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Surface Modes and Ordered Patterns during Spinodal Decomposition of anABv Model Alloy

Mathis Plapp and Jean-Fran¸cois Gouyet
Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, 91128 Palaiseau cedex, France

(Received 28 January 1997)

We study a lattice gas model for a binary alloy with vacancies by means of a mean-field kinetic
equation. Simulations of droplets of unstable mixture immersed in a stable vapor show the emergence of
ordered structures at the surface which propagate into the bulk. We calculate characteristic wavelengths
and propagation velocities of these patterns by a linear stability analysis. The thickness of the ordered
layer depends on the model parameters and the strength of the initial noise. [S0031-9007(97)03364-4]

PACS numbers: 64.75.+g, 05.70.Ln, 64.60.Cn, 68.35.Rh
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Spinodal decomposition [1,2] takes place when a m
ture or alloy is rapidly quenched into a thermodynamica
unstable state. Long-wavelength concentration fluct
tions are amplified to form a complicated domain patte
which then coarsens. Whereas this process is well
derstood in the bulk of crystals or fluids, recently surfa
effects on spinodal decomposition were investigated
polymer and fluid systems [3–7]. If a surface prefers en
getically one of the components of the mixture, a wetti
layer is rapidly formed, and an oscillating concentrati
profile propagates into the interior of the mixture. In som
cases, lateral structures are formed at the surface w
coarsen much more rapidly than in the bulk [4]. The fo
mation of these structures depends on the wetting pro
ties of the involved surfaces [6].

The theoretical work includes Monte Carlo simul
tions [8,9], investigations based on phenomenolog
Ginzburg-Landau equations [10–13], and studies o
model system by a mean-field kinetic equation [1
Attention was drawn recently to the modification
interface structures during the spinodal decomposit
process [12], and to the occurrence of surface modes
in an unstable mixture in contact with a substrate surfa
Some of these modes grow faster than the ordinary b
modes and create periodic structures along the surface

We want to report here about similar findings in t
dynamics of a simple lattice gas model of a binary all
with vacancies. Such models were investigated by sev
authors [15–18], motivated by the fact that a vacan
mechanism is a more realistic picture of diffusion
solids than the more widely used exchange model. H
we study interfaces between an unstable mixture an
stable vapor phase. Such interfaces are created when
quenches a small droplet of a stable mixture in a b
of vapor into an unstable region of the phase diagra
Decomposition at the surface is triggered by instabilit
in the interface and competes with the decomposition
the bulk.

Our model is based on a stochastic lattice gas. A tw
dimensional quadratic lattice withN sites and periodic
boundary conditions is occupied by atoms of two spec
A and B, and by vacanciesv. Multiple occupation is
970 0031-9007y97y78(26)y4970(4)$10.00
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forbidden, and we define the occupation numbers at ea
site i, nA

i , nB
i , and ny

i [ h0, 1j, with nA
i 1 nB

i 1 ny
i ­

1 ;i. The Hamiltonian is

H ­ 2 ´AA

X
ki,jl

nA
i nA

j 2 ´BB

X
ki,jl

nB
i nB

j

2 ´AB

X
ki,jl

snA
i nB

j 1 nB
i nA

j d , (1)

where´AA, ´BB, and´AB are the interaction energies be
tweenA andB atoms, the sums are over all pairs of neare
neighbors, and we have chosen the Ising convention:
attractive interaction is positive. The atoms can exchan
places only with a vacancy. We assume these jumps to
activated processes, and their rates to follow an Arrhen
law, as often observed in metallic diffusion. The activa
tion energy is given by the local binding energy, whic
leads to jump rates from sitei to a neighboring sitej:

wa
ij ­ wa

0 exp

√
2b´aA

X
a

nA
i1a 2 b´aB

X
a

nB
i1a

!
, (2)

whereb is the inverse of temperature (constant througho
the system), the sums are over the nearest-neighbor s
of the start site, anda stands forA or B. wa

0 are attempt
frequencies. We will consider only the casewB

0 ­ wA
0 ­

w0. In the following, we will measure all lengths in units
of the lattice constanta and time in units ofw21

0 . The
transition rates (2) satisfy detailed balance and thus lead
the correct equilibrium state in the infinite time limit.

The evolution of such a nonequilibrium system can b
described by the master equation for the time-depend
probability distribution in the space of configurations.
we define by angular brackets the average with respec
this distribution, we can write evolution equations for th
local occupation probabilitiespA

i ­ knA
i l andpB

i ­ knB
i l,

which can be interpreted as concentrations as well. W
allow only nearest-neighbor jumps, and find

dpa
i

dt
­ 2

X
a

ja
i,i1a , (3)
© 1997 The American Physical Society
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where ja
i,i1a is the current of speciesa in the link

si, i 1 ad, given by

ja
i,j ­ kna

i s1 2 nA
j 2 nB

j dwa
ij 2 na

j s1 2 nA
i 2 nB

i dwa
jil .
(4)

The factors multiplying the transition rates ensure that
start site is occupied by an atom of speciesa, the target
site by a vacancy. We havepy

i ­ 1 2 pA
i 2 pB

i , and
thus two independent variables per site.

We now make a mean-field approximation: We repla
the occupation numbers in (4) by their averages, th
neglecting all correlations. Similar equations have be
ve
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used to describe phase separation in alloys [14,18–21]
dendritic growth [22]. The equations (4) can be cast in
form more closely related to out-of-equilibrium thermo
dynamics. Simple rearrangements yield

ja
ij ­ 2Ma

ijsma
j 2 ma

i d , (5)

where

Ma
ij ­ s1 2 pA

i 2 pB
i d s1 2 pA

j 2 pB
j d

3 sebm
a
j 2 ebm

a
i dysma

j 2 ma
i d (6)

is the atomic mobility of speciesa in the link ij and
ma
i ­ 2´aA

X
a

spA
i1a 2 pA

i d 2 ´aB

X
a

spB
i1a 2 pB

i d 1 2z´aApA
i 2 z´aBpB

i 1 b21 lnfpa
i ys1 2 pA

i 2 pB
i dg (7)
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is the local chemical potential of speciesa. Here,z is the
coordination number of the lattice (z ­ 4 for our square
lattice). These chemical potentials are the derivati
with respect to the local concentrationspa

i of a free
energy F which has the form of a discrete Ginzbur
Landau functional. The free energy densityf is the same
as obtained by standard static mean-field theory.
equilibrium, all time derivatives vanish and the chemic
potentials are constant throughout the system.

Equations (3) and (5) have the structure of a gene
ized Cahn-Hilliard equation [1]. However, there are tw
conserved local order parameters, and the phase dia
is more complex than for a binary mixture. It can be o
tained from the free energy densityf. Stability in the bi-
nary subsystemsAv, Bv, andAB is controlled bý AA, ´BB,
and ´ ­ ´AA 1 ´BB 2 2´AB, respectively. If all these
energies are positive, we always find three-phase co
istence of anA-rich, aB-rich, and a vacancy-rich “vapor
phase at sufficiently low temperatures. Evidently, in a r
vapor, diffusion does not take place by activated near
neighbor jumps. The important property of this phase
that diffusion is much faster than in the “solid.” As w
focus here on the dynamics inside the solid, the detail
FIG. 1. Snapshot pictures att ­ s22 400, 56 900, and79 400dw21
0 (from left to right) of a decomposing droplet on a128 3 128

lattice. White: vapor; black:A-rich; light grey:B-rich phase; dark grey: mixture. Parameter values as given in the text.
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the diffusion mechanism in the vapor are of little impo
tance. As a specific example, we choose´AA ­ ´BB and
´AB ­ ´AAy2. Then, we havé ­ ´AA ­ ´BB, and the
phase diagram is completely symmetric.

We immersed a droplet of initial radiusR ­ 55 and
concentrationspA ­ pB ­ 0.46464 in a vapor of con-
centrationpA ­ pB ­ 0.03536 and fixed the tempera
ture to haveb´AA ­ 2. Then, we have equal pressu
and chemical potentials in the two phases (the press
P is defined as the negative of the grand potentialP ­
2f 1 mApA 1 mBpB). Note that as long aspA ­ pB

in both phases, the vapor-mixture interface is “neutra
Such an initial condition cannot be chosen in a simp
Ising model without vacancies or in the standard Cah
Hilliard equation, because in binary systems any sta
phase below the critical temperature will prefer eitherA
or B. We added a random noise of small amplitude ov
the whole system to initialize the phase separation a
integrated the mean-field equations using a simple Eu
algorithm. Phase separation shows up first at the surf
giving a regularly modulated structure along the bound
of the droplet (Fig. 1). This surface mode propagates i
the droplet, leaving behind a checkerboardlike structu
4971
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which coalesces rather rapidly to form stripes. At t
same time, fingers of vapor penetrate into the mixtu
This is an instability of Mullins-Sekerka-type [23] whic
is driven by the diffusion of vacancies out of the soli
The fingers stop to grow once a layer of fully decom
posed material has formed along their entire boundary
are smoothed out by the following coarsening process
The propagation of the surface modes continues until
bulk modes have grown to a sufficiently big amplitud
to enter the nonlinear regime of spinodal decompositi
We then find in the interior of the droplet the bicontinuo
structures of bulk spinodal decomposition. At the surfa
coarsening has proceeded much further than in the inte
of the droplet. The initially smooth vapor-mixture inte
face has developed bulges. This is due to the existe
of points at the surface where the three phases meet.
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such points, local equilibrium fixes the angle between t
Av, Bv, andAB interfaces.

This behavior was observed for several temperatu
and various initial concentrations of vapor and mixtur
It is due to a larger mobility of surface atoms. To chec
this assumption, we performed a linear stability analys
which can only be sketched here. We must compa
bulk and surface behavior. In the bulk, we start from
homogeneous state, that ispA

i ­ pA andpB
i ­ pB ;i, and

add plane wave perturbations√
pA

j

pB
j

!
­

√
pA

pB

!
1

√
dpA

dpB

!
expfi $k ? $xj 1 vs $kdtg , (8)

where$xj is the coordinate vector of sitej, and$k ­ skx , kyd
is the wave vector of the perturbation. Linearization of th
equations of motion indpA anddpB gives
vs $kd

√
dpA

dpB

!
­ A $k

"
MA s2A$k´AA 1 SAAd MA s2A$k´AB 1 SABd
MB s2A$k´AB 1 SABd MB s2A$k´BB 1 SBBd

# √
dpA

dpB

!
. (9)
ve
n
ct

the
ly

s
of

er
m
ior

s

ry
ith
e

ur
le

n
If

n

Here, Ma are the limits of (6) for uniform chemica
potentials, andS is the matrix of the second derivative
of the free energy density,Sab ­ ≠2fy≠pa≠pb . A$k is
given by the function

A$k ­ 24 sin2skxy2d 2 4 sin2skyy2d . (10)

The solution of the eigenvalue problem (9) gives the d
persion relationsvs $kd. The number of unstable branche
is equal to the number of negative eigenvalues ofS. For
the example of Fig. 1, we have one negative eigenva
and the characteristic length scale of the bulk pattern
given by the maximum of the corresponding dispersion
lation. We find a maximum growth rate ofvb ­ 1.063 3

1024, with j $kj near 1.
Now consider a vapor-mixture interface parallel to t

y axis (directed along one of the lattice vectors). We c
analyze the stability of the interface using Fourier mod
in the y direction. However, instead of the two coeffi
cientsdpA anddpB we have to find the complete eigen
modes in thex direction, leading to an eigenvalue proble
for a 2Lx 3 2Lx matrix, whereLx is the system size in
the x direction. This is surely tractable using standa
numerical methods, but we can limit ourselves here t
simpler treatment. We first calculate the profile resulti
from the local equilibration of the initial step profile, solv
ing the finite-difference equationsma

i ­ m
a
bulk through

the interface. Then we isolate a small number of lay
around the interface and perturb by Fourier modes al
the y axis. If we take properly into account the corr
sponding boundary conditions, we can extract the do
nating behavior from a much smaller matrix. The resu
do not depend on the number of layers as soon as we
included the whole interfacial region. Using the last tw
layers of vapor and the first two layers of solid, we find th
only one branch of the resulting dispersion relation is u
s-
s

ue,
is
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stable, with a maximum eigenvaluevs ­ 4.361 3 1024,
at a valueky ­ 0.403. The surface growth rate is four
times larger than in the bulk, and the characteristic wa
vector is very different. Initial conditions as the positio
and orientation of the vapor-mixture interface with respe
to the lattice do not matter much, as we can see in
simulation: The wavelength of the surface mode is fair
regular.

Once a domain ofA is formed on the surface, it attract
otherA atoms from the solid, thus creating a depletion
A atoms giving rise to aB domain. Hence, the rapidly
growing surface mode enforces growth with its prop
growth rate and wave vector, which are different fro
the bulk values. We can get a first idea of the behav
in the bulk by inserting the surface growth ratevs and
wave vectorky in the bulk equations. Then (9) become
a quadratic equation inA$k which has two complex roots.
Using (10), we can solve forkx and obtain the four
solutions

kx ­ 6b 6 ic (11)

with, in our case,b ­ 1.05 and c ­ 0.789. The two
solutions to be kept are those with the positive imagina
part: They describe waves which decay exponentially w
the penetration depth. They have a wavelength in thx
direction of lx ­ 2pyb and propagate with a velocity
y ­ vsyc. To test these predictions, we compared o
findings to simulations in a stripe geometry. From simp
inspection of these simulations we findly ­ 2pyky ø
16, lx ø 6, andy ø 5 3 1024, whereas the predictions
are 15.6, 5.73, and5.32 3 1024.

Clearly, our choice of completely symmetric interactio
parameters and compositions is not a generic case.
we simulate a quench with an off-critical compositio
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FIG. 2. Stripe of unstable material with asymmetric initi
concentrationsspA ­ 0.56007, pB ­ 0.37338d at b´AA ­ 2
on a 128 3 128 lattice with periodic boundary conditions
t ­ 89 400w21

0 .

ratio 60:40 (Fig. 2), we find spinodal waves as describ
previously [10,11]. The patterns in the interior of th
sample are very similar to those found for a binary mo
near a flat wall [14], but the surface mode still shows
and destabilizes the first layer of the wave. Droplets fo
at the surface which coarsen very rapidly. Similar pictu
arise when we choose slightly different interaction energ
for the different species.

Finally, we want to address the question of the thickn
d of the surface patterns. For both cases (checkerbo
and stripes), it depends on the strength of the initial no
This can be seen as follows. In view of the exponen
growth (8), the time necessary for a well-defined struct
to evolve is

t ø s1yvd lnsdyd0d , (12)

where d0 is the initial noise strength, andd is some
threshold value where nonlinear effects start to limit t
growth. We can estimate the ratio of bulk and surfa
growth rates by comparing the times after which surfa
and bulk structures begin to show up. We obtain a va
near four, in good agreement with our estimates. Furth
more, the surface mode propagates with velocityv between
timests when it starts from the surface andtb when the
growing bulk structures stop its advance. Hence we h
for the thicknessd:

d ø ystb 2 tsd ø s1ycd svsyvb 2 1d lnsdyd0d . (13)

We see thatd is a logarithmic function of the initial
noise strength. This was confirmed by our simulatio
This point could be relevant for experiments, because
rapid quenches the initial fluctuations are basically
equilibrium fluctuations of the stable parent phase, wh
depend on the temperaturebefore the quench. Different
l
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initial temperatures should therefore cause variations ind,
in contrast to bulk phase separation, where a change of
fluctuation strength simply renormalizes the time scale.

In summary, we have analyzed the effects of free su
faces on the spinodal decomposition of binary alloys wi
vacancies. In simulations, we obtained surface structu
of different morphologies. Our mean-field method allow
one to obtain good estimates of the involved characteris
length and time scales in terms of the microscopic mod
parameters. It would be interesting to compare these fin
ings to Monte Carlo simulations and to experiments.
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