0, and thus many real quasi
1D antiferromagnets exhibit QC behavior in a wide tem
perature regime. The situation is, however, complicat
by the presence of marginally irrelevant operators, whi
lead to logarithmic corrections to most observables. The
corrections can be considerable, especially in the tempe
ture regime where QC behavior is realized in quasi-1
materials, for, at low enough temperatures, interchain co
plings always lead to 3D behavior.

In this Letter, we present new results for the log
rithmic corrections to the finite-temperature dynamic su
ceptibility xsq, vd of the standard spin-half Heisenber
chain. This quantity is directly accessible in neutron sc
tering experiments [2], and itsv ! 0 limit determines the
spin-lattice relaxation rate measured in NMR and nucle
quadrupole resonance [3]. We show that logarithmic co
rections lead to measurable deviations from QC scal
even at very low temperatures and are important for u
derstanding the NMR experiments.

Conformal field theory provides a powerful machiner
to study the finiteT correlation functions of systems with
power-law correlations in the ground state, allowing fo
essentially exact calculations of the dynamic structure fa
tor [4–6]. However, the spin chain problem is compl
cated by the marginally irrelevant operator, present in t
bosonized Hamiltonian, which describes umklapp scatt
ing between left and right movers [7,8]. This violate
conformal invariance and leads to multiplicative logarith
0031-9007y97y78(3)y539(4)$10.00
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mic corrections atT ­ 0 [7]:

kSs0, 0dSsx, tdlT­0 ­ s21dx Dp
x2 2 sctd2

3

√
ln

p
x2 2 sctd2

r0

!1y2

. (1)

Here c is the spin wave velocity, andD and r0 are
nonuniversal constants. Recently, this logarithmic fac
was also found in the exact two-spinon contribution
the dynamic structure factor [9] and was shown to
important for understanding coupled spin chains [10].

The temperature introduces a finite cutoffcyT in the
imaginary timestd direction of the complex planez ­
x 1 ict. Thus, the natural extension to finiteT of
the generalized finite-size scaling ansatz with logarithm
factors, which was proposed and tested atT ­ 0 in
Ref. [11], is

kSs0dSsx, tdlT ­ s21dxD
T

cXsjzjTycd
3 ffflnfT0XsjzjTycdyT gggg1y2, (2)

where the scaling functioncXsjzjTycdyT ! jzj as T !
0. For a given T , there is a range ofjzj such that
lnsT0yT d ¿ ln XsjzjTycd, and the square root of th
logarithm can be expanded toflnsT0yT dg1y2XdsjzjTycd,
d21 ­ 2 lnsT0yT d, up to Of1ylnsT0yT dg corrections.
Combined with the well-known conformal mapping o
the infinite complex plane to the stripe,x 6 ict !

c
pT sinhfpT s x

c 6 tdg, this leads to the expression

kSs0, 0dSsx, tdlT ­ s21dxD

p
2 pT
c

µ
ln

T0

T

∂1y2

3

µ
cosh

2pTx
c

2 cos2pTt

∂22D

.

(3)

Equation (3) is valid forx ø j ln T0yT , and allows us
to study the spin correlations both above and below
© 1997 The American Physical Society 539
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correlation lengthj (see below). The high-energy cuto
is given byT0 ­

p
2 pcyr0. Note the appearance of a

effectivetemperature-dependentscaling dimension

D ­
1
4

√
1 2

1

2 ln T0

T

!
, (4)

in agreement with a number of renormalization group c
culations on finite systems [8,11]. An immediate con
quence of this is that the correlation length also acqu
a logarithmic temperature dependence, in agreement
Bethe ansatz calculations [12,13]:

j21 ­
pT
c

√
1 2

1

2 ln T0

T

!
. (5)

From Eq. (3) the static structure factor is found to be

Ssqd ­ 22D11y2D

µ
ln

T0

T

∂1y2

Gs1 2 4Dd

3 Re

√
Gs2D 2 i

cq
2pT d

Gs1 2 2D 2 i
cq

2pT d

!
, (6)

where q is measured from the antiferromagnetic vec
p . Note that the entireq dependence ofSsqd is due to
the 1ylnsT0yT d corrections to theT ­ 0 value of D ­
1y4. Equation (6) implies thatSsqdySs0d is no longer a
universal function ofcqyT .

Fourier transformation and analytic continuation to re
frequencies [4–6] give the staggered susceptibility

xsq, vd ­
22D23y2D

pT
sins2pDd

µ
ln

T0

T

∂1y2

G2s1 2 2Dd

3
GsD 2 i v2cq

4pT d
Gs1 2 D 2 i

v2cq
4pT d

GsD 2 i
v1cq
4pT d

Gs1 2 D 2 i
v1cq
4pT d

,

(7)

which also lacks universality due toT dependence ofD.
Next, we test the expressions derived above aga

numerical results for the spin-half chain obtained us
a “stochastic series expansion” quantum Monte Ca
(QMC) method [14] (for systems with up to 1024 spin
and high temperature expansions (HTE). Most res
from the two methods agree down toTyJ ­ 1y8. Below
that temperature, we rely on QMC data alone.

We begin with thev ­ 0 susceptibility, shown in Fig. 1
The ratioxsq, 0dyxs0, 0d appears to converge towards
scaling form as the temperature is lowered, but even atb ­
32 it is far from the universal scaling function expecte
in the absence of logarithms [15]. In the range1y4 .

T . 1y8 the numerical results have high accuracy, a
the QMC and HTE data agree very well. The deviatio
from scaling are clearly systematic, and well described
Eq. (7) withT0 ­ 4.5. Note that the parameterT0 should
be considered aneffectiveone. As the study of logarithmic
corrections to the uniform susceptibility shows [16], t
true value ofT0 may be reached only atT # 0.01.

Data for Ssqd show substantialq dependence, in dis
agreement withD ­ 1y4 scaling predictions. However
the results are not well explained by Eq. (6) either.
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FIG. 1. The static susceptibility normalized to itsq ­ 0
value. Symbols represent numerical data from high tempera
expansions (HTE) and QMC simulations (MC). Solid line
are predictions of Eq. (7) withT0 ­ 4.5, and the dashed line
shows the universal scaling function withD ­ 1y4 [15]. The
inset shows the QMC data over a larger range ofb andcqyT
together with the universal scaling function.

possible reason is thatSsqd is dominated by contribu-
tions (divergent atT ­ 0) from short distances, where ou
asymptotic expression (3) breaks down. It is, thus, b
ter to compare the equal-time real-space spin correlatio
Ssxd, with the theoretical expressions. It is well know
that the correlation function, in addition to the dom
nant staggered piece, has a uniform contribution, giv
by 2s T

2c sinhspTxycd d
2 at finite T [15]. It is appropriate to

subtract this from the numerical data before compar
with the scaling theory. As shown in Fig. 2, our resu
for Ssxd agree very well with Eq. (3), withT0 ­ 4.5 and
D ­ 0.075. The inset shows a comparison of the ratio
correlation functions at two temperatures. WithT0 fixed
from the susceptibility data, this parameter-free agreem
is quite striking. Deviation of the theoretical results
short distances is also apparent and is the reason thatSsqd
cannot be explained. The theoretical results also im
Ss0d , sln bd3y2 and xs0, 0d , bsln bd1y2 as T ! 0, in
agreement with numerical data [17].

From Eq. (7) we obtain the NMR relaxation rates [18

1
T1

­
25y222DA2

kspdD
pc

sins2pDdI1sDd
µ
ln

T0

T

∂1y2

,

(8)
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FIG. 2. Comparison of QMC data for real-space correlat
functions (symbols) and Eq. (3) (solid lines) withT0 ­ 4.5
and D ­ 0.075. The inset shows the ratio of the equal-tim
correlation functions atb ­ 16 and32 compared with Eq. (3)
and the expression withD ­ 1y4 [15].

1
T2G

­
22312DA2

'spdD
pc

sins2pDdG2s1 2 2DdI2sDd

3

s
c
T

ln
T0

T
. (9)

Here the integralsI1sDd ­
R`

0 dx
x

ssinhxd4D and I2
2 sDd ­

4
R`

0 j
GsD2ixd

Gs12D2ixd j
4 have weak temperature dependenc

In deriving Eq. (9), we have kept only the scaling part a
dropped the termf,x2sx ­ 0, v ­ 0dg compensating
on-site self interactions as it is down by a factorTsln T0

T d2

and is beyond the limits of the scaling theory. We fi
that Eq. (8) shows weaker than

p
lnsT0yT d variations with

T . This result is in qualitative agreement with the rece
measurement of1yT1 in Sr2CuO3 by Takigawaet al. [3].
Figure 3 shows the ratioT2Gy

p
T T1. In the T ! 0

limit our expressions (8) and (9) coincide with those
Sachdev [15]. However, we find that theT ­ 0 limit
of T2Gy

p
T T1 is approached with infinite slope, simila

to the behavior of the uniform susceptibility [16]. Th
behavior is consistent with the slow rise of this quant
seen forSr2CuO3 aroundT ­ Jy10 [3].

Numerical results forx 00 are obtained from QMC data
using the maximum-entropy (max-ent) method [19], a
from HTE via the recursion method [17]. In Fig. 3, da
are presented for the ratio with the fullT2G and with
only the scaling part [where,x2sx ­ 0, v ­ 0d term is
n
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FIG. 3. The ratioT2Gy
p

T T1 versusT from Eqs. (8) and (9).
The T ­ 0 limit of the ratio is1.68. The inset shows a linear
variation with1y lnsbd. QMC and HTE data for the ratio with
full T2G and with only the scaling part included are shown b
the symbols.

not subtracted] [20]. The two should converge in th
scaling limit, and thelatter should be compared with the
theory. We found that QMC and HTE results forT2G agree
completely; deviations arise from the analytic continuatio
needed to get1yT1, which is more uncertain for QMC
data [21]. The difference between the curves based
the full T2G and the scaling part ofT2G shows that the
results are not yet in the scaling limit. However, th
theoretical results are supported by the convergence
the more accurate (in the temperature regime shown) H
data to the predicted form. The presence of nonasympto
contributions in the fullT2G and the apparent tendency o
QMC + max-ent to slightly overestimate1yT1 explain the
discrepancy in the numerical result previously reported
T2Gy

p
T T1 [21,22].

We also note that the experimental1yT1 was found to
be about30% lower than the numerical result atT ­
300 K [3,22], which is now also largely reconciled by
more accurate QMC + max-ent results [21]. Consideri
also the good agreement found previously for1yT2,
without adjustable parameters [3,22], the spin-half cha
indeed very well describes the low-frequency dynami
of Sr2CuO3.

The frequency-dependent quantities also do n
show universality in the scaled variablevyT . For
example, the imaginary part of the local susceptibili
541
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fxsvd ­
R`

2`

dq
2p xsq, vdg is given by

x 00svd ­
22D21y2D

c
sins2pDd

µ
ln

T0

T

∂1y2

Gs1 2 4Dd

3

µ
Gs2D 2 i

v

2pT d
Gs1 2 2D 2 i v

2pT d
2 H.c.

∂
. (10)

However, in theT ! 0 limit, it factorizes into a product
of a nonuniversal amplitude and a universal function
of vyT , sln T0

T d1y2 3
pD

c tanhs v

2T d.
QMC + max-ent data and theoretical results forx 00s0, vd

are compared in Fig. 4, where the value ofT0 is from
the fit of the static susceptibility. At low frequencies, th
theory and the data agree and also appear to scale.
higher frequencies, there is no scaling and the deviati
are qualitatively similar in that the lower temperature d
is higher at higher values ofvyT . The numerical data
are not at low enough temperatures to explore the sca
forms at largervyT . It would be useful to compare ou
results with neutron scattering data [23].

To conclude, we have studied the effects of logarithm
corrections on the finite-temperature dynamic spin co
lations of the spin-half chain. Analytical expressions a
developed forxsq, vd by a generalized finite-size scalin
ansatz. The ansatz ties together previous results, inc
ing logarithmic corrections to the correlation length, a
implies a temperature-dependent effective scaling dim
sion. Expressions obtained for the NMR relaxation ra
are argued to improve the agreement with experime

FIG. 4. Imaginary part of the antiferromagnetic susceptibili
Lines represent theoretical results with parameters as in Fig
and the symbols represent the QMC + max-ent data.
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data forSr2CuO3 [3]. Numerical results, although not in
the asymptotic low temperature regime, confirm vario
theoretical expressions including violation of scaling in th
variablescqyT andvyT . We expect these effects to di
minish and scaling to be restored if the second-neighb
interactions are tuned to the point where the marginal
teraction is absent [24].
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