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The finite amplitude purely elastic overstability, for axisymmetric Taylor-vortex flow of highly elastic
fluids in the narrow-gap limit, is accurately predicted using the Galerkin projection method. A judicious
mode selection is carried out to include the dominant normal stress terms. The resulting twenty-mode
dynamical system is capable of capturing the nonlinear behavior observed in the experiment of Muller
et al. under conditions of negligible inertia. The model predicts, as experiment suggests, the onset of
overstability, the growth of oscillation amplitude of flow, and the emergence of higher harmonics in the
power spectrum as fluid elasticity increases beyond a critical level. [S0031-9007(97)03432-7]

PACS numbers: 47.20.Ky, 47.32.–y
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Recent linear stability analysis and experiment indic
a dramatic departure in the stability and bifurcati
pictures for the Taylor-Couette (TC) flow of viscoelas
fluids, in comparison to Newtonian fluids. While the lo
of stability of the circular Couette flow of a Newtonia
fluid is inertia driven, that of a viscoelastic fluid can b
of purely elastic origin. Viscoelastic fluids tend to exhib
oscillatory Taylor vortex flow (TVF) when the elasticit
level exceeds a critical value [1].

The experiment of Mulleret al. [2] demonstrated, in the
case of the TC flow of the so-called Boger fluids [3], t
existence of a purely elastic time-periodic instability a
critical rotation rate. The experiment was conducted us
laser Doppler velocimetry (LDV), measuring the axi
velocity component of a polyisobutylene-based fluid b
tween two concentric cylinders; with the outer cylind
being at rest and the inner cylinder rotating. The
sults showed an oscillatory flow at a vanishingly sm
Reynolds numbersRe , 7 3 1023d. The flow appeared
to undergo a transition from the purely azimuthal Coue
flow to time-periodic flow as the Deborah number, D
(which is a measure of the relaxation time of the flu
relative to a typical hydrodynamic time scale), exceed
a critical value, Dec. The LDV measurements showe
that the oscillatory behavior was not localized, but spre
throughout the flow. As De was increased beyond Dc,
the amplitude of oscillation increased monotonically. T
corresponding power density spectra showed peaks
were instrumentally sharp at the fundamental frequen
the growth of harmonics as De increased, and eve
ally the emergence of subharmonics as De was furthe
creased. However, more recent experiments by Baum
and Muller [4] seem to suggest that the emergence of s
harmonics (or period doubling) may not occur.

The existence of a Hopf bifurcation at De Dec was
established from linear stability analysis of inertiale
flow in the narrow-gap [5] and wide-gap [6] limits. Th
stability of the Hopf bifurcation was later confirme
through the finite-element solution of Northeyet al. [7]
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for the TC flow of an upper-convected Maxwell (UCM
fluid. These authors, however, reported encounter
numerical instabilities as De slightly exceeded Dec; thus,
the range of De values for which the solution wa
obtainable was extremely narrow. More recent numeric
calculations were also carried out by Avgoustiet al. [8]
using a pseudospectral method. However, there has b
so far no successful direct comparison between theory
experiment on finite-amplitude purely elastic TVF.

It is by now well established that low-order dynamica
systems constitute an alternative to conventional nume
cal methods as one strives to understand the nonlin
behavior of flow [9–14]. Various problems in fluid dy
namics have been treated using low-dimensional syste
of equations and the theory of nonlinear dynamics [1
These methods are based on the expansion of the fl
field in terms of a complete set of orthogonal function
Fourier series, or other standard basis functions, and
Galerkin projection technique, which decomposes the i
tial set of partial differential equations, governing th
fluid motion, into an infinite set of ordinary differentia
equations governing the time-dependent expansion co
ficients. The purpose of this Letter is to show that th
observed nonlinear dynamics in purely elastic TVF can
effectively described by low-order dynamical systems [9
14]. Attention is focused on the TC flow of the Oldroyd
B or Boger type fluid [3] under conditions of negligible
inertia, as in the experiment of Mulleret al. [2]. A poly-
acrylamide solution in a maltose syrup and water mixtu
typically constitutes a Boger fluid [15]. The ultimate aim
of the model is to recover quantitatively the experimen
measurements, and predict what may happen to the fl
as De is raised beyond the experimental range.

The interplay between inertia and elasticity for finite
amplitude TVF was previously examined using a simil
but severely truncated Galerkin approximation [16]. T
make the analysis more tractable, adherence was assu
in the azimuthal direction while slip was assumed alo
the cylinder axis. In the present model, a judicious mo
© 1997 The American Physical Society
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selection is carried out in an effort to identify the mo
influential higher-order normal stress terms (leading to
so-called Weissenberg rod-climbing phenomenon), wh
were neglected previously, using the more realistic rig
rigid boundary conditions.

Consider an incompressible viscoelastic fluid of dens
r, relaxation time l, and viscosity h. The fluid is
assumed confined between two infinite and concen
cylinders of inner and outer radiiRi andRo, respectively.
The inner cylinder is taken to be rotating at an angu
velocity V, while the outer cylinder is at rest. Inertia
neglected. This assumption is usually valid for polyme
flows as viscous effects tend to be dominant. In addit
to the mass (continuity) and momentum conservat
equations, a suitable constitutive equation must be use

Although the stability picture is expected to be signi
cantly influenced by the constitutive model adopted [
the present formulation is restricted to the so-called Bo
fluids that obey the Oldroyd-B equation [3], similar to the
fluid used in the experiment of Mulleret al. [2]. Some
of the properties of Boger fluids are summarized by L
son et al. [5]. The test fluid used in the experiment is
dilute solution of a flexible high-molecular-weight poly
isobutylene in a viscous low-molecular-weight solve
(polybutene), and is well described by the three-param
Oldroyd-B equation. This constitutive model predicts n
shear thinning, a first normal stress coefficient that is c
stant, and a second normal stress difference that is z
which is consistent with the rheological properties of
lute solutions [3]. In this case, the excess stress ten
s, consists of the sum of a solvent and polymeric sol
contributions:s  t 2 hs Ùg, where Ùg ; =u 1 s=udt is
the strain-rate tensor,hs is the solvent viscosity,u is the
velocity, andt is the elastic part ofs. For a fluid obey-
ing the Oldroyd-B equation, one has [17]

l

∑
≠t

≠t
1 u ? =t 2 s=udt ? t 2 t ? =u

∏
1 t

 2hp Ùg , (1)

where hp is the viscosity of the solute andl is the
relaxation time of the solution. Since inertia is abse
nonlinearities are manifested through the upper-conve
terms in Eq. (1).

Consider the flow in the narrow-gap limit, i.e., in th
case when the radiusRiyRo is very close to one. Suitabl
scales for length, time, velocity, and stress are cho
as for a Newtonian flow [18,19]. One obvious choi
is that of the length scale, which, in the present cas
taken to bed ; Ro 2 Ri. The scaling fortuu needs,
however, some careful consideration as it is difficult
estimate its magnitude [1]. In this case, one recovers
important dimensionless groups in the problem, nam
the Deborah number, the solvent-to-polymer viscos
ratio Rv, and the gap-to-radius ratió,

De 
lRiV

d
, Rv 

hs

hp
, ´ 

d
Ri
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The nonlinear dynamical system is derived by expan
ing the flow field (velocity, pressure, and stress) into sui
ably chosen Fourier modes along the axial direction, an
symmetric and antisymmetric Chandrasekhar functio
[20,21] in the radial direction. The time-dependent ex
pansion coefficients are evaluated by applying the Galerk
projection of the various modes onto the conservation a
constitutive equations, and adopting a suitable truncati
to close the hierarchy of the resulting twenty-mode nonlin
ear dynamical system. The most influential normal stre
modes are carefully selected to ensure that the relev
dynamics is captured by the approximate model and so
tion. This is first done by referring to the results from lin
ear stability analysis. The exact solution to the linearize
eigenvalue problem is obtained using the direct metho
and is compared to the approximate solution based on
Fourier/Chandrasekhar expansion for the eigenvalue pro
lem as in [5]. Since inertia is absent, the linearized equ
tions reduce to a simple constant coefficient equation th
is solved analytically. Comparison between the approx
mate and exact solutions leads to good agreement, es
cially in the lower wave number range. The more seve
truncation level used in our previous work [16] led to a six
dimensional system that was derived by neglecting norm
stress terms that tend to become significant for highly ela
tic flows. The present model takes into account more e
fectively the influence of normal stresses (which lead
the Weissenberg rod-climbing phenomenon), and is th
adequate for the flow of a highly elastic fluid (with neg
ligible inertia), thus allowing direct comparison with the
experiment of Mulleret al. [2].

Not all experimental flow parameters needed for theo
were explicitly reported in Ref. [2]. The test fluid used in
the experiment has a (constant) viscosityh  162 Pa s,
and consists of 1000 ppm of a high molecular weigh
polyisobutylene, dissolved in a viscous, low molecula
weight polybutene of viscosityhs  128 Pa s, so that the
solvent-to-polymer viscosity ratio Rv 3.76. The fluid
relaxation timel varies depending on the rheological tech
nique used to measure it. Steady shear flow data gi
l  3.3 s, while transient relaxation experiments lead t
10.9 s [2,4]. The inner and outer cylinder radii were
and 8.5 cm, respectively, so that´  0.0625. Although
the inner cylinder angular velocityV was not explicitly
given in the experiment, its value can still be inferre
from the values of the experimental Deborah numbe
DeM , which was introduced by Mulleret al. [2] as DeM 
2Vls1 1 ´d2yfs1 1 ´d2 2 1g. Note that DeM´!0  De.
It appears that there was only one fluid used througho
the experiment, and DeM was probably varied by vary-
ing only the inner cylinder speed,V. Hence, from the
range of DeM values reported, the corresponding value o
the inner cylinder speed can be given byV  DeMy77.06
for l  4.4 s. Muller et al. [2] reported that the highest
Reynolds number, Re, reached in the experiment was
the order7 3 1023. Indeed, if one takes the same def
inition for the Reynolds number as in Ref. [2], namely
4919
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Re  rVRidyh, and considers the value ofV corre-
sponding to the highest Deborah number reportedsDeM 
54.5d, one finds that Re 2.86 3 1023 (assuming the
densityr ø 1 gycm3). The experimental wave numbe
k (in units of d), at which overstability is first observed
was also not reported by Mulleret al. [2]; its measure-
ment may have been difficult under transient conditio
Its exact value, however, is not crucial in this case sin
the critical Deborah number for the onset of overstabil
does not depend strongly on the wave number, over a w
range of practical values:k [ f4, 8g for Rv  3.76 as lin-
ear analysis suggests [5]; this is reflected by the flatten
of the corresponding neutral stability curve in thesDe, kd
plane around the critical value Dec. The wave number
will be fixed to k  4.85 for all subsequent calculations
This is the minimum value of the wave number that co
responds to Dec  32 as predicted by the linear stabilit
analysis based of the twenty-mode model. This value
also close to wave numbers reported in other experime
on TC flow of viscoelastic fluids [4]. Thus, as in the e
periment of Mulleret al. [2], only the Deborah number will
be varied (by varyingV) in the following calculations and
results.

Consider the flow as De is increased from zero, t
is, from the Newtonian level. Linear stability analys
indicates that the Couette flow is unconditionally stable
De , Dec  32. In the absence of inertia, an exchan
of stability takes place between the circular Couette fl
and oscillatory TVF at the critical Deborah number, sin
no steady TVF can set in [16]. This is in contrast to
Newtonian fluid in which case only steady TVF sets
at the critical Reynolds number. The main variable
interest is the axial velocity component,uzsr , z, td, which
is obtained from the solution of the twenty-mode nonline
dynamical system. Herer and z are, respectively, the
radial and axial coordinates. In the experiment [2],uz was
measured at the point located midway through the g
and, probably, where it is maximum over a waveleng
in the axial direction. Thus, the amplitude ofuzsr 
sRi 1 Rody2, z  dy2k, td will be monitored next.

The experimental critical value of the Deborah numb
at which oscillatory motion was first detected, was repor
to be equal to 32.3, and happens to be slightly larger t
the theoretical value Dec  32 predicted by the presen
linear stability analysis. As De is increased beyond
critical value, calculations show that the amplitude of osc
lation increases from zero, confirming the existence and
stability of the Hopf bifurcation, in agreement with exper
ment [2]. Calculations are carried out for the same ran
of Deborah numbers as in the experiment:32 , De , 50.
At De  32.5, the velocity signature and correspondin
Fourier spectrum display periodic motion after the pure
circular (Couette) flow becomes unstable. The amplitu
of oscillation remains relatively small (0.008 cmys). The
power spectrum indicates the presence of a dominant
quency of 0.02 Hz and a weak second harmonics. T
periodic behavior persists as De increases, with the flow
4920
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cillating around the origin (Couette flow). At De 43.57,
the motion remains periodic around the origin, with an i
crease in amplitude to 0.052 cmys. There is an increase
in the fundamental frequency to 0.0298 Hz and the em
gence of four significant even and odd harmonics. T
trend persists as De is further increased with the even
emergence of additional harmonics.

Figure 1 shows the Hopf bifurcation for the square
the velocity amplitude based on the twenty-mode mod
and the measurements from [2]. Both experiment a
theory suggest that the amplitude of oscillation grows li
sDe 2 Decd1y2 in agreement with the prediction base
on asymptotic analysis in the limit De! Dec. Figure 2
displays the dependence of the dominant frequency and
harmonics on the Deborah number. The frequency tend
increase with De almost linearly. Unlike the amplitude, t
frequency exhibits a jump at the critical Deborah numb
This means that any initial weak velocity amplitude at t
onset of oscillatory TVF has a dominant frequency th
is relatively easy to detect. The agreement between
computed and measured frequencies is obvious from
figure. The apparent growing disagreement for the hig
harmonics is to be expected. Any initial discrepancy
the dominant frequency level is simply amplified as it
multiplied by 2 for the second harmonics, by 3 for the thi
harmonics, and so on.

A closer quantitative agreement between theory and
periment can hardly be envisaged given, on the one ha
the uncertainty surrounding experimental condition
and, on the other, the lack of a universal and accur
constitutive model for viscoelastic fluids. The sources
discrepancy between theory and experiment are relate
limitations for both Newtonian and viscoelastic flow
formulations. The lack of a theory capable of predictin
the value of the axial wave numberk constitutes a major
difficulty. The prediction of the value ofk remains an

FIG. 1. Bifurcation diagram and comparison between theo
(dashed line) and the experiment of Mulleret al. [2] (squares).
The figure shows the square of the axial velocity compon
amplitude, atr  sRi 1 Rody2 andz  dy2k, as a function of
the Deborah number.
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FIG. 2. Frequency of oscillation and comparison betwe
theory (continuous lines) and the experiment of Mulleret al.
(symbols) [2]. The figure shows the dominant frequency a
harmonics of the axial velocity component as functions of t
Deborah number.

unresolved issue (in a given formulation, it is usual
simply imposed from experimental measurement).
the case of viscoelastic Taylor-Couette flow, how
ever, the measurement ofk is difficult under transient
flow conditions [4]. Other parameters and variable
are also difficult to obtain from the experiment o
Muller et al. [2] and had to be deduced. Additiona
uncertainty originates from the type of constitu
tive model used. Although the Oldroyd-B equation
predicts the behavior of constant viscosity highly elas
fluids, it does not incorporate the spectrum of relax
tion times that is characteristic of real fluids. Mor
complicated constitutive equations, accounting for t
nonlinear dependence of the transport coefficients on
rate-of-strain tensor, may also be examined. The pres
formulation accounts for nonlinearities stemming fro
the upper-convective terms in the constitutive equatio
Another source of discrepancy can come from end effe
in the Taylor-Couett apparatus that have been neglecte
the present formulation. The narrow-gap approximati
is also a limiting assumption. Inertia effects can als
play an influential role despite the fact that the experime
was conducted at a vanishingly small Reynolds numb
sRe , 1022d. In general [16], the presence of inertia
no matter how small it may be, prohibits the base flo
from losing its stability to the overstable mode. Instea
the base flow loses its stability first tosteady(and not
oscillatory) TVF since there is always a finite range of R
values over which the branches corresponding to ste
TVF are stable.

In conclusion, a low-dimensional dynamical system a
proach is proposed to describe highly elastic TVF. Th
constitutes a first systematic and accurate theoretical p
diction of the purely elastic overstability observed b
Muller et al. [2]. It is shown that the finite amplitude
TVF can be effectively described if higher-order norm
stress terms, which were neglected in the previous form
n
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lation [16], are properly accounted for. Particularly, th
addition of the azimuthal normal stress component le
to additional coupling with higher-order eigenmodes th
are ofOs´Ded. The resulting nonlinear dynamical syste
involves only twenty degrees of freedom. The seque
of flows predicted by the present model is comparable
that reported by Mulleret al. [2]. The model predicts the
sequence of periodic behaviors observed as the Deb
number is increased: (1) loss of stability of the base fl
to an oscillatory flow at a critical Deborah number (Dec 
32 as predicted by the model vs 32.3 from experimen
(2) growth of amplitude of the velocity signature lik
sDe 2 Decd1y2, in agreement with asymptotic analysi
and (3) the emergence of higher harmonics in the Fou
spectrum as De is further increased.
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