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Low-Dimensional Approach to Nonlinear Overstability
in the Taylor-Couette Flow of Purely Elastic Fluids
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The finite amplitude purely elastic overstability, for axisymmetric Taylor-vortex flow of highly elastic
fluids in the narrow-gap limit, is accurately predicted using the Galerkin projection method. A judicious
mode selection is carried out to include the dominant normal stress terms. The resulting twenty-mode
dynamical system is capable of capturing the nonlinear behavior observed in the experiment of Muller
et al. under conditions of negligible inertia. The model predicts, as experiment suggests, the onset of
overstability, the growth of oscillation amplitude of flow, and the emergence of higher harmonics in the
power spectrum as fluid elasticity increases beyond a critical level. [S0031-9007(97)03432-7]

PACS numbers: 47.20.Ky, 47.32.—y

Recent linear stability analysis and experiment indicatdor the TC flow of an upper-convected Maxwell (UCM)

a dramatic departure in the stability and bifurcationfluid. These authors, however, reported encountering
pictures for the Taylor-Couette (TC) flow of viscoelastic numerical instabilities as De slightly exceeded, Diaus,
fluids, in comparison to Newtonian fluids. While the lossthe range of De values for which the solution was
of stability of the circular Couette flow of a Newtonian obtainable was extremely narrow. More recent numerical
fluid is inertia driven, that of a viscoelastic fluid can be calculations were also carried out by Avgoustial. [8]

of purely elastic origin. Viscoelastic fluids tend to exhibit using a pseudospectral method. However, there has been
oscillatory Taylor vortex flow (TVF) when the elasticity so far no successful direct comparison between theory and
level exceeds a critical value [1]. experiment on finite-amplitude purely elastic TVF.

The experiment of Mulleet al. [2] demonstrated, in the It is by now well established that low-order dynamical
case of the TC flow of the so-called Boger fluids [3], thesystems constitute an alternative to conventional numeri-
existence of a purely elastic time-periodic instability at acal methods as one strives to understand the nonlinear
critical rotation rate. The experiment was conducted usindpehavior of flow [9—14]. Various problems in fluid dy-
laser Doppler velocimetry (LDV), measuring the axial namics have been treated using low-dimensional systems
velocity component of a polyisobutylene-based fluid be-of equations and the theory of nonlinear dynamics [13].
tween two concentric cylinders; with the outer cylinder These methods are based on the expansion of the flow
being at rest and the inner cylinder rotating. The reield in terms of a complete set of orthogonal functions,
sults showed an oscillatory flow at a vanishingly smallFourier series, or other standard basis functions, and the
Reynolds numbefRe < 7 X 1073). The flow appeared Galerkin projection technique, which decomposes the ini-
to undergo a transition from the purely azimuthal Couettdial set of partial differential equations, governing the
flow to time-periodic flow as the Deborah number, Defluid motion, into an infinite set of ordinary differential
(which is a measure of the relaxation time of the fluidequations governing the time-dependent expansion coef-
relative to a typical hydrodynamic time scale), exceededicients. The purpose of this Letter is to show that the
a critical value, Dg. The LDV measurements showed observed nonlinear dynamics in purely elastic TVF can be
that the oscillatory behavior was not localized, but sprea@ffectively described by low-order dynamical systems [9—
throughout the flow. As De was increased beyond,De 14]. Attention is focused on the TC flow of the Oldroyd-
the amplitude of oscillation increased monotonically. TheB or Boger type fluid [3] under conditions of negligible
corresponding power density spectra showed peaks thatertia, as in the experiment of Mullet al. [2]. A poly-
were instrumentally sharp at the fundamental frequencyacrylamide solution in a maltose syrup and water mixture
the growth of harmonics as De increased, and eventuypically constitutes a Boger fluid [15]. The ultimate aim
ally the emergence of subharmonics as De was further imef the model is to recover quantitatively the experimental
creased. However, more recent experiments by Baumenmieasurements, and predict what may happen to the flow
and Muller [4] seem to suggest that the emergence of sutas De is raised beyond the experimental range.
harmonics (or period doubling) may not occur. The interplay between inertia and elasticity for finite-

The existence of a Hopf bifurcation at Be De. was amplitude TVF was previously examined using a similar
established from linear stability analysis of inertialessbut severely truncated Galerkin approximation [16]. To
flow in the narrow-gap [5] and wide-gap [6] limits. The make the analysis more tractable, adherence was assumed
stability of the Hopf bifurcation was later confirmed in the azimuthal direction while slip was assumed along
through the finite-element solution of Northey al.[7]  the cylinder axis. In the present model, a judicious mode
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selection is carried out in an effort to identify the most The nonlinear dynamical system is derived by expand-
influential higher-order normal stress terms (leading to théng the flow field (velocity, pressure, and stress) into suit-
so-called Weissenberg rod-climbing phenomenon), whiclably chosen Fourier modes along the axial direction, and
were neglected previously, using the more realistic rigidsymmetric and antisymmetric Chandrasekhar functions
rigid boundary conditions. [20,21] in the radial direction. The time-dependent ex-
Consider an incompressible viscoelastic fluid of densitypansion coefficients are evaluated by applying the Galerkin
p, relaxation time A, and viscosityn. The fluid is  projection of the various modes onto the conservation and
assumed confined between two infinite and concentriconstitutive equations, and adopting a suitable truncation
cylinders of inner and outer radii; andR,, respectively. to close the hierarchy of the resulting twenty-mode nonlin-
The inner cylinder is taken to be rotating at an angularar dynamical system. The most influential normal stress
velocity ), while the outer cylinder is at rest. Inertia is modes are carefully selected to ensure that the relevant
neglected. This assumption is usually valid for polymericdynamics is captured by the approximate model and solu-
flows as viscous effects tend to be dominant. In additiortion. This is first done by referring to the results from lin-
to the mass (continuity) and momentum conservatiorear stability analysis. The exact solution to the linearized
equations, a suitable constitutive equation must be used.eigenvalue problem is obtained using the direct method,
Although the stability picture is expected to be signifi- and is compared to the approximate solution based on the
cantly influenced by the constitutive model adopted [1],Fourier/Chandrasekhar expansion for the eigenvalue prob-
the present formulation is restricted to the so-called Bogelem as in [5]. Since inertia is absent, the linearized equa-
fluids that obey the Oldroy@ equation [3], similar to the tions reduce to a simple constant coefficient equation that
fluid used in the experiment of Mullegt al. [2]. Some s solved analytically. Comparison between the approxi-
of the properties of Boger fluids are summarized by Larimate and exact solutions leads to good agreement, espe-
sonet al. [5]. The test fluid used in the experiment is a cially in the lower wave number range. The more severe
dilute solution of a flexible high-molecular-weight poly- truncation level used in our previous work [16] led to a six-
isobutylene in a viscous low-molecular-weight solventdimensional system that was derived by neglecting normal
(polybutene), and is well described by the three-parametestress terms that tend to become significant for highly elas-
Oldroyd-B equation. This constitutive model predicts notic flows. The present model takes into account more ef-
shear thinning, a first normal stress coefficient that is confectively the influence of normal stresses (which lead to
stant, and a second normal stress difference that is zerthe Weissenberg rod-climbing phenomenon), and is thus
which is consistent with the rheological properties of di-adequate for the flow of a highly elastic fluid (with neg-
lute solutions [3]. In this case, the excess stress tensdligible inertia), thus allowing direct comparison with the
o, consists of the sum of a solvent and polymeric soluteexperiment of Mulleret al. [2].
contributions:o = 7 — 71,7y, wherey = Vu + (Vu)' is Not all experimental flow parameters needed for theory
the strain-rate tenson; is the solvent viscosityn is the  were explicitly reported in Ref. [2]. The test fluid used in
velocity, andr is the elastic part ofr. For a fluid obey- the experiment has a (constant) viscosity= 162 Pas,

ing the OldroydB equation, one has [17] and consists of 1000 ppm of a high molecular weight
or polyisobutylene, dissolved in a viscous, low molecular
A[W +u-Vr—(Vu) -7 — 7" Vu} + 7 weight polybutene of viscosityy, = 128 Pas, so that the

solvent-to-polymer viscosity ratio Re¥ 3.76. The fluid
= —mn,7. (1) relaxation time\ varies depending on the rheological tech-
nique used to measure it. Steady shear flow data give

\r/gI]:;ZtiZ ';1 l[ismteheofv':ﬁgozg?/ut?;ntheSii(():lgtﬁ‘]ear?ig i'; ;E:ent)‘ = 3.3 s, while transient relaxation experiments lead to
: 10.9 s [2,4]. The inner and outer cylinder radii were 8

nonlinearities are manifested through the upper-convecte d 8.5 om, respectively, so that— 0.0625. Although

terms in Eq. (1). the inner cylinder angular velocitfy was not explicitly

cageor\;\/sr:((jeer}]rt:]r;er;lgivvus;?;h?s?/aerrrogz)%zptglrgrl\t’eI.%hiltr;tglhee given in the experiment, its value can still be inferred
0 y : from the values of the experimental Deborah number,

scales for length, time, velocity, and stress are choseBe which was introduced by Mulleet al. [2] as De, =
M . -

as for a Newtonian flow [18,19]. One obvious ch0|ce.20)\(1 + e)?/[(1 + &) — 1]. Note that Dgy, . — De.

Itsaktgr?t tgf gzz I;enlgth_s%gle,_I\_Ar/]rélcgc,:;;?nth?()]?resenn;e(ijasse R appears that there was only one fluid used throughout
o i aling Tor7gg NEEAS, 10 experiment, and Gewas probably varied by vary-
however, some careful consideration as it is difficult toing only the inner cylinder speed). Hence, from the

gstimate its_magn_itude [1]. In thi_s Case, one recovers th?ange of Dg; values reported, the corresponding value of
important dimensionless groups in the problem, namely, y

. . ’the inner cylinder speed can be given®y= Dey,/77.06
the Deborah number, the solvent-to-polymer viscosity, - \"_"y 4's Myller et al. [2] reported that the highest
ratio Rv, and the gap-to-radius ratio

Reynolds number, Re, reached in the experiment was of
De = ARiQ Ry — s R @ the order7 X 1073, Indeed, if one takes the same def-
d ’ Np R, inition for the Reynolds number as in Ref. [2], namely,
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Re= pQR;d/n, and considers the value & corre- cillating around the origin (Couette flow). At De 43.57,
sponding to the highest Deborah number repofiel, =  the motion remains periodic around the origin, with an in-
54.5), one finds that Re= 2.86 X 103 (assuming the crease in amplitude to 0.052 ¢s1 There is an increase
densityp =~ 1 g/cn?). The experimental wave number in the fundamental frequency to 0.0298 Hz and the emer-
k (in units of d), at which overstability is first observed, gence of four significant even and odd harmonics. This
was also not reported by Mullest al. [2]; its measure- trend persists as De is further increased with the eventual
ment may have been difficult under transient conditionsemergence of additional harmonics.
Its exact value, however, is not crucial in this case since Figure 1 shows the Hopf bifurcation for the square of
the critical Deborah number for the onset of overstabilitythe velocity amplitude based on the twenty-mode model,
does not depend strongly on the wave number, over a widend the measurements from [2]. Both experiment and
range of practical valueg: € [4,8] for Rv = 3.76 as lin-  theory suggest that the amplitude of oscillation grows like
ear analysis suggests [5]; this is reflected by the flatteningDe — De.)!/2 in agreement with the prediction based
of the corresponding neutral stability curve in ttize, k)  on asymptotic analysis in the limit De> De.. Figure 2
plane around the critical value Pe The wave number displays the dependence of the dominant frequency and its
will be fixed to k = 4.85 for all subsequent calculations. harmonics on the Deborah number. The frequency tends to
This is the minimum value of the wave number that cor-increase with De almost linearly. Unlike the amplitude, the
responds to De= 32 as predicted by the linear stability frequency exhibits a jump at the critical Deborah number.
analysis based of the twenty-mode model. This value ighis means that any initial weak velocity amplitude at the
also close to wave numbers reported in other experimentanset of oscillatory TVF has a dominant frequency that
on TC flow of viscoelastic fluids [4]. Thus, as in the ex- is relatively easy to detect. The agreement between the
periment of Mulleret al. [2], only the Deborah number will computed and measured frequencies is obvious from the
be varied (by varyind?) in the following calculations and figure. The apparent growing disagreement for the higher
results. harmonics is to be expected. Any initial discrepancy at
Consider the flow as De is increased from zero, thathe dominant frequency level is simply amplified as it is
is, from the Newtonian level. Linear stability analysis multiplied by 2 for the second harmonics, by 3 for the third
indicates that the Couette flow is unconditionally stable forharmonics, and so on.
De < De. = 32. In the absence of inertia, an exchange A closer quantitative agreement between theory and ex-
of stability takes place between the circular Couette flonperiment can hardly be envisaged given, on the one hand,
and oscillatory TVF at the critical Deborah number, sincethe uncertainty surrounding experimental conditions,
no steady TVF can set in [16]. This is in contrast to aand, on the other, the lack of a universal and accurate
Newtonian fluid in which case only steady TVF sets inconstitutive model for viscoelastic fluids. The sources of
at the critical Reynolds number. The main variable ofdiscrepancy between theory and experiment are related to
interest is the axial velocity componemt,(r, z, t), which  limitations for both Newtonian and viscoelastic flow
is obtained from the solution of the twenty-mode nonlinearformulations. The lack of a theory capable of predicting
dynamical system. Here andz are, respectively, the the value of the axial wave numbérconstitutes a major
radial and axial coordinates. Inthe experiment[2]was  difficulty. The prediction of the value of remains an
measured at the point located midway through the gap,
and, probably, where it is maximum over a wavelength
in the axial direction. Thus, the amplitude af(r = 0.010
(R; + R,)/2,z = d/2k,t) will be monitored next. I )
The experimental critical value of the Deborah number, .|
at which oscillatory motion was first detected, was reported
to be equal to 32.3, and happens to be slightly larger than

the theoretical value Qe= 32 predicted by the present 0.006 -
linear stability analysis. As De is increased beyond the [u,]
critical value, calculations show that the amplitude of oscil- 0.004 u

lation increases from zero, confirming the existence and the i »

stability of the Hopf bifurcation, in agreement with experi-
ment [2]. Calculations are carried out for the same range
of Deborah numbers as in the experim&t:< De < 50.
At De = 32.5, the velocity signature and corresponding o a0
Fourier spectrum display periodic motion after the purely

circular (Couette) flow becomes unstable. The amplitude _ _ ) _
of oscillation remains relatively small (0.008 ¢g). The FIG. 1. Bifurcation diagram and comparison between theory

- . dashed line) and the experiment of Mulketral. [2] (squares).
power spectrum indicates the presence of a dominant fr(%’he figure shows the square of the axial velocity component

quency of 0.02 Hz and a weak second harmonics. Thigmplitude, at = (R, + R,)/2 andz = d/2k, as a function of
periodic behavior persists as De increases, with the flow oghe Deborah number.
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025 - , - . . - - lation [16], are properly accounted for. Particularly, the
addition of the azimuthal normal stress component leads
| to additional coupling with higher-order eigenmodes that
o are ofO(eDe). The resulting nonlinear dynamical system
o involves only twenty degrees of freedom. The sequence
v 1 of flows predicted by the present model is comparable to
e that reported by Mulleet al. [2]. The model predicts the
P 1 sequence of periodic behaviors observed as the Deborah
AT number is increased: (1) loss of stability of the base flow
oost | to an oscillatory flow at a critical Deborah number (De
et 32 as predicted by the model vs 32.3 from experiment),
(2) growth of amplitude of the velocity signature like
20 30 40 50 60 (De — De,)!/2, in agreement with asymptotic analysis,
De and (3) the emergence of higher harmonics in the Fourier
spectrum as De is further increased.

FIG. 2. Frequency of oscillation and comparison between . .
theory (continuous lines) and the experiment of Mukral. The author would like to thank Dr. L. A. Utracki (NRC)

(symbols) [2]. The figure shows the dominant frequency andor his helpful comments on the manuscript.
harmonics of the axial velocity component as functions of the
Deborah number.
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