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Phase Inversion during Viscoelastic Phase Separation:
Roles of Bulk and Shear Relaxation Moduli
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We simulate viscoelastic phase separation of polymer solutions by solving numerically Langevin
equations of a “viscoelastic model” that newly includes the bulk relaxation modulus in addition to
the shear relaxation modulus. The results reproduce almost all the essential features of viscoelastic
phase separation observed experimentally: (i) The existence of a frozen period, the nucleation of the
solvent-rich phase, (ii) the volume shrinking of the polymer-rich phase, (iii) the transient formation
of a networklike structure, and (iv) the phase inversion in the final stage. Our simulations clearly
indicate that the bulk stress is responsible for (i), (i), and (iv), while the shear stress for (iii).
[S0031-9007(97)03404-2]
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Phase-separation phenomena are widely observed ported by Taniguchi and Onuki [18] on the basis of a
various kinds of condensed matter including metals, semidifferent set of the basic equations describing visco-
conductors, simple liquids, and complex fluids such aslastic phase separation [13]. Although some features of
polymers, surfactants, colloids, and biological materialsviscoelastic phase separation have been clarified by their
[1]. It has been an open question for a long time whethestudy, the quantitative studies have just been initiated and
there are significant effects of internal dynamics of compothe situation is still far from complete understanding.
nent molecules on critical phenomena and phase separationin this Letter, we study viscoelastic phase separation
or not. From the concept of dynamic universality [2], thereof polymer solutions numerically on the basis of the
should not be such effects. However, de Gennes [3] ncfundamental equations derived from Doi and Onuki [15]
ticed that there can be viscoelastic effects on the early stagand Milner [16] with an essential modification, namely, the
of phase separation in polymer mixtures, and this problenmclusion of bulk modulus as a controllable parameter [19].
has recently been studied by Kumaran and Fredericksofhe bulk relaxation modulus, which has been neglected
[4]. Since the effects are not so drastic and also limitedor, more strictly, not treated as an important physical
only to the very early stage, they have not been considerefdctor) in previous theories [13,15,16], likely plays crucial
seriously. roles in viscoelastic phase separation as in gel phase

Recently we have shown that phase separation of a fluideparation [19]. We focus our special attention on the
mixture (such as a polymer solution) whose componentsomparison of the numerical results with our experimental
have very different internal dynamics is essentially differ-results and also on the roles of bulk and shear relaxation
ent from that of classical fluid mixtures [5,6]. We call moduli.
this new type of phase separation “viscoelastic phase sepa-First we describe the basic equations describing visco-
ration” since viscoelastic effects play important roles inelastic phase separation of polymer solutions used in
phase separation in addition to diffusion and hydrody-our simulation. They are based on a two-fluid model
namic effects. The “dynamic asymmetry” between theof a mixture of polymerp and solvents [15,16].
components of a mixture is a prerequisite to viscoelastitet v,(r,7) and v,(r,t) be the average velocities of
phase separation. To consider this problem theoreticallypolymer and solvent, respectively, anfl(7,:) be the
we need a basic model that can treat the motion of eacholume fraction of polymer at a poinf and time r.
component separately, since the description of the differHere we assume that the two components have the
ence in elementary dynamics between the two componentsame densityp for simplicity. The volume average
of a mixture is required: such a model, which is knownvelocity v is given by v = ¢v, + (1 — ¢)v,. The
as a “two-fluid model” [7—9], has recently been studiedfree energy of the systenf.;x is given by Fpix =
intensively [8,10—17] to understand the stress-diffusion/ d#{ f(¢ (7)) + (C/2)[V¢(7)]*}, where f(¢) is the
coupling and also the unusual shear effects in polymefree energy per unit volume of a mixture with the
solutions. composition ¢ of polymer. Here we use the Flory-

Since the basic equations describing viscoelastituggins-type free energy [20] ag(®): f(P)/kgT =
phase separation are very complicated, the analyticdll/N)¢Ing + (1 — ¢)In(1 — ¢p) + xd(1 — ¢). In
approach is quite difficult and the numerical simulationsthis study, however, we s& = 1 and do not introduce
are required to gain physical insight into the problem.any dependence @ on ¢ to pick up only the pure effect
Very recently the first numerical simulation was re-of dynamic asymmetry. Then, the basic equations are
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given by [15,16] o,(F,t + Ar) at a point7 and timer + At is calculated
d > - from o, (7, t), using the following relation:
a_d’ = V- (¢0) (7, 1) g g
: 2 Ar
- 1 - > - . .
+v-¢’(T¢)[v-n—v-a], ) O'W(r,t+At)=a'W(r,t)eX[(—T—>
,;p_,;sz_lz(f’[e.n_ﬁ.a], @) + M,[Vi, + (Vi,)T1At + -, (6)
pa_v = _V.II + Vp + V.o + nsV25, 3) v_vhere~ . represen_ts the terms_ containing spatial deriva-
at tives. The numerical calculation of the memory effects

where{ is the friction constantp is a part of the pressure, pased on the above relation has some technical advan-
andr, is the solvent viscosity. Heré - II = ¢V(% —  tage over that based on the differential equation (see, e.g.,
CV?¢) andIl is the osmotic tensoreo is the total stress Ref. [18]) in that the former is stable even far = 7,
tensor, which is, in general, given by the constitutivebut the latter is not. We assunMs = 0.5¢> andMp =
equation of material. In a linear-response regime, thé.060(¢ — ¢*), whered is a step function. In the follow-
most general expression af; is formally written by ing simulations, we sep” to be equal to the initial com-
introducing the time dependence of bulk and shear modutposition, for simplicity. This choice is one of the easiest
in the theory of elasticity [21] as ways to induce the strong asymmetry in bulk stress be-
oy = ]’ 4G — t/)Kg(t/) tween a ponmEr-richzand a sglvent-zrich phase. We also
e assume thats = 504~ andrg = 10¢~. Although there
+ K(t — )V - 0,81,  (4) isfni? fi(rjm bas(,JiIs on the ?bﬁ)ve relations ass[ljjmed, tr]lfe details
i avl v, 2 - . of the dependencies of these quantitiesfodo not affect
wherexy = 75 + 750 — §(V - 7,)d; andd isthe spa- g qualitative features of the simulated results. These

. ) . 9% . - .
tial dimensionality ¢ = 2 in our simulations). Here we parameters are chosen to illustrate the roles of bulk and
shear moduli clearly.

use the fact that, is only the velocity relevant to the
rheological deformation in polymer solutions [14-16]. The velocity fields in k spacei, is calculated from
the relationv, = Ty - (—% "M+ V- o), whereTy is

G(r) and K (¢) are material functions containing informa-
tion on all the spatiotemporal history, which we call the _ | i
shear relaxation modulus and bulk relaxation modulus, rethe Osceen tensor inspace given b{'y = = (I — ),
spectively. The second term in the above equation fowhere(), denotes the Fourier componentiof
oi; has been newly introduced to incorporate the effect In the simulation, we seks7 =13, { = 0.1, x =
of volume change into the stress tensor [19]. It should b@.7, andn, = 0.1. This set of parameters guarantees that
stressed that its diagonal nature leads to the direct couplirthe coarsening behavior withobit - o is quite similar to
with diffusion: note that the effective osmotic pressurethat simulated by using the fully scaled time-dependent
is given by 7°ff = (d,% —f) — [',dt'K(t — )V -  Ginzburg-Landau equations of modglwith ¢* potential
v, (1"). [1,2]. We introduce the Gaussian random noisedof

In our simulation, we assume the Maxwell-type relaxa-With the intensity of 10~ into the initial composition
tion for both bulk and shear relaxation moduli for simplic- distribution. We set the initial polymer composition to
ity: G(1) = Mg exp(—t/7s) andK(t) = Mpexp(—1/7p). be 0.35. Fory = 2.7, the equilibrium compositions are
Further, we assume thats, Mg, 75, andrp are the func-  0.107 and 0.893. Thus, the final volume fraction of the
tions of only ¢ (7). Under these assumptions Giiz) and ~ Polymer-rich phase is 0.309.
K(r), we need to solve the following upper-convective Figure 1 shows the simulated pattern evolution dynam-

equations instead of Eq. (4): ics of viscoelastic phase separation with bulk modulus and
Do, R S 1 without shear modulus [1(a)], without bulk modulus and

Dr ~ VUrOwt o (VD) — oo with shear modulus [1(b)], and with both bulk and shear

+ Mw@;,p + (§5P)T), (5) moduli[1(c)]. All these simulations were done using the

where 2 — 2 4+ 7 .V andw = B and S indicate  S2Me€ parameters. Only when there is the bull_< relaxation
bulk anlt)jtshedatr resgecti\’/ely We calculate the final shear}100|UIUS [1(2) and 1(c)], we have phase inversion.

f 7 g _ ) We stress that the simulation results with both bulk and
stressos asos = o5 — 3Tr(0'5)11 (I is a unit tensor),  ghear moduli [see Fig. 1(c)] recover almost all the essen-
while the final bulk stress ag3 = ;Tr(op)I. tial features of viscoelastic phase separation observed ex-

The above Langevin equations were solved numeriperimentally [5,6]: (i) The existence of an incubation time
cally by the Euler method in two dimensions using pe-of nucleation of the solvent holes and their nucleation-
riodic boundary conditions, under the incompressibilitygrowth-like appearance, (ii) the volume shrinking of the
conditionV - ¥ = 0 and the quasistationary approxima- polymer-rich phase (see also Fig. 2), (iii) the resulting for-
tion dv/or = 0. The system size wad28 X 128.  mation of a networklike structure, and (iv) the final relaxa-
We choose the grid sizdx = Ay = 1 and time step tion of the pattern dominated by the elastic energy to that
At = 0.02 to ensure the stability. The stress tensorby interfacial tension, which leads to phase inversion.
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2N "e,2 @ both quantities are directly related¥o- v,,. In the initial
stage, these two effects are canceled out and the diffusionis
significantly suppressed. On the other haiWl; o5| has

a peak at = 370, retarded from the peaks oF - II| and

|V - op| by At ~ 100. Note thatV - o is not directly
coupled with diffusion coming from the diagonal part of
II and simply produces the mechanical force fields.

First we discuss the roles of the bulk relaxation modu-
lus in viscoelastic phase separation. The bulk relaxation
modulus likely suppresses the initial rapid growth of con-
centration fluctuations characteristic of spinodal decompo-
sition [compare Figs. 1(a) and 1(c) with Fig. 1(b)], since
V - 7, is directly related ta)¢ /9t through the continuity
equation [19]. The bulk relaxation modulus likely plays
dominant roles in the initial stage of phase separation.
The existence of the dark-contrast part surrounding the
solvent holes [see, e.g., Fig. 1(¢)= 200] indicates the

- e . E 4 excess polymer concentration on the edge of the solvent
=220 =30 = 1550 holes (overshooting effects). This is likely caused by the
FIG. 1. Simulated pattern evolution during viscoelastic phasesffects of bulk relaxation modulus, which retard the dif-

separation. (a) With bulk modulus and without shear modulus.
(b) without bulk modulus and with shear modulus. andfu3|on in the polymer-rich phase selectively. The similar

(c) with both bulk and shear moduli. Note that the darknesg?N€nomena are also observed by the simulation of model
is proportional tog. B with a large composition dependence of the mobility

[22]. This effect of the bulk stress that suppresses the
Figure 2 shows the temporal change in the volumegrowth of the composition fluctuations and the diffusion
fraction @, of a polymer-rich phase for all three cases.probably leads to the volume shrinking of a polymer-rich
The temporal change in the darkness of a polymerphase and the resulting phase inversion.
rich phase even after the formation of a sharp interface Next we discuss the roles of the shear relaxation
in Figs. 1(a) and 1(c) is another indication of volumemodulus in viscoelastic phase separation. By comparing
shrinking. The volume shrinking behavior is observedFig. 1(a) with Fig. 1(c), we can learn that the shear relaxa-
only for the cases of the existence of the bulk stress. [Ition modulus plays a significant role in the formation of a
is evident that bulk stress is a prerequisite to the volumé&etworklike structure. Although the stress fields around
shrinking behavior and the resulting phase inversion.  an isolated solvent hole have the spherical symmetry, the
Figure 3 shows the temporal change in the average magoupling of the diffusion fields around neighboring solvent
nitudes per lattice of the three types of forces, namelyholes induces the deformation of shear type. Thus, we
the thermodynam|c force?¢ - _V. I1, the bulk me- expect thatIV os| increases, reflecting the increase in
chanical forceFB - _Vv. o3, and the shear mechanical the coupling between the diffusion fields around solvent
force, Fg = V. os. Both IV 1| andIV op| have drops. This is quite consistent with the fact tlhﬁt os|
the peaks at the same timerof= 270. Thisis natural since has a peak, retarded from the peaks §f- 11| and
|V - op| (see Fig. 3). This retardation of the peaking of
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FIG. 2. Temporal change in the volume (area) fractibp
of a polymer-rich phase. Open circles, filled circles, and operf |G- 3- Temporal changes in the average magnitudes of the
squares correspond to the cases of Figs. 1(a)-1(c), respectlveHﬂree types of forcesl,F | Open circles:|Fy], filled circles:
Dashed line gives the equilibrium value &, = 0.309. |F5|, and open square&s|.
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the shear force plays a significant role in the enhancemefiietween polymer chains cannot be applied to polymer
of the network character of the pattern. dynamics in a poor solvent. Although there is no reliable
Further, the shear relaxation stress extremely slowtheory on the polymer dynamics in a poor solvent, it is
down the shape relaxation process [compare Fig. 1(a) ambtural to consider that there exist attractive interactions
1(c)], since it inevitably accompanies the shear deforbetween polymer chains, which lead to the formation
mation. In the absence of the shear relaxation modulusf transient crosslinking points. Thus, we expect that
[G(¢) = 0], the characteristic shape relaxation time for apolymer solutions behave as a physical gel in a short
domain of sizeR, 7, is given byrr ~ nyR/v (y: in-  time scale. The existence of transient crosslinking points
terface tension). In the presence @fr), on the other guarantees that polymer chains can store the bulk stress as a
hand, 7z ~ nR/y, where n = [, G(r)dt. Using the gel for a certain deformation rate. We need further studies
fact that¢p = 0.89 in the polymer-rich phase ar@(r) =  for a deeper understanding of viscoelastic phase separation,
0.5¢%exp(—t/50¢?), we obtainn ~ 16. Since n, = including the study of polymer dynamics in a poor solvent.
0.1, the shape relaxation time should be about 160 times The authors are grateful to Professor A. Onuki and
longer for Fig. 1(c) than for Fig. 1(a), which is consistentDr. T. Taniguchi for valuable discussions and also send-
with what is seen in Fig. 1. ing their paper [18] on numerical simulation of viscoelas-
Here we compare our results with those of Taniguchiic phase separation prior to the publication. They also
and Onuki [18]. Very recently Taniguchi and Onuki havethank Professor M. Doi and Professor J. Jackle for valu-
successfully demonstrated the network domain structure iable discussions. This work was partly supported by a
viscoelastic phase separation by simulations. Their simuGrant-in-Aid from the Ministry of Education, Science,
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