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An isotropic passive scalar fieldT advected by a rapidly varying velocity field is studied. The tail o
the probability distributionPsu, rd for the differenceu in T across an inertial-range distancer is found
to be Gaussian. Scaling exponents of moments ofu increase as

p
n or faster at large ordern, if a mean

dissipation conditioned onu is a nondecreasing function ofjuj. The Psu, rd computed numerically
under the so-called linear ansatz is found to be realizable. Some classes of gentle modifications
linear ansatz are not realizable. [S0031-9007(97)03518-7]

PACS numbers: 47.27.Gs, 05.40.+ j, 47.10.+g
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In the past several years, a number of papers h
dealt with the theory of a statistically isotropic passi
scalar field advected by an incompressible velocity fie
that varies very rapidly in time (white velocity field) [1–
26]. Some exact statistical relations can be written for t
problem, which leads to the hope that, for the first tim
anomalous scaling exponents for the inertial range can
derived analytically in a turbulence problem.

Nevertheless, progress has been limited. Closed eq
tions exist for each order ofn-point moments of the scala
field [3], but above second order the number of ind
pendent variables is daunting. Perturbation analysis
yielded predictions of finite-order scaling exponents
two remote borders of the problem: infinite space dime
sionality [6,7]; and infinitely nonlocal interaction of spa
tial scales of the velocity and scalar fields, with diffusivi
exponentj ! 0 in (10) below [9,14]. Neither regime is
accessible to test by direct numerical simulation (dns).

A physically motivated “linear ansatz” for dissipatio
terms in the equation of motion [1,10] predicts all exp
nents for the full domain ofd andj. It has quantitative
support from dns [10,27] and from some experiments [2
The ansatz has not been derived analytically. The pre
tions in the limitj ! 0 are implausible and in conflict with
the perturbation results. It is unclear whether the ans
has any domain of exact validity.

In the present paper it is deduced that, contrary to co
mon expectation, the tail of the probability distributio
function (pdf) of spatial scalar-field differences is Gaus
ian in the inertial range, rather than exponential or stretc
exponential. This leads to a relation between the asym
totic behavior of scaling exponents and that of a con
tional mean of dissipation. The linear ansatz is found
yield a realizable (everywhere positive) pdf, while som
gentle deviations from it do not. A general apparatus
formulated for relating scaling exponents to the chang
pdf shape in the inertial range. It is used to obtain t
linear-ansatz pdf explicitly.

The passive scalar fieldTsx, td obeysµ
≠

≠t
1 usx, td ? ===

∂
T sx, td  k=2T sx, td , (1)
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where k is molecular diffusivity. A statistically steady
state may be maintained by adding an appropriate sou
term to (1).

The structure functions are defined bySqsrd 
kjusrdjql, whereusrd denotesTsx 1 r, td 2 T sx, td and
k l denotes ensemble average over homogeneous, isotr
statistics. Suppose that there is power-law inertial-ran
scaling of the structure functionsSqsrd,

Sqsrd ~ sryLdzq , (2)

where L ¿ r ¿ ,d, L is a large length scale, the or
der of initial or injection scales, and,d is a dissipation
scale. A realizable (everywhere positive) pdfPsu, rd for
usrd requires thatdzqydq be a nonincreasing function ofq
(Hölder inequalities). This does not exhaust the realizab
ity conditions onzq. Necessary and sufficient condition
for an everywhere non-negativePsu, rd, nonzero at an in-
finite set ofu values, are [28]

detfSi1jsrdgi,j0,1,...,n . 0 sn  0, 1, 2, . . .d , (3)

whereSi1j is set to zero for oddi 1 j. Psu, rd is unique
if, in addition,

P`
0 fS2nsrdg21y2n  ` (Carleman’s criterion

[28]). This is satisfied ifPsu, rd falls off exponentially or
faster asjuj ! `.

Direct calculation of the moments ofPsu, rd verifies
that ther dependence implied by (2) is

Psu, rd 
Z `

0
r

µ
a,

r
r 0

∂
P

µ
u

a
, r 0

∂
da
a

, (4)

wherer andr 0 are both in the scaling range andrsa, Rd
has moments

R`
0 a2nrsa, Rd da  Rz2n . Explicitly,

rsa, Rd 
2
p

Z `

0
cosskadfsk, Rd dk , (5)

fsk, Rd  1 1
X̀
n1

Rz2n s2k2dnys2nd! (6)

Equations (4)–(6) are easily generalized to the case wh
theS2nsrdyS2nsr 0d do not scale as powers ofryr 0.

The Hölder relations are equalities for normal scali
z2n  nz2, which yields rsa, Rd  dsa 2 Rz2y2d. The
© 1997 The American Physical Society
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smallest possible values of the higherz2n plausibly
are z2n  z2, which yield rsa, Rd  s1 2 Rz2 ddfa 2

s10dg 1 Rz2 dsa 2 1d. This corresponds to regions o
constantT interspersed with regions whereusrd is as large
as the macroscale differencesusLd; (1) cannot magnify
differences in the injectedT , only change their spatia
scale and relax them. Unless the scaling is norm
rsa, Rd increases in normalized widthayRz2y2 as R
decreases, so thatPsu, rd cannot have a similarity form
like r2bFsuyrbd.

In both casesz2n  nz2 and z2n  z2, the tail of
Psu, rd is Gaussian ifPsu, rd is Gaussian forr , L. In a
Gaussian pdf lnS2n , n ln n for large n, to within terms
of order n. If ln S2nsrd , n ln n for r , L, it follows
that, for all nz2 $ z2n $ z2, ln S2nsrd , n ln n for large
n throughout the scaling range. This is asymptotica
Gaussian behavior of the tail. An exponential or stretch
exponential pdf with tail lnPsu, rd ~ 2jujb , with b , 2,
instead requires lnS2n , s2nybd ln n asn ! `. Thus the
tail of Psu, rd cannot fall off more slowly than Gaussia
in the scaling range. Physically plausible deviations fro
exact scaling forr , L do not change the result. AsryL
decreases within the scaling range, the Gaussian tail
move to ever-larger values ofjujyurms. Exponential or
slower falloff can occur in the dissipation range ofr.

The same result holds for the pdf of velocity differenc
in the inertial range of Navier-Stokes turbulence. Oth
arguments for faster than exponential tails in the iner
range have recently been given by Ching and Procac
and by Noulez [29].

In interpreting this result, a distinction must be made b
tween the presence of a central cusp in the pdf, expres
the existence of regions in which there is almost no ex
tation, and the shape of the far tail. Confusion betwe
these two features can result in spurious fitting of a pdf
an exponential or stretched exponential. An example o
cusped pdf is that implied by the linear ansatz and sho
below in Fig. 2.

If there is a range ofr where the source term may b
neglected, the steady-state balance equation for the e
integer structure functionsS2nsrd is [1]

2
2

rd21

≠

≠r

µ
rd21hsrd

≠S2nsrd
≠r

∂
 kJ2nsrd , (7)

in the limit of rapidly changing (white) velocity field
The left side of (7) is derived perturbatively from th
u ? === term in (1) in the white limit. Hered is space
dimensionality,hsrd is the two-particle eddy-diffusivity
scalar exerted by the velocity field, and

J2nsrd  2nkfusrdg2n21Hfusrdgl , (8)

Hfusrdg  ks=2
x 1 =2

x0 dusrdjusrdl , (9)

wherek?jusrdl denotes ensemble average conditioned
a given valueusrd, andx0  x 1 r.
l,

y
d
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Power-law dependence ofS2srd in the inertial range
is assured from the exact, closed equation of motion
S2srd, provided thathsrd has the form

hsrd  hsLd sryLdj s0 , j , 2d , (10)

for L ¿ r ¿ ,d. The steady-state scaling exponent f
S2srd found from (7) isz2  2 2 j.

There is noa priori assurance of power-law inertial
range scaling ofS2nsrd for n . 1. If it exists, the balance
of advection andk terms in (7) implies that theJ2nsrd
have the form

J2nsrd  nC2nJ2srdS2nsrdyS2srd , (11)

where theC2n are dimensionless constants and

C2n 
z2nsz2n 1 d 2 z2d

ndz2
. (12)

The Hölder inequalitiesz2n # nz2 give

C2n # 1 1
n 2 1

d
z2 . (13)

Equality in (13) corresponds to normal scalingz2n  nz2.
The simplest candidate for an anomalous scaling so

tion to (7) is the linear ansatz [1],

Hsu, rd  J2srduyS2srd . (14)

It corresponds toC2n  1 for all n and yields

z2n 
1
2

p
4ndz2 1 sd 2 z2d2 2

1
2 sd 2 z2d . (15)

Linear relations like (14) were earlier proposed by Chi
and Pope [30,31].

Using MATHEMATICA (R) 3.0, I have verified numeri-
cally, for a number of values ofd and z2, that (15) sat-
isfies (3) up to2n  100, even in the extreme case wher
Psu, r 0d in (4) is taken as ad function. Thez2n corre-
sponding toC2n  1 1 bsn 2 1d appear to satisfy (3) for
0 , b # z2yd. This case [23] yieldsz2n ~ n asn ! `;
b  z2yd is normal scaling. The perturbation analys
[6,7,9,14] givenz2 2 z2n that are quadratic inn for mod-
eraten. They also satisfy (3); the full set ofz2n, and hence
Psu, rd, are not predicted.

A conditional mean related to dissipation may b
defined by

Ksu, rd  kj===xu 1 ===x0 uj2jul . (16)

If r ¿ ,d, the===x===x0 cross term in (16) is negligible, and
Ksu, rd ø kj===xuj2 1 j===x0 uj2jul, the conditional mean of
the average of the dissipation at the pointsx and x0.
Hsu, rd, Ksu, rd, and Psu, rd are related by an identity
that follows from homogeneity alone [31,32]:

Hsu, rdPsu, rd ;
≠

≠u
fKsu, rdPsu, rdg . (17)

If the tail of Psu, rd is Gaussian, andKsu, rd is no
stronger than a power ofjuj, the leading term on the
4923
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right of (17) at largejuj is ~ 2uKsu, rdPsu, rd, whence
Hsu, rdyu ~ 2Ksu, rd.

Monotonic growth ofKsu, rd with juj at inertial-range
r is a very weak, qualitative form of Kolmogorov refine
similarity hypothesis [33,34]. If it holds, then the linea
ansatz forHsu, rd and associatedz2n ~ n1y2 behavior at
largen represent a lower bound for the asymptotic grow
of z2n. This bound is achieved ifKsu, rd tends to a
constant asjuj ! `. Sublinear growth ofHsu, rd at large
juj would makeKsu, rd a decreasing function ofjuj and
would yield slower growth ofz2n than n1y2 at largen.
Yakhot [13] and Chertkov [17] predictz2n ! const as
n ! `, which can be shown to implyKsu, rd ~ juj22 as
juj ! ` [see (19) and (22)].

The analytical relations betweenHsu, rd, Psu, rd, and
thez2n in the inertial range may be expressed in terms o
“co-pdf” PH su, rd with moments

R`
2` u2nPH su, rd du 

C2nS2nsrd sC0 ; 1d. Then by (8) and (9),

Hsu, rd
u


J2srd
S2srd

PHsu, rd
Psu, rd

, (18)

and
R`

2` PHsu, rd du  1. If (3) is satisfied withS2nsrd
replaced bySH

2nsrd  C2nS2nsrd, thenPH andHsu, rdyu

are everywhere positive. By (17),

PHsu, rd ;
1
u

S2srd
J2srd

≠

≠u
fKsu, rdPsu, rdg . (19)

PHsu, rd is related to functionsrHsa, rd and fHsk, rd
by equations identical to (4)–(6) except that a factorC2n

appears infHsk, rd,

fHsk, Rd  1 1
X̀
n1

Rz2n C2ns2k2dnys2nd! . (20)

PHsu, rd  Psu, rd under the linear ansatz.PHsu, rd
can be found analytically in some other cases that
formal solutions of (12). One isC2n  1 1 bsn 2 1d.
The associatedPH is

PHsu, rd 

µ
1 2

3b

2

∂
Psu, rd 2

bu

2
≠Psu, rd

≠u
. (21)

Another case isz2n  z2 at all n, for which (12) yields
C2n  1yn. TheseC2n values are generated by

PHsu, rd 
1

juj

Z `

juj
Psu0, rd du0. (22)

More generally, closed forms forPH can be written ifC2n

is a finite polynomial inn.
Equations (6) and (20) converge rapidly because of

denominatorss2nd! . They have infinite radii of conver-
gence if thez2n satisfy the Hölder inequalities. In som
cases it is feasible to sum (6) and (20) numerically, perfo
the transforms, and explore the shapes ofP andPH . Both
4924
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fsk, rd andfHsk, rd can be computed for large values o
k, far out in the tails, by the use ofMATHEMATICA (R) to
sum hundreds of terms at precisions of the order of a h
dred decimal digits.

Figure 1 showsfsk, rd with R  1y100 andz2n given
by the linear ansatz atd  2, z2  1y2. Figure 2 shows
rsa, rd andPsu, rd as constructed from directly calculate
fsk, rd values for0 # k # 200 and an extrapolation for
k . 200. The local exponent atk  200 is 21.367 and
is slowly decreasing.Psu, r 0d is taken as a Gaussian.

One can argue that, if the linear ansatz is self-consiste
the branch point in (15) at

zqc
 2sd 2 z2dy2, qc  2sd 2 z2d2y2dz2 (23)

should mark the limit of applicability of (15), andqc should
represent the most-negative moment order that exists [3
Psjuj, r 0d is here taken as ad function so that its moments
of all negative orders exist. I therefore conjecture that t
ansatz givesfsk, rd ~ k2jqcj sk ! `d so thatrsa, rd ~

ajqcj21 at the origin. ThePsu, rd given by (4) then
is ~ const2 jujjqcj21 at the origin if 3 . jqcj . 1 and
~ jujjqc j21 (infinite cusp) ifjqcj , 1. The crossover is at
z

C
2  s2 2

p
3 dd. The data shown in Fig. 2 appear to b

consistent with exponent21.125 at k  `, together withR`

0 fsk, rd dk  0, in accord with this conjecture.
The primary fact here is that the linear ansatz appe

to yield a rsa, rd that is positive everywhere, ensurin
positive Psu, rd also. The positivity of rsa, rd is a
stronger result than (3). It implies positivePsu, rd even
in the unphysical case wherePsu, r 0d is a d function. In
Fig. 2 there is an absolute cutoff ofrsad at finitea. This
confirms thatPsu, rd is Gaussian-like at largejuj, despite
its appearance, ifPsu, Ld is Gaussian.

Figure 1, dashed curve, is thefsk, rd that results from
a gentle modification of these linear-ansatz exponen
z2n  z

L
2nn21y10, wherez

L
2n satisfies (15). This leavesz2

unchanged and makes thez2n go asn2y5 asn ! `. The

FIG. 1. fsk, Rd for d  2, z2  1y2, and R  0.01 under
the linear ansatz (solid line). The dashed line isfsk, Rd if the
linear-ansatzz2n are reduced byn1y10, and the dotted line is
fHsk, Rd for that case.
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FIG. 2. Psu, rd for the linear-ansatz case (solid line);urms 
1021y2. The dashed curve is a normalized Gaussian. The in
is rsa, Rd for the linear-ansatz case.

large-k (k , 200) tail of f appears to go approximately a
k20.18; (3) is satisfied for2n # 100. The implied behavior
of P at small u is u20.18. The result forfHsk, rd is
Fig. 1, dotted curve. Its large-k behavior is qualitatively
different from that offsk, rd; fH continues to grow more
negative atk  200. Its tail is very different from that
of f, which suggests bizarre behavior ofHsu, rd at small
u. The effective exponentsz H

2n  z2n 1 C2n ln R for this
case differ little from thez2n. If they are tried as exponents
z2n, they satisfy the Hölder inequalities, but they viola
(3) at 2n  56 if Psu, r 0d in (4) is taken as ad function.
This illustrates that mild and innocent-looking changes
moments can destroy realizability.

Numerical investigation at some other values ofz2 and
R are consistent with the conjecture that (23) determin
the behavior ofPsu, rd at u  0 under (15). In particular,
for d  2, z2  1, R  0.01, the large-k exponent of
fsk, rd clearly lies between0 and21 (z C

q  0.536).
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