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No Enhancement of the Localization Length for Two Interacting Particles
in a Random Potential
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We study two interacting particles in a random potential chain by means of the transfer matrix
method. The dependence of the two-patrticle localization lengtbn disorder and interaction strength
is investigated. Our results demonstrate that the recently proposed enhancemgasafompared to
the results for single particles is entirely due to the finite size of the systems considered. This is shown
for a Hubbard-like on site interaction and also a long-range interaction. [S0031-9007(96)02183-7]

PACS numbers: 72.15.Rn, 71.55.Jv, 72.10.Bg

In one dimension (1D), bosonization of the repulsiveet al.[6] argued that for a Gaussian matrix ensemble
Hubbard model in the gapless phase shows that (on sitélere exists a crossover from th&| behavior to thelU?
disorder is a relevant perturbation and the ground statbehavior for increasindg/, but with a different exponent,
corresponds to a strongly localized phase [1]. Thusitcamgych thatA, = A, + A|U|/(4 + W)A? for small U
as a surprise when Shepelyansky [2] recently argued thgith w parametrizing the disorder.
the Hubbard interaction between two particles in arandom \we feel that in this ongoing controversy about the
potential would reduce the localization in comparisoninteraction and disorder dependence, the system size has
with independent particles. In particular he obtained amot been appropriately taken into consideration. We doubt
enhancement of the two-particle localization length  the existence of the enhancement for an infinite system
independent of the statistics of the particles and of the siggjze, because there is only a vanishing probability that
of the interaction such that two localized particles are sufficiently close on an infinite

, AT chain to “see” each other. To substantiate this argument
A =U EY) 1) we present in this Letter extensive computationsigf

in the band center. Herk is the single-particle localiza- !{?] d_?ﬁﬂe'\l;ldence thﬂ:e ;\ystt\e;vm .S'fdi t\_Ne f|rs;[_ rlewevTvIP
tion length in 1D andJ the Hubbard interaction in units of € approach to the two interacting particles (TIP)

the nearest-neighbor hopping strength. Shepelyansky OB_robIem and SUQ%eSt afdti;ferfnt TMM based ontthe\?ve_tlﬁ
tained this result by studying the matrix representatibn averaging properties ot thé Lyapunov exponents. :

of the Hubbard interaction in the disorder-diagonal basis oth'SUm_etrl]Od vvte reprcg:l/[uc_e ltggl es(;wnlie\':je_s 0(; Ref. \53]
localized single-particle eigenstates, i8.= UQ i = orv =1, system sized = » and all disorders. - We

. ; . N X ; find (cf. Fig. 1), however, that the enhancemeny A,

UY, 10} ()br(D)i(i), with ¢,(i) the amplitude at - . .
sitei of the single-particle eigenstate with enefgy Here decreases with Increasing. We also S.mdy the behavior
he assumed thak, (i) behaves ag, (i) ~ r,//A;, where of ’\% fpr U = 0and show in Fig. 1thatitis nqt equa!AQ
r, is a random number of order unity, and he neglecteé&r finite M. But we recover tha; value [7] in the _I|m|t
correlations among the, at different sites resulting in a - H(_)we\{er,. the enhancemem//\llalsp vanishes
Gaussian distribution for the matrix elements(hf completely n t.h's limit as Qemonstrated in Fig. 1. .

Support for this result was given shortly afterwards by The Sghrodlnger equation .for the TIP. problem with
Imry [3] with the help of a Thouless-type scaling argu- Hubbard interaction is written in a suggestive form as
ment. Frahmet al.[4] used the transfer matrix method

(TMM) to study the two-particle Hubbard-Anderson Uniim =[E — (€1 + €n) — USpmltham
problem without any approximations and have found ' ’ '
numerically that\, ~ A}, They also measured the dis- = Ynmet = Ynmt = Yooims ()

tribution of the matrix elements @ and found a strongly

non-Gaussian behavior. They attribute the deviation of thevhere n,m = 1,...,M are the two site indices of the
exponent from Eq. (1) and the different distribution of ma-particles,E is the total energy of both particles, ard
trix elements to the correlations among theneglected by is the random potential at siie In the following, we use
Shepelyansky. Subsequently, an approximate calculatiom box distribution[ —W /2, W /2] for the €;. The single-
of A, by Opperet al. [5] with Green function methods led particle localization length in 1D for such a distribution is
to the hypothesia, = A, + C(|U|/m)A}, withC =~ 0.34  known [8] from second order perturbation theoryWihto
for bosons and.36 for fermions. Oppert al. also iden-  vary with disorder and energy ag =~ 24(4 — E*)/W?2.
tified a scaling parametet/A,. Recently, Weinmann The numerical results foE = 0 based on the TMM [7]
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ues exfy;(N)] of (rhry)/N exist for N — o due to
Oseledec’s theorem [10]. The smallest Lyapunov expo-
nent yni, determines the slowest possible decay of the
wave function and thus the largest localization length
Amax = 1/ymin. We nowdefinethe two-particle localiza-
// tion length A, as Ay Of the transfer matrix problem (6).
/ﬁ’6 00 In the TMM studies of the Anderson Hamiltonian, one
/,”E' fo usually multiplies the transfer matrices in thedirection
2 09 until convergence is achieved, e.g., for a 2D sample with
g strip width M = 100 and W = 2, this typically requires
N =5 X 10% multiplications for an accuracy of%.
0 | | | | . Thus one effectively studies a quasi-1D system of size
0.00 005 ., 0.10 0.15 M X N with M < N. However, in the present problem
M both directions are restricted te,m = M. Iterating
FIG. 1. Two-particle localization length, as a function Eq. (4) onlyM times W'". hot give convergence. Frahm
of the system size aW =3 for Hubbard (1) and long- €t al.[4] have solved this problem in their TMM study
range interacting systems)( Dashed lines are extrapolations by exploiting the Hermiticity of the product matri®,, =
from the data forM € [80,170]. The five leftmost data TLTMi Continuing the iteration (6) With-L, then with

points for U = 0 and HubbardU = 1 corresponding taf = ; ; ; ;
180,200, 240,300,360 have been computed with onlg% "M and so on, until convergence is achieved, yields

accuracy and have not been considered for the extrapolation]€ €igenvalues expMy;] of Qy. This is the well-
The diamond ¢) indicates the value of;. known power method for the diagonalization of Hermitian

matrices. The results have to be averaged over many
disorder configurations. Technically, from the point of
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lead to a slightly different prefactor view of the usual TMM, the power method looks like
N/M iterations of the sam& X M sample. However, in
A= 105/W2. (3) theusual quasi-1D TMM for single particles, one may halt

the matrix multiplication every. < N steps, compute an
estimate fory(L), and finally average over aN /L such
If one interprets(n, m) as Cartesian coordinates on avalues [11]. Because of the self-averaging property of
finite lattice with M X M sites, the problem becomes the Lyapunov exponents [12] the averaged localization
identical to a noninteracting Anderson model in 2D withlength equals the converged localization lengthv)
disorder potential symmetric with respect to the diagonawithin the accuracy of the calculation. This suggests
n =m and with hard wall boundary conditions [4,9]. the following method: We iterat§]\/} .4, where r

One can rewrite Eq. (2) in the TMM form as enumeratesdifferentsamples of sizé/ X M. Next we
y y compute a localization length(N) which is now already
( 9’;/“) = T"('// " ) (4) averaged oveN/M different samples. This reduces the
" ol computational effort and allows us to study larger systems
with the symplectic transfer matrix and achieve a better accuracy than previously.
In Fig. 2 we show the results obtained for the localiza-
T, = (E]l N Xﬂ" - H, _0]1> (5) tion length of the TIP problem with Hubbard interaction

by the present TMM. The data are calculated by con-

where, = (i, ... nms ... oy is the wave vector figurationally averaging at least 10 000 samples for each

of slice n, H, is the single-particle hopping term for data point. This cqrresponds to an accuracyl @f for
the transversen() electron, and(y,)im = (€, + €m + the smallestV considered and better for !argw. We
U8,.)8:» codes the random potentials and the Hubbard'©t€ that the data fot/ = 1 agree well with the results
interaction [4]. Note that in this approach the symmetryObta'”ed_;’; Ref. [4] forl.4 = W = 4 [13] and we find
of the wave function remains unspecified, and we cannof2 ~ W~ . Furthermore, fol¥ € [1.4,5] the data can
distinguish between boson and fermion statistics. also be fitted reasonably well by

The evolution of the state is determined by the matrix

productry = [["_, T, and we have Ay = Ap + AXT/(B + W), (7)
<¢$;1> = TN< :Z;) (6)  with & = 2 with fit parameterst = 0.37 andB = 0.7. A

fitwith a = % according to Ref. [6] is considerably worse
Usually the method is performed with a complete and orand without the denominator in Eq. (7), as suggested in
thonormal set of initial vector&y,, ¢9)”. The eigenval- Ref. [5], the data cannot be fitted at all. We emphasize
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I | 1T 1 171714 data agree quite well with;. ForW € [1.4,4] a power
0% + 7 law fit gives A,(U = 0) ~ W36, A fit with « = 2 as

°§','=u + | in Eq. (7) can also describe the data for sni&llwith
100 % o *. A =0.19andB = 0.5.

We emphasize that the deviation from Eq. (3) of our
data for vanishingU does not result from an effective
+ coupling which was suspected [14] to be introduced
into the problem because of numerical instabilities of
the TMM. Our tests did not show such a coupling.
We also note that the two-particle TMM data are quite
different from data of a 2D single-particle calculation for
1 | M = 100, as shown in Fig. 2.

1.4 2 3 4 Studying the U dependence ofi,, we note that
W A (U) = A(—U) at E =0 due to particle-hole sym-

FIG. 2. Two-particle localization length, (accuracy at least m_etry. Consequently, we show only data #r= 0 in

19%) at energyE = 0 for system sized = 100 and interaction 19- 3. We observe neither the proposid nor the|U|

strengthU = 0 (O) and U = 1 (OJ). The solid line is given behavior. Rather the data obey(U) — A,(0) = U*
by Eq. (3). Single-particle TMM data with% accuracy for for small U. Also, A,(0) = 8.45 does not agree with

1D chains ) and 2D strips of widthM = 100 (+) are also ), =~ 105/16, as discussed above, and we cannot identify
shown. a scaling parameter as suggested in Ref. [5].
From Fig. 2 we see that fd¥ > 6 the data fortU = 0
and U = 1 coincide with the single-particle TMM data

that the TIP data differ significantly from the 2D TMM already quite well. The enhancement/A; is large only
data with uncorrelated 2D random potentgl,,. for small disorder = 4). However, in this region

In Fig. 2 we have also plotted the behavior for= the computed values of, become comparable to the
0, where the system reduces to two noninteracting partisize of the system such that an increasing part of the
cles in 1D. Before analyzing the data, let us first statevave function is reflected at the hard wall boundaries.
our expectations: Fot/ = 0, the two particles will lo- This leads to an overestimation of,. In order to
calize independently at two arbitrary sites, say mo,  distinguish this artificial from the proposed enhancement
with localization lengthA;. The wave function can then due to interaction alone, we have therefore systematically
be written as a product of two exponentially decayingstudied the finite-size behavior af at various disorder
single-particle wave functions, i.ey’) ~exd—In — values and interaction strengths. As an example we
nol/A(Eg)lexd —|m — mol/A1(—Ep)]. Here the eigen- consider the cas®& = 3. Here the localization lengths
energies are chosen such that= 0. Two points are for A,(U = 0) = 19.1 and A,(U = 1) = 25.5 may just
worth mentioning: (i) Lety,(E,) denote the inverse de-
cay length measured by TMM for a single particle with
energy E, and y,(0) the inverse decay length for two
particles withE = 0. For U = 0, the TMM for two 0.0
particles will measure an inverse decay lengt{0) = 10.5
fo v1(Eo)/ N, averaged ovetN pairs of states with
energiesk, and —E,. Since y((E # 0) > v,(0) as
mentioned above Eq. (3), we hawg(0) > y,(0) and 10.0
consequentlyi,(0) < A;(0). (ii) The noninteracting two-
particle wave functions”), is not isotropic in the 2D plane
(n,m). Since the TMM will not necessarily measure the <
decay directly in the: direction, we expect thay, will
also contain information about the decay in other direc- 9.0
tions. These decay lengths ¢1§0,>n are shorter and thus
we again expect,(0) = A;(0). M

Figure 2 shows that contrary to our expectations the 8.5
TMM does not under- but overestimatas as compared
to A; such that the enhancemem(U = 1)/A,(U = 0)
is much smaller than the previously reportad(U = FIG. 3. U dependence oft, for W — 4. The dashed line
1)/A;. Also included in Fig. 2 is a 1D TMM result, and représénts thcleo power Iawzfinz(U) _ /\'2(0) ~ U3 The
we see that foW = 6—where the perturbative result (3) |ower curve shows the same data on an enlargedscale.
is no longer accurate—both thgé = 0 and theU = 1  Arrows indicate the corresponding axes.
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be small enough for the wave function to fit into the 100, the results agree well with previously published
100 X 100 box without too strong boundary effects. data. However, th& = 0 data are quite surprising since
Furthermore, the enhancement is still sufficiently largeonly in the limit M — « do we recover the expected
to be numerically detectable. In Fig. 1 we have showmoninteracting 1D resuld;. However, in this limit the

A, as a function ofM ~'/2. Our reason for plotting the enhancement for finitd/ also vanishes. Therefore we
data as a function af/ ~'/2 is pragmatic: A plot versus must conclude that the transfer matrix method applied
M~ or M~'/* shows a downward or upward curvature, to the 1D Anderson model for two interacting particles
respectively, for the larges8f. The curvature is smallest measures an enhancement of the localization length which
for M~'/2 and the extrapolation towards infinitef is is entirely due to the finiteness of the systems considered.
most reliable. We see in Fig. 1 that (i) the data forThis enhancement might be relevant for applications in
U = 0 approach the single-particle result = 105/9 for  mesoscopic systems.

large M, and, more significantly, (ii) the data far = 1 We thank Frank Milde for programming help and dis-
also approach this noninteracting 1D result. Thereforeussions. This work has been supported by the Deutsche
the overestimation ofi,(U = 0) vanishes for larged,  Forschungsgemeinschaft as part of Sonderforschungsbere-
supporting the validity of our TMM approach. However, ich 393.

in this limit the enhancemeni,(U = 1)/A; vanishes

completely, too. We note that the observed decrease
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