VOLUME 78, NUMBER 26 PHYSICAL REVIEW LETTERS 3Aune1997

Surface Modes and Ordered Patterns during Spinodal Decomposition of aABv Model Alloy
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We study a lattice gas model for a binary alloy with vacancies by means of a mean-field kinetic
equation. Simulations of droplets of unstable mixture immersed in a stable vapor show the emergence of
ordered structures at the surface which propagate into the bulk. We calculate characteristic wavelengths
and propagation velocities of these patterns by a linear stability analysis. The thickness of the ordered
layer depends on the model parameters and the strength of the initial noise.  [S0031-9007(97)03364-4]

PACS numbers: 64.75.+g, 05.70.Ln, 64.60.Cn, 68.35.Rh

Spinodal decomposition [1,2] takes place when a mix{forbidden, and we define the occupation numbers at each
ture or alloy is rapidly quenched into a thermodynamicallysite i, ni', n?, andn? € {0, 1}, with ni* + n? + ny =
unstable state. Long-wavelength concentration fluctuat Vi. The Hamiltonian is
tions are amplified to form a complicated domain pattern
which then coarsens. Whereas this process is well un- _ A A _ B B
derstood in the bulk of crystals or fluids, recently surface H="em (lz)n" " 833%”,‘ "
effects on spinodal decomposition were investigated in ! !
polymer and fluid systems [3—7]. If a surface prefers ener- — eap » (nfnf + nPnl), (1)
getically one of the components of the mixture, a wetting (i)

layer is rapidly formed, and an oscillating concentration h d he i . ies b
profile propagates into the interior of the mixture. In someVN€r€&44, &5, ande,p are the interaction energies be-

cases, lateral structures are formed at the surface whidly¢€nAandB atoms, the sums are over all pairs of nearest
coarsen much more rapidly than in the bulk [4]. The for-neighbors, and we have chosen the Ising convention: An

mation of these structures depends on the wetting propefiiiractive interaction is positive. The atoms can exchange
ties of the involved surfaces [6]. places only with a vacancy. We assume these jumps to be

The theoretical work includes Monte Carlo simula- activated processes, and their rates to follow an Arrhenius

tions [8,9], investigations based on phenomenologicallff"w' as often ob;erved in metallic d_'ﬁu_s'on' The activa-

Ginzburg-Landau equations [10—13], and studies of %'On energy is given by the local binding energy, which

model system by a mean-field kinetic equation [14]./6@dS t0 jump rates from siieto a neighboring sitg:

Attention was drawn recently to the modification of

interface structures during the spinodal decompositionw; = wg eX;{—,BsaAZn,ﬁa - BSaBZn?+a)’ (2)

process [12], and to the occurrence of surface modes [13] a a

in an unstable mixture in contact with a substrate surface. _ _

Some of these modes grow faster than the ordinary bulhereg is the inverse of temperature (constant throughout

modes and create periodic structures along the surface. the system), the sums are over the nearest-neighbor sites
We want to report here about similar findings in the©f the start site, and stands forA or B. wg are attempt

dynamics of a simple lattice gas model of a binary alloyfrequencies. We will consider only the casg = wj =

with vacancies. Such models were investigated by severafo- In the following, we will measure all lengths in units

authors [15—18], motivated by the fact that a vacancyof the lattice constana and time in units ofwy '. The

mechanism is a more realistic picture of diffusion in transition rates (2) satisfy detailed balance and thus lead to

solids than the more widely used exchange model. Herdhe correct equilibrium state in the infinite time limit.

we study interfaces between an unstable mixture and a The evolution of such a nonequilibrium system can be

stable vapor phase. Such interfaces are created when ofigscribed by the master equation for the time-dependent

quenches a small droplet of a stable mixture in a batfprobability distribution in the space of configurations. If

of vapor into an unstable region of the phase diagramwe define by angular brackets the average with respect to

Decomposition at the surface is triggered by instabilitieghis distribution, we can write evolution equations for the

in the interface and competes with the decomposition iocal occupation probabilitiesf = (ni') andpf = (nf),

the bulk. which can be interpreted as concentrations as well. We
Our model is based on a stochastic lattice gas. A twoallow only nearest-neighbor jumps, and find

dimensional quadratic lattice witN sites and periodic N

boundary conditions is occupied by atoms of two species rii _ _ Zj?{ (3)

A and B, and by vacancies. Multiple occupation is di e
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where ji;4, is the current of species in the link used to describe phase separation in alloys [14,18—21] and
(i,i + a), given by dendritic growth [22]. The equations (4) can be castin a
j& = (e — n}‘-‘ _ nf)w;'; —n%(1 - nt — nfi)wjz_); _ gorm more clpsely related to out-of-(_aquilibrium thermo-
@) ynamics. Simple rearrangements yield
The factors multiplying the transition rates ensure that the Ji = —M(p§ — ui), 5)
start site is occupied by an atom of specigsthe target
site by a vacancy. We have! =1 — pi! — p?, and
thus two independent variables per site. M =1~ pt=pHa - pt = p?)
We now make a mean-field approximation: We replace « (eguy _ eg,ﬁ)/(ﬂq — u®) (6)
the occupation numbers in (4) by their averages, thus J '
neglecting all correlations. Similar equations have bﬁeris the atomic mobility of species in the linkij and

where

ue = —¢€an Z(Pﬁa — p) — ean Z(Pfia — pP) + —zeaap? — zeasp? + BN IN[p2 /(1 = pit = pP)]  (7)
a a

is the local chemical potential of species Here,zis the ! the diffusion mechanism in the vapor are of little impor-
coordination number of the lattice & 4 for our square tance. As a specific example, we choese = epp and
lattice). These chemical potentials are the derivativeg,z = £44/2. Then, we haves = g44 = e, and the
with respect to the local concentrations’ of a free phase diagram is completely symmetric.
energy F which has the form of a discrete Ginzburg- We immersed a droplet of initial radiu8 = 55 and
Landau functional. The free energy dendiig the same concentrationsp® = p8 = 0.46464 in a vapor of con-
as obtained by standard static mean-field theory. Atentrationp? = p® = 0.03536 and fixed the tempera-
equilibrium, all time derivatives vanish and the chemicalture to haveBes 4 = 2. Then, we have equal pressure
potentials are constant throughout the system. and chemical potentials in the two phases (the pressure
Equations (3) and (5) have the structure of a generalP is defined as the negative of the grand potenkiak
ized Cahn-Hilliard equation [1]. However, there are two—f + usp? + upp?). Note that as long ag4 = p?
conserved local order parameters, and the phase diagrdm both phases, the vapor-mixture interface is “neutral.”
is more complex than for a binary mixture. It can be ob-Such an initial condition cannot be chosen in a simple
tained from the free energy density Stability in the bi- Ising model without vacancies or in the standard Cahn-
nary subsystemAv, By, andAB s controlled bye 4, epg,  Hilliard equation, because in binary systems any stable
and e = g4 + epp — 2e4p, respectively. If all these phase below the critical temperature will prefer eitier
energies are positive, we always find three-phase coexr B. We added a random noise of small amplitude over
istence of arA-rich, aB-rich, and a vacancy-rich “vapor” the whole system to initialize the phase separation and
phase at sufficiently low temperatures. Evidently, in a reaintegrated the mean-field equations using a simple Euler
vapor, diffusion does not take place by activated nearesglgorithm. Phase separation shows up first at the surface,
neighbor jumps. The important property of this phase igiving a regularly modulated structure along the boundary
that diffusion is much faster than in the “solid.” As we of the droplet (Fig. 1). This surface mode propagates into
focus here on the dynamics inside the solid, the details ahe droplet, leaving behind a checkerboardlike structure,

FIG. 1. Snapshot pictures at= (22400, 56900, and79400)w; ' (from left to right) of a decomposing droplet onia8 x 128
lattice. White: vapor; blackA-rich; light grey: B-rich phase; dark grey: mixture. Parameter values as given in the text.
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which coalesces rather rapidly to form stripes. At thesuch points, local equilibrium fixes the angle between the
same time, fingers of vapor penetrate into the mixtureAyv, By, andAB interfaces.

This is an instability of Mullins-Sekerka-type [23] which ~ This behavior was observed for several temperatures
is driven by the diffusion of vacancies out of the solid. and various initial concentrations of vapor and mixture.
The fingers stop to grow once a layer of fully decom-It is due to a larger mobility of surface atoms. To check
posed material has formed along their entire boundary anthis assumption, we performed a linear stability analysis,
are smoothed out by the following coarsening processesvhich can only be sketched here. We must compare
The propagation of the surface modes continues until thbulk and surface behavior. In the bulk, we start from a
bulk modes have grown to a sufficiently big amplitudehomogeneous state, thagis = p* andp? = p? Vi, and

to enter the nonlinear regime of spinodal decompositionadd plane wave perturbations

We then find in the interior of the droplet the bicontinuous N s s

structure; of bulk spinodal decomposition. At.the su_rfac_e, (%) _ (1’ ) + (51’ )ex;{il; CE o+ w(l;)t], (8)
coarsening has proceeded much further than in the interior\ p; p? sp® ‘

of the droplet. The initially smooth vapor-mixture inter- .. . ) -

face has developed bulges. This is due to the existencinerex; is the coordinate vector of sifeandk = (k. ky)

of points at the surface where the three phases meet., At the wave vector of the Eerturbat;on. Linearization of the
| equations of motion id p* andé p” gives

a)(/;) 5[7A — A MA (—A];SAA + Saa) MA (_AJ;SAB + Sap) 5PA o
6pB k| mB (_AIESAB + SAB) MB (_A;SBB + SBB) 5[)3 .

Here, M“ are the limits of (6) for uniform chemical
potentials, andS is the matrix of the second derivatives stable, with a maximum eigenvalue, = 4.361 X 1074,
of the free energy density.s = 9°f/dp®apP. A; is  at a valuek, = 0.403. The surface growth rate is four
given by the function times larger than in the bulk, and the characteristic wave
) ) vector is very different. Initial conditions as the position
Ap = —4sim (ke /2) — 4sir(k,/2). (10)  and orientation of the vapor-mixture interface with respect

The solution of the eigenvalue problem (9) gives the dis0 the lattice do not matter much, as we can see in the
persion relation&)(lz). The number of unstable branches Simulation: The wavelength of the surface mode is fairly

is equal to the number of negative eigenvalues ofFor regular. d in oA is f d h f .
the example of Fig. 1, we have one negative eigenvalue, Once a domain oA is formed on the surface, it attracts

and the characteristic length scale of the bulk pattern jotherA atoms from the solid, thus creating a depletion of

given by the maximum of the corresponding dispersion re/* 2l0ms giving rise to & domain. Hence, the rapidly
lation. We find a maximum growth rate af, = 1.063 X growing surface mode enforces growth leh its proper
10-4 with |];| near 1 growth rate and wave vector, which are different from
Now consider a vapor-mixture interface parallel to the.t::ethbeulgu\llslEesihs\é\ﬁnca?hge;jfgfet Idr?);\;/lvt?: :giegbae:;wor
y axis (directed along one of the lattice vectors). We ca ave vectorky in the bSIk equations gThen (9) becomes
analyze the stability of the interface using Fourier modeg” Ly 9 :

a quadratic equation iA; which has two complex roots.

in the y direction. However, instead of the two coeffi- Using (10), we can solve fok, and obtain the four
cientss p# and 8 p? we have to find the complete eigen- solut?ons ’ x

modes in thex direction, leading to an eigenvalue problem
for a 2L, X 2L, matrix, whereL, is the system size in k., = +b * ic (11)

the x direction. This is surely tractable using standard

numerical methods, but we can limit ourselves here to avith, in our case,b = 1.05 and ¢ = 0.789. The two
simpler treatment. We first calculate the profile resultingsolutions to be kept are those with the positive imaginary
from the local equilibration of the initial step profile, solv- part: They describe waves which decay exponentially with
ing the finite-difference equationg{ = wup,x through the penetration depth. They have a wavelength inxthe
the interface. Then we isolate a small number of layerslirection of A, = 27/b and propagate with a velocity
around the interface and perturb by Fourier modes along = w,/c. To test these predictions, we compared our
the y axis. If we take properly into account the corre- findings to simulations in a stripe geometry. From simple
sponding boundary conditions, we can extract the domiinspection of these simulations we find = 27 /k, =
nating behavior from a much smaller matrix. The resultsl6, A, = 6, andv =~ 5 X 10™%, whereas the predictions
do not depend on the number of layers as soon as we haeee 15.6, 5.73, anfl.32 X 1074

included the whole interfacial region. Using the last two Clearly, our choice of completely symmetric interaction
layers of vapor and the first two layers of solid, we find thatparameters and compositions is not a generic case. If
only one branch of the resulting dispersion relation is unwe simulate a quench with an off-critical composition
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initial temperatures should therefore cause variatiors; in
in contrast to bulk phase separation, where a change of the
fluctuation strength simply renormalizes the time scale.

In summary, we have analyzed the effects of free sur-
faces on the spinodal decomposition of binary alloys with
vacancies. In simulations, we obtained surface structures
of different morphologies. Our mean-field method allows
one to obtain good estimates of the involved characteristic
length and time scales in terms of the microscopic model
parameters. It would be interesting to compare these find-
ings to Monte Carlo simulations and to experiments.
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