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Dissipative Dynamics of Collisionless Nonlinear Alfvén Wave Trains
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The nonlinear dynamics of collisionless Alfvèn trains, including resonant particle effects, is studied
using the kinetic nonlinear Schrödinger (KNLS) equation model. Numerical solutions of the KNLS
reveal the dynamics of Alfvén waves to be sensitive to the sense of polarization as well as the
angle of propagation with respect to the ambient magnetic field. The combined effects of both
wave nonlinearity and Landau damping result in the evolutionary formation ofstationaryS- and arc-
polarized directional and rotational discontinuities. These wave forms are frequently observed in the
interplanetary plasma. [S0031-9007(97)03463-7]
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Numerous satellite observations of magnetic activ
in the solar wind have exhibited the nonlinear nature
MHD waves [1,2]. Recent observations indicate the
istence of directional (DD) and rotational (RD) disco
tinuities, i.e., regions of rapid phase jumps where
amplitude also varies [1,3], which are thought to be a
sult of the nonlinear development and evolution of MH
waves. Several types of RD/DD’s which might be d
tinguished by their phase portraits have been obser
There are (i) discontinuities of the“S-type,” at which the
magnetic field vector rotates first through an angle l
than or approaching90± in one direction, followed by ro-
tation in the opposite direction through an angle larg
than 180± (typically, 180± , Df # 270±) [3,4], and
(ii) arc-polarizeddiscontinuities, where the magnetic fie
vector rotates along an arc through an angle less than180±

[1,5]. At DD’s, the fast phase jump is accompanied
moderate amplitude modulation (dB , B). At RD’s, the
amplitude modulation is small or negligible (DB ø B).

The envelope dynamics of nonlinear Alfvén waves
small b are thought to be governed by the derivati
nonlinear Schrödinger (DNLS) equation, which describ
parametric coupling with acoustic modes [6]. The theo
of nondissipative Alfvén waves governed by the cons
vative DNLS equation predicts nonlinear wave steepen
and formation of wave forms with steep fronts. Thu
spiky, many-soliton structures are emitted from the st
edge. It was shown that the nonlinear wave relaxes
shock train and constant-B RD’s where the field rotates
through exactly180± [6,7], when the linear damping du
to finite plasma conductivity is taken into account.
spite of this, the DNLS theory was unable to explain t
existence and dynamics of both (i) theS-polarized DD’s
and RD’s and (ii) arc-polarized RD’s, with rotation of les
than180±. It is believed (and confirmed by recent partic
code simulations [8–10]) that the dynamics of Alfvé
waves in theb , 1, isothermal solar wind plasma ar
intrinsically dissipative, on account of Landau dampin
of ion-acoustic oscillations [16,17]. We should comme
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here that particle code simulations (e.g., Refs. [8–1
model “microscopic” behavior of plasma particle motion
thus may be referred to as “numerical experiments.”
numerical solution of a “macroscopic” evolution equati
is a complementary way which allows one to get a th
retical insight into the underlying physics and theore
cally explain the observed (experimental) data.

The dynamics of magnetic fields in the solar wind h
been extensively investigated using different analyti
approaches. Various (e.g., beat, modulational, dec
instabilities of Alfvén waves were shown [11] to b
sensitive to the wave polarization and the value of plas
b. The turbulence-based linear model which descri
the radial evolution of magnetic fluctuations in the so
wind was successfully developed [12], taking into acco
the effects of advection and solar wind expansion, alo
with mixing effects. The simple nonlinear noisy-KNL
(kinetic nonlinear Schrödinger) model of turbulence w
proposed and investigated in [13]. Arc-polarized wav
which had been first discussed in [14], were explain
[15] via coupling of obliquely propagating circular Alfvé
waves and a driven fast/slow wave. Some damping
necessary in this case in order to (consistently) select
arc-type solutions.

In this Letter, we use a recently developed [17] analy
cal model of the kinetic DNLS (KNLS) equation to inve
tigate the influence of Landau damping on the (strong
nonlinear dynamics of Alfvén waves. The main claim
this Letter is thatall the discontinuous wave structure
discussed above aredistinct solutionsof the samesimple
analytical model for different initial conditions, e.g., in
tial wave polarization and wave propagation angle. O
should note that the term which describes the resonant
ticle effect is usually integral (nonlocal) in nature, on a
count of the finite ion transit time through the envelo
modulation of an Alfvén train. Thus, the envelope ev
lution equation obtained is a nonlocal, integro-different
equation which is not amenable toanalytical solution.
We should comment here on a case which extends
© 1997 The American Physical Society
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traditional paradigm of shock wave forms. There are t
known types of shocks, namely (i)collisional (hydrody-
namic)shocks, in which nonlinear steepening is limited b
collisional (viscous) dissipation, which sinks energy fro
small scales and (ii)collisionless shocks(common in astro-
physical plasma), in which nonlinear steepening is limit
by dispersion, resulting in the formation of soliton-type
structures with energy content in high-k harmonics. We
add a new class of shock, namely (iii)dissipative struc-
tures(which also can be referred to ascollisionless dissipa-
tive shocks), for which nonlinear steepening is limited b
collisionless(scale independent, i.e., acting on all scale
damping. They emerge only from quasiparallel, (near
linearly polarized waves. Of course, to obtain famili
shock-like wave forms, the cyclotron damping at largek
must be incorporated, as usual, for collisionless shocks

The KNLS equation may be written [16,17] as

≠b
≠t

1
yA

2
≠

≠z
shM1fjbj2 2 kjbj2lg 1 M2Ĥ fjbj2 2

kjbj2lgjbd 1 i
y

2
A

2Vi

≠2b
≠z2 ­ 0 ,

(1)

whereb ­ sbx 1 ibydyB0 is the wave magnetic field,yA

andVi are the Alfvén speed and proton ion-cyclotron fr
quency,k· · ·l means average over space and fast (Alfvén
time. Here the constantsM1 andM2 depend onb only (see
Ref. [17] for details) andĤ is the integral Hilbert opera-
torĤ f fg szd ­ p21

R`

2`sz0 2 zd21fsz0d dz0. This equa-
tion was solved for periodic boundary conditions using
predictor-corrector scheme and a fast Fourier transfo
1024 harmonics and spatial points were taken. The dim
sionless spatial coordinate and time were introduced,
spectively, asz ­ zyz̄ andt ­ teyt̄, wherez̄ ­ 50cyvp

and t̄ ­ 200yVi. For b ­ 0, kinetics do not impact the
wave dynamics [17], so Eq. (1) reduces to the famil
DNLS equation (M1 ­ 0.5, M2 ­ 0). The DNLS is in-
tegrable and has an exact (soliton) solution. The test
has shown an excellent agreement with the analytical
lution during the time of computation (up tot ­ 40, i.e.,
8000 cyclotron periods).

High-amplitude magnetic perturbations in plasmas ty
cally evolve from small-amplitude (linear) ones. Thu
the most general approach is to examine the nonlin
evolution of finite-amplitude periodic waves of differen
polarizations. The initial wave profiles are given b
two initially excited Fourier harmonics,bk . For linear
polarizations, we pickbk ’s equal b21 ­ b1 ­ 1, all
others are zeroes, for circular polarizations we pickb22 ­
b21 ­ 1, for elliptical polarizations, we pickb21 ­
1.1, b1 ­ 0.9. Thus, the waves are left-hand polarize
Results of a reference run forb ­ 0, with amplitude
modulated linear polarization (the circular polarizatio
and oblique propagation cases look similar) are sho
in Fig. 1(a). The wave exhibits the nonlinear steepen
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FIG. 1. Wave profile evolution of a quasiparallel, linearly
polarized, sinusoidal wave initial condition forb ­ 0 (a) and
b ­ 1 (b).

phase of a front at early times (t , 2). Dispersion further
limits steepening and produces (at timest , 5) small-
scale, oscillatory, circularly polarized wave structure
(even for initial linear polarization). Significant high
harmonic energy content is generated. At later time
t , 40 (not shown), nonlinear processes result in a wav
magnetic field which is completely irregular, indicating
strong, large-amplitude Alfvénic turbulence.

For b fi 0, we first compare the wave form profiles
and harmonic energy spectra obtained from the KNL
with the previous case. From now on,b ­ 1 and
Te ­ Ti (M1 ­ 0.75, M2 ­ 20.83) unless stated other-
wise. Figure 1(b) depicts the time evolution of a paralle
propagating wave with the same initial conditions. In
contrast to theb ­ 0 case, localizedquasistationary
structures are seen to form very rapidly; the formatio
time istf , 2. The harmonic spectrum of the dissipative
structures (also referred to asS-type DD’s, see below) is
narrow, indicating that energy accumulates in low-k har-
monics, i.e., at large scales. It worthwhile to emphasiz
the quasistationary character of such wave forms. The
preserve their shape for thousands cyclotron periods a
thus may be indentified as “structures”. Meanwhile, th
wave energy decays strongly, as seen from Fig. 2. Thu
the dissipative structures emerge via the competition
nonlinear steepeningof the wave and scale invariantcol-
lisionless damping. The fact that energy dissipatesin the
dissipative structures (and not somewhere inbetween)
readily seen from the simple fact that̂H fconstg ; 0.

Figure 3 is a snapshot of the dissipative structure
at t ­ 15 which emerged from a quasiparallel, linearly

FIG. 2. Wave energy evolution for different initial conditions.
4935
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FIG. 3. S-polarized DD (quasiparallel case): (a) amplitu
and phase profiles; (b) hodograph.

polatized wave. It is seen that regions of significant fi
variations are accompanied by fast phase rotation. H
ever, in the regions of negligibly varyingjbj, linear polar-
ization is preserved. The dissipative structures exhibit
easily distinguishable “S-shaped” phase portrait, name
that at the discontinuity (solid pathA-B-C), the mag-
netic field vector completes a rotation throughp radians.
During the subsequent quescent region (pathC-D), the
magnetic field vector resides at the “tip” of the left arm, i
dicating pure linear polarization. At the next discontinui
the vector returns to the initial position, similarly comple
ing ap radian rotation as shown by the dashed path. Th
the KNLS dissipative structures have the requisite prop
ties of localized,RD’s/DD’s, as recently observed in th
solar wind [3,4]. Note, however, these KNLS RD’s a
associated with the regions ofvarying jbj, unlike the con-
ventional definition thatjbj ­ const across the RD. Ther
is no sharp difference between an RD and a (weak) D
One may be transformed into another by changing the
tial wave polarization and propagation angle. Hence,
use both terms for theS-type KNLS discontinuity. We
should also note the remarkable similarity of hodograp
obtained by solution of the KNLS equation and from fu
numerical plasma simulations [8]. Such KNLS discon
nuities occur commonly and are not restricted tob’s close
to unity. These structures are quite evident in a wide in
val of b, of approximately 0.5–0.6 to 1.4–1.6. The di
sipative structures still form at smallerM2; however, the
formation time increases whenM2 decreases.

In contrast to the case of linear polarization, circula
polarized, quasiparallel waves evolve in a fewt to a
single (almost purely) circularly polarized harmonic at t
lowest k and do not form discontinuities. Energy dec
(Fig. 2) is negligible in the stationary state.

Figure 4 depicts a snapshot of the quasiparallel, initia
elliptically polarized wave, an intermediate case betwe
purely circular and linear polarizations. Sudden ph
jumps (byp radians), which are localized at regions
varying wave amplitude (typical of linear polarizations
are easily seen. However, these discontinuities are
accompanied by wave amplitude discontinuities. Th
they are theDf ­ p RD’s. Note, these discontinuitie
[which are the semicircles in Fig. 4(b)] are separated
extended regions of linear polarization. Energy dissi
tion (Fig. 2) is weak, in comparison to the case of line
polarization.
4936
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FIG. 4. Same as Fig. 3 for theDf ­ p RD (quasiparallel
case).

Obliquely propagating waves are still described
the KNLS equation. However, a new wave field whic
(formally) contains a perpendicular projection compone
of the ambient magnetic field should be introduce
Assuming the ambient field lies in thex-z plane, we write
the new field asb ­ sbx 1 B0 sinQ 1 ibydyB0. The
nonlinear evolution of the linearly and highly ellipticall
polarized waves is strongly sensitive to the angle betw
the polarization plane and the plane defined by
ambient magnetic field vector and the direction of wa
propagation. This angle is set by initial conditions. Wh
this angle is small, the oscillating wave magnetic fie
has a longitudinal component along the ambient fie
Thus, we refer such waves to aslongitudinal. In the
opposite case, the wave magnetic field oscillates (nea
perpendicularly to the ambient field. Thus, such wav
are calledtransverse. Note that this classification schem
fails for circularly polarized waves, since a polarizatio
plane cannot be defined in this case.

Figure 5 shows a typical (quasi-) stationary,arc-
polarizeddiscontinuity which evolved from an obliquely
propagating (Q , 40±), amplitude modulated, circularly
polarized wave att ­ 40. The discontinuity is associate
with minor (almost negligible) amplitude modulation
The magnetic field vector makes a fast clockwise rotat
through less thanp radians (solid pathA-B-C). The ends
A andC are connected by a sector of circularly polariz
wave packet (slow counterclockwise rotation in the pha
diagram, along the dashed, perfect arcC-D-A). Circular
polarization is also indicated by the smoothly decre
ing phase outside the discontinuity [Fig. 5(a)]. Sin
jbj2 . const across the discontinuity (as well as for
pure circularly polarized harmonic), it is nearly decoupl
from dissipation. Note the remarkable similarity of th
solution of the KNLS equation to the structures detec
in the solar wind and observed in computer simulatio
[5,10].

FIG. 5. Same as Fig. 3 for theDf , p RD (oblique case).
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The wave evolution of the linearly polarized, oblique
propagating, transverse and longitudinal waves diff
drastically. The transverse waves evolve very quickly
a few t) to form a perfect arc-polarized RD. Energy di
sipation is negligibly small in this process. The longit
dinal waves instead form twoS-type DD’s propagating
with different group velocities. Thus, they can merge a
annihilate each other almost completely, yielding sma
amplitude, residual magnetic perturbations.

The sharp contrast between these three quasistatio
solutions is a direct consequence of the unique harmo
scaling of collisionless (Landau) dissipation in the KNL
equation. It is crucial to understand thatcollisionless
damping enters at allk, in contrast to hydrodynamic
systems where diffusion (viscosity) yields dissipatio
only at large k (i.e., small scales, or steep gradie
regions). However, higher-k harmonics are strongly
damped, which is typical of a phase-mixing process (i
smaller scales mix faster). For quasiparallel propagat
waves, Landau damping enters symmetrically for1k
and 2k spectrum components. It does not change
symmetry of a spectrum, so that the initial helicity (s
by initial spectrum symmetry) is preserved. Since line
polarizations have spectra symmetric uponk °! 2k,
they couple more strongly to dissipation than circu
polarizations do. Thus,S-polarized discontinuities, which
consist of predominantly two low-k harmonics of nearly
equal amplitude, emerge. For the circularly polariz
wave, the (initial) spectrum is highly asymmetric. Thu
such a wave evolves to a single harmonic final state, wh
is, itself, a stationary (and exact) solution of the KNL
equation (i.e., it experiences no steepening and mini
damping). No discontinuities emerge in this case. For
oblique and quasiperpendicular cases, there is asymm
betweenbx and by components induced by the ambie
magnetic field. This allows the formation of a wav
packet with nearly constantjbj2 (i.e., decoupled from
dissipation). Such wave packets are the arc-polari
RD’s with Df , p. We should emphasize the fact th
since there is no characteristic dissipation scale in
system, the ultimate scale of the dissipative structu
is set by dispersion, alone (a là collisionless solitons
and shock waves). Accordingly, one can suggest t
(given initial equal populations of isotropically distribute
circular and linear polarizations) quasiparallel magne
field fluctuations will consist of predominantly circularl
polarized waves and lower amplitudeS-polarized KNLS
DD’s, while oblique perturbations are predominant
arc-polarized discontinuities, separated by pieces
oppositely circularly polarized waves.

To conclude, the influence of the effect of Landa
damping was investigated in this Letter. (A more com
plete study will be published elsewhere [18].) A tractab
analytic evolution equation, the KNLS equation, was n
merically solved to study nonlinear dynamics of finit
rs
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amplitude coherent Alfvénic trains in ab , 1, isothermal
plasma, natural to the solar wind. Current studies show
that all the discontinuous wave structures observed in th
solar wind aredistinct solutionsof the samesimpleana-
lytical KNLS model for different initial conditions, e.g.,
initial wave polarization and wave propagation angle wit
no a priori assumptions or special initial conditions used
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