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Passive Scalar: Scaling Exponents and Realizability
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An isotropic passive scalar fiell advected by a rapidly varying velocity field is studied. The tail of
the probability distributionP (6, r) for the differencef in T across an inertial-range distancés found
to be Gaussian. Scaling exponents of moment ivicrease as/n or faster at large order, if a mean
dissipation conditioned 0@ is a nondecreasing function ¢f|. The P(6,r) computed numerically
under the so-called linear ansatz is found to be realizable. Some classes of gentle modifications of the
linear ansatz are not realizable. [S0031-9007(97)03518-7]

PACS numbers: 47.27.Gs, 05.40.+j, 47.10.+g

In the past several years, a number of papers hawwhere « is molecular diffusivity. A statistically steady
dealt with the theory of a statistically isotropic passivestate may be maintained by adding an appropriate source
scalar field advected by an incompressible velocity fielderm to (1).
that varies very rapidly in time (white velocity field) [1-  The structure functions are defined by,(r) =
26]. Some exact statistical relations can be written for thig|6(r)|?), where 6(r) denotesT(x + r,r) — T(x,t) and
problem, which leads to the hope that, for the first time() denotes ensemble average over homogeneous, isotropic
anomalous scaling exponents for the inertial range can b&tatistics. Suppose that there is power-law inertial-range
derived analytically in a turbulence problem. scaling of the structure functiors,(r),

. Nevertheless, progress has.been limited. Closed equa- S, (r) = (r/L)%, )
tions exist for each order af-point moments of the scalar

field [3], but above second order the number of indewhere L > r > €,, L is a large length scale, the or-
pendent variables is daunting. Perturbation analysis hader of initial or injection scales, and,; is a dissipation
yielded predictions of finite-order scaling exponents atscale. A realizable (everywhere positive) [ifo, r) for
two remote borders of the problem: infinite space dimen#(r) requires that/{, /dq be a nonincreasing function gf
sionality [6,7]; and infinitely nonlocal interaction of spa- (Holder inequalities). This does not exhaust the realizabil-
tial scales of the velocity and scalar fields, with diffusivity ity conditions on{,. Necessary and sufficient conditions
exponenté — 0 in (10) below [9,14]. Neither regime is for an everywhere non-negativ{é, r), nonzero at an in-
accessible to test by direct numerical simulation (dns). finite set ofé values, are [28]

A physically mo'Fivated “quear ansatz” for dissipation defSi+ ;(Nlijorm >0 (n=0,12,..), (3)
terms in the equation of motion [1,10] predicts all expo- ] s ] )
nents for the full domain off and¢. It has quantitative Wheres; is set to zero for odd + j. P(6,r) is unique
support from dns [10,27] and from some experiments [20]if, in addition, > [S,,(r)]"'/>* = o (Carleman’s criterion
The ansatz has not been derived analytically. The predid28]). This is satisfied it*(6, r) falls off exponentially or
tions in the limit¢ — 0 are implausible and in conflict with faster adé| — <.
the perturbation results. It is unclear whether the ansatz Direct calculation of the moments dt(¢, r) verifies

has any domain of exact validity. that ther dependence implied by (2) is

In the present paper it is deduced that, contrary to com- "
mon expectation, the tail of the probability distribution PO,r) = ] p<a, L/>P<ﬂ’r/> d_“, %)
function (pdf) of spatial scalar-field differences is Gauss- 0 r a a

ian in the inertial range, rather than exponential or stretched

exponential. This leads to a relation between the asymgnerer andr’ are both in the scaling range apda, R)

0 oy _ " . .
totic behavior of scaling exponents and that of a condi{@s momenty, a*p(a, R)da = R&. Explicitly,
tional mean of dissipation. The linear ansatz is found to 2 (=
yield a realizable (everywhere positive) pdf, while some pla,R) = p fo codka)e (k,R) dk, (5)

gentle deviations from it do not. A general apparatus is

formulated for relating scaling exponents to the changing *
pdf shape in the inertial range. It is used to obtain the ¢(k,R) =1+ > R (—k?)"/(2n)! (6)
linear-ansatz pdf explicitly. n=1
The passive scalar fielfi(x, r) obeys Equations (4)—(6) are easily generalized to the case where
; the S5, (r)/S2,(r") do not scale as powers of r'.
o . ) The Holder relations are equalities for normal scaling
< ; Tu) V>T(X’t) (VTG0 @) which yields p(a. R) — 8(a — R%/2). The
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smallest possible values of the highégs, plausibly Power-law dependence d¢h(r) in the inertial range
are (>, = {», which vyield p(a,R) = (1 — R®)8[a — is assured from the exact, closed equation of motion for
(+0)] + R28(a — 1). This corresponds to regions of S,(r), provided thaty(r) has the form

constantl’ interspersed with regions whefiér) is as large n(r) = (L) (r/LE (0< & <2), (10)

as the macroscale differenc@$L); (1) cannot magnify _
differences in the injected’, only change their spatial for L > r > {,. The steady-state scaling exponent for
scale and relax them. Unless the scaling is normals:(r) found from (7) is{> = 2 — &.

p(a,R) increases in normalized widt/R%/2 as R There is noa priori assurance of power-law inertial-

decreases, so th@(@, r) cannot have a similarity form range scaling oy, (r) for n > 1. If it exists, the balance

like r=BF(0/rP). of advection and« terms in (7) implies that the,,(r)
In both casess, = né, and &, = {, the tail of have the form

P(0, r) is Gaussian if?(6, r) is Gaussian for ~ L. Ina Jon(r) = nCayJ2(r)S2,(r)/Sa2(r), (11)

Gaussian pdf 185, ~ nlnn for large n, to within terms ) )
of ordern. If InSy,(r) ~ ninn for r ~ L, it follows  Where theC,, are dimensionless constants and

that, for allné, = &, = &, InS»,(r) ~ ninn for large td-
. 0 . _ onl&on $H)
n throughout the scaling range. This is asymptotically Con = nd? (12)
Gaussian behavior of the tail. An exponential or stretched 2
exponential pdf with tail IP(6, r) =« —|6|°, with b < 2,  The Hdlder inequalitieg,, = n{> give
instead requires I8b,, ~ (2n/b)Inn asn — . Thus the n— 1
tail of P(0, r) cannot fall off more slowly than Gaussian Cop =1+ y O (13)

in the scaling range. Physically plausible deviations from
exact scaling for ~ L do not change the result. A§L  Equality in (13) corresponds to normal scalifyg = n¢>.
decreases within the scaling range, the Gaussian tail can The simplest candidate for an anomalous scaling solu-
move to ever-larger values ¢6|/6.,s. Exponential or tion to (7) is the linear ansatz [1],
slower falloff can occur in the dissipation rangerof

The same result holds for the pdfpof veIocit;g/Jdifferences H(O,r) = J2(r)0/8:(r). (14)
in the inertial range of Navier-Stokes turbulence. Otheit corresponds t@,, = 1 for all » and yields
arguments for faster than exponential tails in the inertial X X
range have recently been given by Ching and Procaccia ¢, = 5\/4nd§2 +(d—0)?F—5d - &), (15)
and by Noulez [29].

In interpreting this result, a distinction must be made beLlinear relations like (14) were earlier proposed by Ching
tween the presence of a central cusp in the pdf, expressirand Pope [30,31].
the existence of regions in which there is almost no exci- Using MATHEMATICA (R) 3.0, | have verified numeri-
tation, and the shape of the far tail. Confusion betweerally, for a number of values of and {,, that (15) sat-
these two features can result in spurious fitting of a pdf tdsfies (3) up t2n = 100, even in the extreme case where
an exponential or stretched exponential. An example of £(0,r') in (4) is taken as & function. The{,, corre-
cusped pdf is that implied by the linear ansatz and showsponding taC;, = 1 + B(n — 1) appear to satisfy (3) for
below in Fig. 2. 0 < B = {r/d. This case [23] yieldg,, = n asn — =,

If there is a range of where the source term may be 8 = {2/d is normal scaling. The perturbation analyses
neglected, the steady-state balance equation for the evel®7,9,14] given{, — ¢, that are quadratic in for mod-

integer structure function$,, (r) is [1] eraten. They also satisfy (3); the full set ¢§,,, and hence
") P(6,r), are not predicted.
_2 9 an 9S82a(r > _ A conditional mean related to dissipation may be
rd=1 gy <r n0r) =5, ) = ) (D) Getined by

in the limit of rapidly changing (white) velocity field. K(0,r) = (V0 + Vool|0). (16)
The left side of (7) is derived perturbatively from the If » > ¢,, theV,V,, cross term in (16) is negligible, and
u - V term in (1) in the white limit. Hered is space K(60,r) = (|V.0|*> + |V, 60|*|9), the conditional mean of
dimensionality,»(r) is the two-particle eddy-diffusivity the average of the dissipation at the poistsand x’.
scalar exerted by the velocity field, and H(,r), K(0,r), and P(0,r) are related by an identity
B that follows from homogeneity alone [31,32]:
Ton(r) = 2n[6(0)P" ' H[O(r)]),

0
H[O(r)] = (V2 + V2)6(r)l6(r)). 9) H(9,r)P(O,r) = 25 1K©, PO, ). (A7)

where(:|6(r)) denotes ensemble average conditioned oriif the tail of P(#,r) is Gaussian, andK (6, r) is no
a given valu&(r), andx’ = x + r. stronger than a power df|, the leading term on the
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right of (17) at largeld| is « —0K (0, r)P(0,r), whence
H(0,r)/0 « —K(0,r).

Monotonic growth ofK (6, r) with |6| at inertial-range

¢ (k,r) and ¢y (k, r) can be computed for large values of
k, far out in the tails, by the use ®of{ATHEMATICA (R) to
sum hundreds of terms at precisions of the order of a hun-

r is a very weak, qualitative form of Kolmogorov refined dred decimal digits.

similarity hypothesis [33,34]. If it holds, then the linear

ansatz forH (6, r) and associated,, = n'/? behavior at

Figure 1 showsp (k, r) with R = 1/100 and {,,, given
by the linear ansatz at = 2, {; = 1/2. Figure 2 shows

largen represent a lower bound for the asymptotic growthp(a, r) andP(6, r) as constructed from directly calculated

of 52}1-
constant a$d| — cc. Sublinear growth of{(6, r) at large
|6] would makeK (6, r) a decreasing function d#| and
would vyield slower growth of,, thann'/? at largen.
Yakhot [13] and Chertkov [17] predicf,, — const as
n — o, which can be shown to impli (6, r) = |6| % as
|6] — o« [see (19) and (22)].

The analytical relations betwedt (6, r), P(0,r), and

This bound is achieved iK(#,r) tends to a ¢ (k,r) values for0 = k = 200 and an extrapolation for

k > 200. The local exponent g = 200 is —1.367 and
is slowly decreasing.P(0, r’) is taken as a Gaussian.

One can argue that, if the linear ansatz is self-consistent,
the branch point in (15) at

lp = —(d—0)2, q.=—d— 5)P/2dL (29)
should mark the limit of applicability of (15), angd should

the £», in the inertial range may be expressed in terms of aepresent the most-negative moment order that exists [35].

“co-pdf’ Py (6, r) with moments [~ 02" Py (0,r)do =
C2,82,(r) (Co = 1). Then by (8) and (9),

H(@,r) _ Jo(r) Pg(0,r)
0 S»(r) PO,r)°

(18)

and [©_ Py(0,r)do = 1. If (3) is satisfied withS,,(r)
replaced byS¥(r) = C5,8,,(r), thenPy andH(6,r)/6
are everywhere positive. By (17),

18,0 0

Pu(0.r) =570 %6

[K(6,r)P(0,r)]. (29)

Py(6,r) is related to functionpy(a, r) and ¢y(k, r)
by equations identical to (4)—(6) except that a faafey

appears inpy(k, r),

¢u(k,R) =1 + iRﬁ"CZn(—kZ)"/(zn)!.

n=1

Py(0,r) = P(0,r) under the linear ansatzPy(0,r)

(20)

can be found analytically in some other cases that ar

formal solutions of (12). One i€,, =1 + B(n — 1).
The associate#y is

P(|6], r') is here taken as & function so that its moments
of all negative orders exist. | therefore conjecture that the
ansatz givesp(k,r) < k14! (k — =) so thatp(a,r) =
al!=1 at the origin. TheP(6,r) given by (4) then

is o const— |6]4-I=1 at the origin if3 > |¢.] > 1 and

o |6]l4I=1 (infinite cusp) if|g.| < 1. The crossover is at
{5 = (2 — +/3)d. The data shown in Fig. 2 appear to be
consistent with exponent1.125 atk = o, together with

f? ¢ (k,r)dk = 0, in accord with this conjecture.

The primary fact here is that the linear ansatz appears
to yield a p(a, r) that is positive everywhere, ensuring
positive P(6#,r) also. The positivity ofp(a,r) is a
stronger result than (3). It implies positiv&é, r) even
in the unphysical case wheryd, r’) is a é function. In
Fig. 2 there is an absolute cutoff pfa) at finitea. This
confirms thatP (@, r) is Gaussian-like at larg®|, despite
its appearance, iP(0, L) is Gaussian.

Figure 1, dashed curve, is thik, r) that results from
a gentle modification of these linear-ansatz exponents,
On = Can~ /10 wheres,, satisfies (15). This leaves
gnchanged and makes tg, go asn*> asn — «. The

1.0
3,8) Bo P8, r)
P =(1——)P - ——. (21 0.8
wo.r) = (1= L)po. - B2 G a1
. ) . 0.6}
Another case ig,, = { at all n, for which (12) yields —
Cy, = 1/n. TheseC,, values are generated by \g/ 0.4t
1 ® 02+ W
Pu0.) = o [ P@.Na0. @) ]
191 0.0
More generally, closed forms f@ty can be written ifC,, 09 \/ ------------- e
is a finite polynomial inv. 0 10 20 30 40 50
Equations (6) and (20) converge rapidly because of the k

denominatorg2x)!. They have infinite radii of conver-
gence if thel,, satisfy the Holder inequalities. In some

FIG. 1. ¢(k,R) for d =2, {, = 1/2, and R = 0.01 under
the linear ansatz (solid line). The dashed linepig, R) if the

cases itis feasible to sum (6) and (20) numerically, perfornfinear-ansatz,, are reduced by:'/1°, and the dotted line is

the transforms, and explore the shape® @ndPy. Both
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FIG. 2. P(0,r) for the linear-ansatz case (solid lin@);,; =
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