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Low-frequency dynamic impedancefs21sv, T d ; ss1 1 is2d21g measurements on Josephson
junction arrays found thats1 , jlnvj, s2 , const. This implies anomalously sluggish vortex
mobilities mV svd , s

21
1 , and is in conflict with general dynamical scaling expressions. We calcula

(a) ssv, T d by real-space vortex scaling and (b)mV svd using Mori’s formalism for a screened
Coulomb gas. We find, in addition to the usual critical (large-v) and hydrodynamic (low-v)
regimes, a new intermediate-frequency scaling regime into which the experimental data fall.
resolves the above mentioned conflict and makes explicit predictions for the scaling form ofssv, T d.
[S0031-9007(96)02147-3]
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The dynamic conductivity of superconducto
ssv, T d ; s1 1 is2 ; jsjeifs , including high-TC

materials and Josephson junction arrays (JJA), has b
the focus of much recent interest [1–4]. Dynamic
scaling forms, s ­ j21z2dS6sY 21d, fs ­ FsY 21d
were proposed by Fisheret al. [1] and Dorsey [2], where
z is the dynamic exponent, andY , 1yvjz . The results
apply [1,2] also for the vortex-unbinding Kosterlitz
Thouless (KT) transition ind ­ 2 [5], j being the vortex
screening length. The scaling functionsFs andS1 sS2d
have well-defined limits in the hydrodynamicsY ¿ 1d
and criticalsY ø 1d regimes, e.g.,s1 ! j2, s2 ! 0 in
theY ! `, dc limit. 2D JJA’s [6] are clean, controllabl
2D superconductors, and should be ideal systems
display the universal dynamic scaling behavior and lim

Remarkably, however, low-frequency dynam
impedancess21d measurements [4] on 2D SNS triangula
lattice JJA’s with a (field-induced) vortex screening leng
j, find s1 , jlnvj, s2 , const, in conflict with dynamic
scaling limits. This also implies anomalously sluggi
low-frequency vortex mobilities,mV svd , s

21
1 , 1yjlnvj

going to zero forv ! 0. s is related to the dynamic
dielectric function esvd: s , iYyesvd. Surprisingly,
Minnhagen’s phenomenology (MP) foresvd, described
below, and related simulations support this anomal
behavior, but understanding the apparent breakdown
dynamical scaling, in the very arena where one mi
expect its clear verification, is of central importance.

In this Letter, we reconcile these results, by a “regim
interpretation” [7] defined by the ratioY ­ srvyjd2 of
the (squares of the) frequency-dependent diffusive pr
length [8] rv ­

p
G0yv and the screening lengthj.

Here, G0 is a junction-determined phase diffusion ra
the lattice constant is unity, and we consider weak scre
ing and probes over several lattice constants:j ¿ 1,
rv ¿ 1. We (a) recalculatessv, Td by a real-space
scaling [9], with an improved treatment of intermedia
scale screening and (b) evaluate the vortex mobi
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mV using Mori’s formalism for a screened Coulom
gas [10]. Three probe-scale regimes emerge. (I) Pr
ing free-vortex scales (“low” frequencies)rv ¿ j, in
a “hydrodynamic” region, Drude behavior with the co
rect [1,2] dc conductivity,s1sv ! 0, T d , j2, is recov-
ered. (II) At intermediate scales/frequencies,rv & j, in
a new “precritical” region, MP-like behavior,s1 , jlnvj

is found. (III) Probing bound pair scales (“high” frequen
cies) rv ø j in a “critical” region extending from just
aboveTKT to T ­ 0, a scale-dependent vortex dampin
,s1 , srvylnvd2 , fvslnvd2g21 is found, correspond-
ing to large pairs moving in a logarithmically interactin
viscous medium of smaller pairs. The results ofv ! 0,
T ! T1

KT thus depend on the order of the limits. Th
ratio Rs ­ s1sv, Tdys2sv, T d ; cotfs at Y ­ 1 inter-
polates between DrudesRs ­ 1d and MP sRs ­ 2ypd
signatures [11], asv increases from zero, orT increases
from T1

KT. As a satisfying byproduct of calculation (a
the MP-like expressions emerge as approximations to
syj2 scaling function, valid in regime II. Calculation
(b) demonstrates that the general results are indep
dent of the details of JJA dynamics, and depend o
on Coulomb gas screening properties. Local spin-wa
damping mechanism specific to SNS arrays [10,12] co
play an additional role in producing anomalous behavi
widening regime II. But both SNS and SIS arrays shou
show all three regimes in principle, with different rela
tive sizes of regimes I and II, coming from very gener
considerations.

Two different physical circumstances yield a nonze
free vortex density, and thus finitej: (i) For zero external
flux, and T . TKT , j21 ­ j21

1 sT d , e2sT2TKTd21y2
fi 0

above transition,T . TKT ; while j21 ­ 0 for T , TKT .
(ii) Flux-induced vortices of concentrationf ø 1 [4]
(too dilute to form a stable lattice) can form a on
component plasma with a screening lengthj, given by
the Debye expressionj21 ­ j

21
D s fd ­ s4p2fyTd1y2 fi

0, corresponding to “above transition” for anyT.
© 1997 The American Physical Society 523
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We now sketch the MP ideas [11], originally deve
oped to describessv, T d structures atT ­ Tv . TKT,
wherej1sTvd ­ rv. The zero-wave-vector conductivit
ssv, T d is proportional to the corresponding (invers
dielectric constant: ssv, T dys0K0j2 ­ iY f´V sk ­
0, v, T dg21, where s0 is a conductivity scale and
K0 the bare vortex coupling. In MP, the real pa
Rf´V sk ­ 0, v, T d21g of this zero-wave-vector dy-
namic function is approximated by the zero-frequen
static function, Rf´V sk, v ­ 0, T d21g, evaluated at
the probe scale, k ­ r21

v . The imaginary part,
Ff´V sk ­ 0, v, Td21g is found from the Kramers-
Kronig (KK) relations, that produce a lnY dependence.
Thus [11], with´V sk ­ 0, v, T d21 ­ $k2ys $k2 1 j22d,

s2

s0K0j2
­

Y
Y 1 1

,
s1

s0K0j2
­

2
p

Y 2 lnY
Y 2 2 1

. (1)

At Y ­ 1, Rs ­ 2yp [i.e., fs ­ arctanspy2dg, an MP
signature. The dynamical scaling limits [1,2] in th
Y ø 1 critical regime, both above and belowTKT, are
s1 , s2 , 1yv (independent ofj), Fs ­ py2. In the
Y ¿ 1 hydrodynamic regime, forT . TKT sT , TKTd,
one findss1 , j2, s2 , 0, Fs , 0 [s1 , dsvd, s2 ,
1yv]. Equation (1) for MP has very different limits
however, s1 , j2Y 2jlnY j, s2 , 1yv for Y ø 1; and
s1 , j2jlnY j, s2 , j2 for Y ¿ 1. (Note that theY ¿

1 limit, for j ­ j1sT d fixed, v ! 0, implies infinite
dc conductivity,aboveTKT .) We now outline our two
complementary calculations, with details elsewhere [
showing that MP-like behavior emerges in an intermedi
regime II, rather than in the scaling form regimes I, III.

(A) Real-space vortex scaling andssv, T d.—The
total (dimensionless) JJA bond currentI tot

mi (m ­ x, y
directions) is a sum of Josephson or super- (,sinDmui ),
phase-slip or normal-s,Dm

Ùuid, and noise currents, an
is conserved at every 2D lattice sitei. If we ignore
capacitive charge buildup on grains,X

m

DmItot
mi ­

X
m

DmhT 21 sinfDmui 2 ÙAmistdg

1 n21
0 fDm

Ùui 2 ÙAmistdg 1 fmistdj ­ 0 . (2)

Here, n0 ; s2eRJIJyh̄dT ; G0T , T
21 ; sh̄IJy2ekBT d,

and IJ , RJ are the junction critical current and
the effective shunt resistance [9,13], for th
SNSySIS array. The random noise current obe
k fmr stdfm0r 0st0dl ­ s2yn0ddmm0drr 0dst 2 t0d. The JJA
grain phases are2p , ui # p , and the external trans
verse vector potentialAmistd ­ Amisvde2ivt is weak.
Inverting the Laplacian$D2 on Ùui, the Langevin dynamics
equation for the phase is [9,14]

Ùur ­ 2
X
r 0

G̃rr 0

"
n0

≠bH
≠ur

1 F̂r 0std

#
, (3)

wherebH ­ 2
1
T̃

P
m,r cosfDmur 2 Amstdg, G̃rr 0 ­ Grr 0 2

Grr is the 2D lattice Green’s function (with singular pa
subtracted), andkF̂r stdF̂r 0st0dl ­ 2n0G̃rr 0dst 2 t0d.
524
,
e

The dynamic conductivity calculation [9] yields
smr ,m0r 0 ; smr ,m0r 0 1 s̃mr ,m0r 0 . Here, s is the usual
superfluid response, which at long wavelengths
ssys0d ­ pK`G0dsvd 1 iK`sG0yvd. With k l0 denot-
ing an average with weightP0 ­ e2bHfDu2Astdg, s̃ can
be written as

s̃mr ,m0r 0

s0
, T

22
Z `

0
eivtksinDmure2L̂0t sinDm0ur 0 l0 dt .

(4)

As before [9], we extract vortices by a dual transform
do a Gaussian truncation on spin waves, and find t
the effect of the Fokker-Planck “propagator”e2L̂0t is to
produce a correlation angle decay ase2G0t . The correla-
tion s̃mr ,m0r 0 can be expressed as the projection (throu
derivatives) of the vortex partition “generating function,
with separated “test charges” atmr and m0r 0. Doing
the time integral in Eq. (4), thee2G0t factors lead to a
test chargesivyG0dys1 2 ivyG0d at m0r 0 in the parti-
tion function. The logarithmic potential,$D2U0sRyad ­
12pd $R,$0 and dipolarsj21 ­ 0d scaling equations [5] can
be generalized [7] to include weaksj21 ø 1d monopo-
lar screening ofa, a 1 da dipole binding, approximated
by a potential $D2UsRyad ­ 12pgld $R,$0. Real-space in-
tegration of pairs of separationa, a 1 da can then be
done, as usual [5], producing the renormalized coupli
Kl that obeys KT scaling equations. Since vortex dam
ing is across the junctions in the array, it is scale d
pendent,G0 ! Gl ; G0ya2 sz ­ 2d, where a ; el , so
the frequency-dependent test charge issiva2yG0dys1 2

iva2yG0d [13]. After projection, this provides a dynamic
Drude factor, at scalea ; el, that weights the incremen-
tal, (static) scaling contributions,dsKlgld. The KK rela-
tions are thus automatically satisfied.

With a partial integration, the long-wavelength condu
tivity s̃svd is then, finally, an integral over all pair con
tributions, with a range of length (and time) scales

s̃svd
s0j2 ­ Y

Z `

0
dl Klgl

"
d
dl

sayrvd2

1 2 isayrvd2

#
. (5)

For a ø 1, gl . 1, and for a ¿ 1, gl is the Debye
dielectric constantq2ysq2 1 j2d at a scaleq , a21:
gl . f1 1 sayjd2g21. The dominant monopole effec
on ssvd is the explicit gl factor, representing a scale
dependent reduction of far-off fields, as seen bya, a 1

da dipoles. There is a smooth crossover from dipol
(a ø j, regime III) to monopolar (a ¿ j, regime I)
screening with probesrv , a, and with mutual (a , j,
regime II) screening in between. Previously, we ha
matched regime IyIII behavior directly [9] effectively
taking gl to be a step function, and suppressing th
intermediate regime. For external free-vortex screeni
fj ­ jDs fdg, gl ­ 1yf1 1 sayjd2g throughout.

Changing variables in Eq. (5),ayj ! a we sees̃sv, T d
is a function ofY, with only logarithmic deviations,lj ;
lnj, from the limits of the integral and inKl ! Kl1lj

.
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For j ~ jDs fd ,
p

f, this implies a quasiuniversality [1
in Y , fyv, as found [4]. The imaginary part̃s2 of
Eq. (5) has a function peaked ata2yj2 ­ Y in square
brackets, multiplying a roll-off function. By rapid roll
off and sharp-peaking estimates, thetotal s2 is estimated
asslv ; lnrvd

s2

s0j2 ø Y

"
Klj

Y 22

1 1 Y 22 , Klv

Y 21

1 1 Y21 , Klv

#
, (6)

in the regimes I, II, and III, respectively, orY ¿ 1, Y #

1, Y ø 1. Note in regime III, thej2 factor cancels, and
[9] s2ys0 ø Klvyv with the correct superfluid kinetic
inductance limitK`yv, for T , TKT, v ! 0. The real
part of the total conductivity, apart from thedsvd term,
(using KK relations in regime II, where the integral
harder to estimate) is

s1

s0j2 ø

"
Klj

1 1 Y22 ,
2
p

Klv lnY
1 2 Y 22 , 2

1
2

dKlv

dlv

arctanY 21

Y21

#
(7)

in regimes I, II, and III, respectively. Thesyj2 results
of Eqs. (6) and (7) agree with the scaling limits [1,2]
S6sY 21d and fssY d in regimes I and III. In regime II,
with dipolar screening neglectedsKlv ! K0d, syj2 is
of the MP form, Eq. (1). With [5]Kl , K` 1 l21 in
regime III, s1ys0 , sG0yvdyl2

v for all T , TKT reflect-
ing the KT “critical line,” in the dynamics; the phase ang
[1,2] fs ­ arctanss2ys1d ! py2, asv ! 0.

(B) Coulomb gas vortex dynamics.—It is important
to directly calculate the Coulomb gas vortex “charg
mobility [10] (for j21 fi 0) in a way that is manifestly
independent of the details [13] of JJA dynamics, b
shows the two frequency regimes I and II (since dipo
screening is not included, regime III will not appea
The overdamped equation of motion for a charge11

is GV
Ù$Rl ­ 2

P
jfii ej

$=V s $Ri 2 $Rjd, where the potentia
between chargessej ­ 61d in Fourier space isV s $qd ­
s $q2d21 and GV is a friction coefficient. We use Mori’s
formalism [10,15] to relatemV svd to the correlation
function Frrs $q, vd for the vortex charge densityrs $Rd ­P

i eids $R 2 $rid. The inverse mobility of a given particl
or effective viscosity function is the sum of the ba
friction coefficient and a contribution that is related to t
forces from all other particles:

m21
V svd ­ GV

"
1 1 skBT d21

X
$q

j $qV s $qdj2Frrs $q, vd

#
.

(8)
In order to evaluateFrrs $q, vd we make the usua

approximations [10] (neglect of the “Mori projector” an
decoupling higher correlations in terms ofrs $qd andns $qd,
the number density Fourier component). One obtains

Frrs $q, vd ­
Srs $qd

iv 1
kBT sq21j22d

mV svd

. (9)

Here,Srs $qd is the static (charge) structure factor. Equ
tions (8) and (9) determinemV svd self-consistently, bu
f

”

t
r
.

e

-

we solve to leading order, replacingm21
V in Eq. (9) by

the zeroth orderGV . An approximate form is chosen for
Srs $qd ­

kBT $q2

2pn0e2 Qsj $q1j 2 j $qjd 1 Qsj $qj 2 j $q1jd [n0 being
the total density of the charges andj $q1j a cutoff, corre-
sponding to the first maximum inSrs $qd]. We find

m21
V svd ­ GV

"
1 1

pJ
kBT

ln

√
1 1

$q2
1

ivGV 1 j22

!#
,

(10)
neglecting at first the second term ofSrs $qd. The
Coulomb-gas dielectric function of the system is related
the charge mobilitymV and to the bound-pair part of the
dielectric function by [10]́ svd ­ ´B 1 ie2n0mV svdyv.

We now present the results. Figure 1 shows, fro
Eq. (5), s2ys0j2, as well ass1ys0j2 (which for small
v is essentiallym

21
V svd the inverse vortex mobility, or

vortex viscosity) versus the logarithmic scaled frequen
or temperature variable, lnY 21. The experimental data
[4] have been obtained for field-induced free vortice
fj21 ­ j

21
D s fd fi 0g for which regime III is absent and

gsld ­ f1 1 sayjd2g21, ;a. Thus the couplingKl should
scale to zero forl ! ` (corresponding toT . TKT in
the zero field case). We use the simple formKl ­
K0Qslmax 2 ld, and uselmax as fitting parameter. A good
fit is obtained forlmax ­ 4.81, which is on the order of the
l value for which the linearized scaling equations [5] yie
a vanishingKl. s1svd clearly matches Drude behavio
for regime I,Y ¿ 1. The “intermediate” regime,Y & 1,
with MP dependence,lnY is seen to be fairly large. The
experimental [4] data points for SNS arrays, shown

FIG. 1. Real and imaginary parts of the conductivitysys0j2

versusY ; G0yvj2, in a linear-log plot, from Eq. (5). Herej
is the vortex screening length and

p
G0yv the probe lengthrv .

The 1, 3 symbols are experimental data points [4]. Inse
regimes I, II, and III in a schematic frequency-temperatu
diagram, withr21

v ­ j21
1 sT d defining the IIyI boundary.
525
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FIG. 2. Real and imaginary (inset) parts of1y´svd versus an
inverse frequency scale,Y , in a log-log plot. The constant-
mobility fm21

V svd ­ GV g Drude limit is represented by the
dashed line, while the solid line is the result of our calculati
(b). The experimental results of Ref. [4] are given by the do

Figs. 1 and 2, fall in regimes I and II. Very low frequenc
data are not unequivocal and are not shown. Typica
[4], G0 , 300 Hz, v varies from,10 Hz to ,10 kHz,
for RJ , 2 mV (SNS arrays) andIJ , 100 nA, and
js fd , 3.1 for f ­ 0.001, soYgoes from,0.1 to ,200.

Figure 2 shows the dielectric functiońsvd [obtained
through Eqs. (8) and (9), by using the full form ofSrs $pd]
as a function of Y. One again clearly recognizes tw
frequency regimes (I and II), separated by a crossover
quencyvcross ø sn0j2d21. For v . vcross, Rsss1y´svdddd
varies likejvj as in Minnhagen’s regime II, whereas fo
v , vcross it varies like v 2, as in Drude’s regime I.
Moreover, we have verified for both methods that the
tio Rs at Y ­ 1 varies between the DrudesRs ­ 1d and
MP sRs ­ 2ypd signatures [7].

Regime III is not reached for theY values shown in
Fig. 1, but for SIS arrays,RJ is orders of magnitude
higher, so the critical behavior might be more clea
seen. BelowTKT , or more generally, forY ø 1, one
has effective damping coefficientshV , s1 due to bound
pairs, rather than free-vortex inverse mobilities, a
s1 , 1yvl2

v . This is consistent with simulations o
driven vortices: there is a velocity-dependent viscos
coefficient, decreasing for larger velocities [16]. Larg
oscillating pairs, probed at lowerv, are more sluggish,
since they move in a logarithmically interacting visco
medium of smaller pairs.

In conclusion, we have proposed a regime interpre
tion of anomalous vortex dynamics, based on the ra
526
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of the frequency-dependent probe scale, and the scre
ing length. Both Drude and anomalous vortex dynami
emerge in different regimes, from calculations of the d
namic JJA conductivity and the vortex mobility. This rec
onciles different results, supports postulated conductiv
scaling, and indicates further dynamical avenues to be
plored, in simulations and experiments.

It is a pleasure to thank D. Bormann, P. Martinoli, an
P. Minnhagen for useful conversations, and P. Martin
for reading the manuscript.
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