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No Enhancement of the Localization Length for Two Interacting Particles
in a Random Potential
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(Received 22 August 1996)

We study two interacting particles in a random potential chain by means of the transfer m
method. The dependence of the two-particle localization lengthl2 on disorder and interaction strengt
is investigated. Our results demonstrate that the recently proposed enhancement ofl2 as compared to
the results for single particles is entirely due to the finite size of the systems considered. This is s
for a Hubbard-like on site interaction and also a long-range interaction. [S0031-9007(96)02183-
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In one dimension (1D), bosonization of the repulsi
Hubbard model in the gapless phase shows that (on s
disorder is a relevant perturbation and the ground s
corresponds to a strongly localized phase [1]. Thus it ca
as a surprise when Shepelyansky [2] recently argued
the Hubbard interaction between two particles in a rand
potential would reduce the localization in comparis
with independent particles. In particular he obtained
enhancement of the two-particle localization lengthl2

independent of the statistics of the particles and of the s
of the interaction such that

l2 ø U2 l
2
1

32
(1)

in the band center. Herel1 is the single-particle localiza-
tion length in 1D andU the Hubbard interaction in units o
the nearest-neighbor hopping strength. Shepelyansky
tained this result by studying the matrix representationU
of the Hubbard interaction in the disorder-diagonal basis
localized single-particle eigenstates, i.e.,U ­ UQnm,kl ­
U

P
i fy

n sidfy
msidfksidflsid, with fnsid the amplitude at

sitei of the single-particle eigenstate with energyEn. Here
he assumed thatfnsid behaves asfnsid , rny

p
l1, where

rn is a random number of order unity, and he neglec
correlations among thern at different sites resulting in a
Gaussian distribution for the matrix elements ofQ.

Support for this result was given shortly afterwards
Imry [3] with the help of a Thouless-type scaling arg
ment. Frahmet al. [4] used the transfer matrix metho
(TMM) to study the two-particle Hubbard-Anderso
problem without any approximations and have fou
numerically thatl2 , l

1.65
1 . They also measured the dis

tribution of the matrix elements ofQ and found a strongly
non-Gaussian behavior. They attribute the deviation of
exponent from Eq. (1) and the different distribution of m
trix elements to the correlations among thern neglected by
Shepelyansky. Subsequently, an approximate calcula
of l2 by Oppenet al. [5] with Green function methods led
to the hypothesisl2 ­ l1 1 CsjUjypdl2

1, with C ø 0.34
for bosons and0.36 for fermions. Oppenet al. also iden-
tified a scaling parameterUl1. Recently, Weinmann
0031-9007y97y78(3)y515(4)$10.00
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et al. [6] argued that for a Gaussian matrix ensemb
there exists a crossover from thejUj behavior to theU2

behavior for increasingU, but with a different exponent,
such that l2 ­ l1 1 AjUjys4 1 Wdl3y2

1 for small U
with W parametrizing the disorder.

We feel that in this ongoing controversy about th
interaction and disorder dependence, the system size
not been appropriately taken into consideration. We do
the existence of the enhancement for an infinite syst
size, because there is only a vanishing probability th
two localized particles are sufficiently close on an infini
chain to “see” each other. To substantiate this argum
we present in this Letter extensive computations ofl2

in dependence of the system sizeM. We first review
the TMM approach to the two interacting particles (TIP
problem and suggest a different TMM based on the se
averaging properties of the Lyapunov exponents. W
this method we reproduce thel2 estimates of Ref. [4]
for U ­ 1, system sizeM ­ 100, and all disorders. We
find (cf. Fig. 1), however, that the enhancementl2yl1
decreases with increasingM. We also study the behavio
of l2 for U ­ 0 and show in Fig. 1 that it is not equal tol1

for finite M. But we recover thel1 value [7] in the limit
M ! `. However, the enhancementl2yl1 also vanishes
completely in this limit as demonstrated in Fig. 1.

The Schrödinger equation for the TIP problem wi
Hubbard interaction is written in a suggestive form as

cn11,m ­ fE 2 sen 1 emd 2 Udn,mgcn,m

2 cn,m11 2 cn,m21 2 cn21,m , (2)

where n, m ­ 1, . . . , M are the two site indices of the
particles,E is the total energy of both particles, andei

is the random potential at sitei. In the following, we use
a box distributionf2Wy2, Wy2g for the ei . The single-
particle localization length in 1D for such a distribution
known [8] from second order perturbation theory inW to
vary with disorder and energy asl1 ø 24s4 2 E2dyW2.
The numerical results forE ­ 0 based on the TMM [7]
© 1997 The American Physical Society 515
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FIG. 1. Two-particle localization lengthl2 as a function
of the system size atW ­ 3 for Hubbard (h) and long-
range interacting systems (p). Dashed lines are extrapolation
from the data for M [ f80, 170g. The five leftmost data
points for U ­ 0 and HubbardU ­ 1 corresponding toM ­
180, 200, 240, 300, 360 have been computed with only5%
accuracy and have not been considered for the extrapolat
The diamond (¶) indicates the value ofl1.

lead to a slightly different prefactor

l1 ø 105yW2. (3)

If one interpretssn, md as Cartesian coordinates on
finite lattice with M 3 M sites, the problem become
identical to a noninteracting Anderson model in 2D w
disorder potential symmetric with respect to the diago
n ­ m and with hard wall boundary conditions [4,9]
One can rewrite Eq. (2) in the TMM form asµ

cn11
cn

∂
­ Tn

µ
cn

cn21

∂
, (4)

with the symplectic transfer matrix

Tn ­

µ
E' 2 xn 2 H' 2'

' 0

∂
, (5)

wherecn ­ scn,1, . . . , cn,m, . . . , cn,Md is the wave vector
of slice n, H' is the single-particle hopping term fo
the transverse (m) electron, andsxndi,m ­ sen 1 em 1

Udn,mddi,m codes the random potentials and the Hubb
interaction [4]. Note that in this approach the symme
of the wave function remains unspecified, and we can
distinguish between boson and fermion statistics.

The evolution of the state is determined by the mat
producttN ­

QN
n­1 Tn and we haveµ

cN11

cN

∂
­ tN

µ
c1

c0

∂
. (6)

Usually the method is performed with a complete and
thonormal set of initial vectorssc1, c0dT . The eigenval-
516
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ues expf2gisNdg of sty
NtN d1yN exist for N ! ` due to

Oseledec’s theorem [10]. The smallest Lyapunov exp
nent gmin determines the slowest possible decay of th
wave function and thus the largest localization leng
lmax ­ 1ygmin. We nowdefinethe two-particle localiza-
tion lengthl2 aslmax of the transfer matrix problem (6).

In the TMM studies of the Anderson Hamiltonian, on
usually multiplies the transfer matrices in then direction
until convergence is achieved, e.g., for a 2D sample w
strip width M ­ 100 and W ­ 2, this typically requires
N ­ 5 3 106 multiplications for an accuracy of1%.
Thus one effectively studies a quasi-1D system of si
M 3 N with M ø N. However, in the present problem
both directions are restricted ton, m # M. Iterating
Eq. (4) onlyM times will not give convergence. Frahm
et al. [4] have solved this problem in their TMM study
by exploiting the Hermiticity of the product matrixQM ­
t

y
MtM : Continuing the iteration (6) witht

y
M , then with

tM , and so on, until convergence is achieved, yiel
the eigenvalues expf2Mgig of QM . This is the well-
known power method for the diagonalization of Hermitia
matrices. The results have to be averaged over ma
disorder configurations. Technically, from the point o
view of the usual TMM, the power method looks like
NyM iterations of the sameM 3 M sample. However, in
the usual quasi-1D TMM for single particles, one may ha
the matrix multiplication everyL ø N steps, compute an
estimate forgsLd, and finally average over allNyL such
values [11]. Because of the self-averaging property
the Lyapunov exponents [12] the averaged localizati
length equals the converged localization lengthlsNd
within the accuracy of the calculation. This sugges
the following method: We iterate

QNyM
r­1 tr ,M , wherer

enumeratesdifferentsamples of sizeM 3 M. Next we
compute a localization lengthlsNd which is now already
averaged overNyM different samples. This reduces th
computational effort and allows us to study larger system
and achieve a better accuracy than previously.

In Fig. 2 we show the results obtained for the localiz
tion length of the TIP problem with Hubbard interactio
by the present TMM. The data are calculated by co
figurationally averaging at least 10 000 samples for ea
data point. This corresponds to an accuracy of1% for
the smallestW considered and better for largerW . We
note that the data forU ­ 1 agree well with the results
obtained in Ref. [4] for1.4 # W # 4 [13] and we find
l2 , W23.8. Furthermore, forW [ f1.4, 5g the data can
also be fitted reasonably well by

l2 ­ l1 1 Ala
1 ysB 1 W d , (7)

with a ­ 2 with fit parametersA ­ 0.37 andB ­ 0.7. A
fit with a ­

3
2 according to Ref. [6] is considerably worse

and without the denominator in Eq. (7), as suggested
Ref. [5], the data cannot be fitted at all. We emphasi
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FIG. 2. Two-particle localization lengthl2 (accuracy at least
1%) at energyE ­ 0 for system sizeM ­ 100 and interaction
strengthU ­ 0 (s) and U ­ 1 (h). The solid line is given
by Eq. (3). Single-particle TMM data with1% accuracy for
1D chains (3) and 2D strips of widthM ­ 100 (1) are also
shown.

that the TIP data differ significantly from the 2D TMM
data with uncorrelated 2D random potentialen,m.

In Fig. 2 we have also plotted the behavior forU ­
0, where the system reduces to two noninteracting pa
cles in 1D. Before analyzing the data, let us first sta
our expectations: ForU ­ 0, the two particles will lo-
calize independently at two arbitrary sites, sayn0, m0,
with localization lengthl1. The wave function can then
be written as a product of two exponentially decayi
single-particle wave functions, i.e.,c s0d

n,m , expf2jn 2

n0jyl1sE0dg expf2jm 2 m0jyl1s2E0dg. Here the eigen-
energies are chosen such thatE ­ 0. Two points are
worth mentioning: (i) Letg1sEad denote the inverse de
cay length measured by TMM for a single particle wi
energyEa and g2s0d the inverse decay length for two
particles with E ­ 0. For U ­ 0, the TMM for two
particles will measure an inverse decay lengthg2s0d øPN

a g1sEadyN , averaged overN pairs of states with
energiesEa and 2Ea. Since g1sE fi 0d . g1s0d as
mentioned above Eq. (3), we haveg2s0d . g1s0d and
consequentlyl2s0d , l1s0d. (ii) The noninteracting two-
particle wave functionc s0d

n,m is not isotropic in the 2D plane
sn, md. Since the TMM will not necessarily measure th
decay directly in then direction, we expect thatg2 will
also contain information about the decay in other dire
tions. These decay lengths ofc s0d

n,m are shorter and thus
we again expectl2s0d # l1s0d.

Figure 2 shows that contrary to our expectations
TMM does not under- but overestimatesl2 as compared
to l1 such that the enhancementl2sU ­ 1dyl2sU ­ 0d
is much smaller than the previously reportedl2sU ­
1dyl1. Also included in Fig. 2 is a 1D TMM result, and
we see that forW $ 6—where the perturbative result (3
is no longer accurate—both theU ­ 0 and theU ­ 1
ti-
te

g

e

c-

e

data agree quite well withl1. For W [ f1.4, 4g a power
law fit gives l2sU ­ 0d , W23.6. A fit with a ­ 2 as
in Eq. (7) can also describe the data for smallW with
A ­ 0.19 andB ­ 0.5.

We emphasize that the deviation from Eq. (3) of o
data for vanishingU does not result from an effective
coupling which was suspected [14] to be introduc
into the problem because of numerical instabilities
the TMM. Our tests did not show such a couplin
We also note that the two-particle TMM data are qu
different from data of a 2D single-particle calculation fo
M ­ 100, as shown in Fig. 2.

Studying the U dependence ofl2, we note that
l2sUd ­ l2s2Ud at E ­ 0 due to particle-hole sym-
metry. Consequently, we show only data forU $ 0 in
Fig. 3. We observe neither the proposedU2 nor thejUj

behavior. Rather the data obeyl2sUd 2 l2s0d ø U0.63

for small U. Also, l2s0d ø 8.45 does not agree with
l1 ø 105y16, as discussed above, and we cannot iden
a scaling parameter as suggested in Ref. [5].

From Fig. 2 we see that forW . 6 the data forU ­ 0
and U ­ 1 coincide with the single-particle TMM data
already quite well. The enhancementl2yl1 is large only
for small disorder (W # 4). However, in this region
the computed values ofl2 become comparable to th
size of the system such that an increasing part of
wave function is reflected at the hard wall boundari
This leads to an overestimation ofl2. In order to
distinguish this artificial from the proposed enhancem
due to interaction alone, we have therefore systematic
studied the finite-size behavior ofl2 at various disorder
values and interaction strengths. As an example
consider the caseW ­ 3. Here the localization lengths
for l2sU ­ 0d ø 19.1 and l2sU ­ 1d ø 25.5 may just

FIG. 3. U dependence ofl2 for W ­ 4. The dashed line
represents the power law fitl2sUd 2 l2s0d ø U0.63. The
lower curve shows the same data on an enlargedU scale.
Arrows indicate the corresponding axes.
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be small enough for the wave function to fit into th
100 3 100 box without too strong boundary effects
Furthermore, the enhancement is still sufficiently larg
to be numerically detectable. In Fig. 1 we have show
l2 as a function ofM21y2. Our reason for plotting the
data as a function ofM21y2 is pragmatic: A plot versus
M21 or M21y4 shows a downward or upward curvature
respectively, for the largestM. The curvature is smallest
for M21y2 and the extrapolation towards infiniteM is
most reliable. We see in Fig. 1 that (i) the data fo
U ­ 0 approach the single-particle resultl1 ø 105y9 for
large M, and, more significantly, (ii) the data forU ­ 1
also approach this noninteracting 1D result. Therefo
the overestimation ofl2sU ­ 0d vanishes for largeM,
supporting the validity of our TMM approach. Howeve
in this limit the enhancementl2sU ­ 1dyl1 vanishes
completely, too. We note that the observed decrea
in the localization lengthl2 is quite different from a
2D TMM, where the localization length is known to
increase with increasing system size [9]. We attribute th
difference to the symmetry of the TIP disorder potenti
which is equivalent to an effective long-range correlatio
which furthermore increases with increasingM.

We have also studied the behavior of the two-partic
localization length for a system with long-range intera
tion, since Shepelyansky argues in Ref. [15] that lon
range interaction should also lead to the enhancemen
l2. The Schrödinger equation is given as

cn11,m ­ fE 2 sen 1 emd 2 Uysjn 2 mj 1 1dgcn,m

2 cn,m11 2 cn,m21 2 cn21,m , (8)

such that the on-site interaction is equal to the Hubba
interaction. Clearly such a system should exhibit ev
stronger boundary effects, and we thus expect an e
stronger enhancement ofl2 for finite systems. In Fig. 1,
we have also shownl2 for the long-range interaction with
U ­ 1 at E ­ 0 and the same accuracy of1% as for
the Hubbard interacting system. As expected, we obse
that the enhancement for allM is stronger than for the
Hubbard interacting model. But this enhancement ag
vanishes forM ! `.

In summary, we have studied the interaction-induc
enhancement of the localization length for two particles
a 1D random potential by a TMM. ForU ­ 1 andM ­
518
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100, the results agree well with previously published
data. However, theU ­ 0 data are quite surprising since
only in the limit M ! ` do we recover the expected
noninteracting 1D resultl1. However, in this limit the
enhancement for finiteU also vanishes. Therefore we
must conclude that the transfer matrix method applie
to the 1D Anderson model for two interacting particle
measures an enhancement of the localization length wh
is entirely due to the finiteness of the systems considere
This enhancement might be relevant for applications
mesoscopic systems.
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