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All-Order Binding Corrections to Muonium Hyperfine Splitting
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The use of exact Dirac-Coulomb propagators allows the evaluation of binding corrections to the
Schwinger correction in ground state muonium hyperfine splitting to all orders. The calculational
method is described and the results are used firstly to verify recent perturbative calculations of higher-
order binding corrections and secondly to evaluate the residual terms of still higher order. Implications
for muonium hyperfine splitting are discussed. [S0031-9007(97)03490-X]
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Calculations of radiative corrections in atomic physicswhere
are frequently expressed in terms of a double expansion 16 m o\ 73
in the fine structure constant and the quantityZe«, Ep = ?Z3a2cRm—e<1 + e) , (3)
where Z is the nuclear charge. This is done even when M Mo

Z =1, as it serves to distinguish purely radiative effectsy — /1 — (Za)?, anda, is the muon anomalous mag-
from binding correctionswhich are effects arising from patic moment. Note thgt we have chosen to exclude the
the expansion of the Dirac-Coulomb propagator in termgy|| magnetic moment of the muon in our definition of
of interactions with the nuclear Coulomb potential. In Er, since while the factoll + a,, is always present for
atomic physics, these binding corrections can have larggonrecoil corrections, it is not naturally present for recoil
coefficients, which has two consequences. One is thalorrections, which we will include later. The functions
at high Z, these large coefficients now multiply the no D@)(Za) generalize ther-loop expansion of the elec-

longer small quantityZ«, and a complete breakdown ron ¢ — 2 factor. In particular, the self-energy part of
of the series may result, in the sense that the valug®(z4) s given by

of the series terminated at a given order can change
in sign and order of magnitude when the next order is D§2E)(Za) _1 + <In2 - 2)77(201)
included. For highly charged ions there is no substitute 2 4

for a nonperturbative evaluation to all orders #w. 8 37 16

The second is that even @t = 1, adequate comparison + [_ 3 I (Za) + <_% T3 In2>
with high-accuracy experiments can require relatively high

orders of perturbation theory to be considered. Given that X In(Za) + Eng)(Za)}(Za){ 4
the already quite precisely determined hyperfine splitting

of the ground state of muonium [1], where we introduce the functioEézpf(Za) that includes

Avexp = 4463302.88(16) kHz, (1)  the constant that enters in ord&Z«)? along with all
is in the process of being even more accurately measurdtigher order terms. Recent calculations [3—-5] allow the
[2], a complete treatment of these high-order terms haurther reparametrization

become an important problem for QED theory. @ 191

It is convenient to define a set of functiof¥*”(Z«) Esg(Za) = 17.122 + [<—5 In2 + F)WM(ZOZ)
that parametrize radiative corrections to the ground-state
hyperfine_ s_plitting. _Specificall_y, in the non_recoil, point— n FéZE)(Za)} (Za), (5)
nucleus limit, radiative corrections to muonium hyperfine

splitting can be written as ) )
PIIng where the functlongzE)(Za) contains the unknown con-

! + iD(z)(Za) stant that enters in ordefZa)® plus all higher-order
Qy -1 = corrections.

a ) @ The functionDézg(Za), which has been evaluated to all
+ <;> D™(Za) + } (2)  ordersinza fora range ofZ in Refs. [6,7], is stronglyZ

Av = Eg(1 + a,u)[
Y
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dependent:; while it tends to the Schwinger valuel¢?  the energy to a term we refer to as the derivative term
in the limit Z — 0, it changes sign already gt= 8, and Eg. The latter two terms have canceling ultraviolet diver-
becomes (in units in which the finite size of the nucleusgences. To evaluate them, we first subtract terms in which
and the Breit correction are built intdz) —3.86 and the bound propagators are replaced with free propagators,
—5.14 at the experimentally interesting casesZof= 67  terms which we refer to ag% and E;. The differences
[8] and Z = 83 [9], respectively. These values differ E{ = Eg — E{ andE} = Ey — Ej, which are ultravio-
in sign and in order of magnitude from the perturbativelet convergent, are then evaluated in configuration space.
expression. It remains to add back the finite parts & andE}; these
While an exact approach is essential for highit is  are extracted by dimensional regularization and evaluated
also useful for lowZ. This is because a nonperturbative in momentum space. The divergent partsEdf and E+,
approach automatically includes all the corrections listedcancel as a consequence of the Ward identity. The vari-
above in Egs. (4) and (5) along with all higher-orderous contributions to the hyperfine structure are tabulated
corrections. Given thaEs, is effectively changed from in Table 1.
the constant 17.122 to a value of 16.166 by the next- A complication of the calculation is the presence of
order logarithmic term af = 1, it is important to account certain singularities in the ultraviolet-finite subtracted
for the remaining terms ofss. In particular, a large terms, Es and Ey, that occur when intermediate states
constant in orderZa and high powers of kZa) in 1" the spectral representation of the internal propagators
order (Za)? are to be expected and must be accounte@'® deggnerate with tshe valence state. T_hese singularities
for. The calculations described below show that the nef@ncel in the sum&s + Ey, and for this reason we
effect of these terms is, in fact, relatively small. They do,@bulate that sum in the fourth column of Table I. It is
however, provide confirmation of the recently determined€9ulated by replacing, with ,(1 — 5). While both
constant and the logarithmic term in Eq. (5), and allow a&s @nd Ev diverge logarithmically withs, their sum has

determination of the higher-order terms with a precision® Smooth limit as5 — 0. _
well under the experimental error [1]. Table | differs from a related table presented in our

While in this Letter we will be concerned only with previous work [7] in three ways. First, the Fermi splitting

the self-energy term, we note for completeness that thi®) the previous paper was taken to include relativistic
vacuum polarization term is corrections, and in the present case it is not; thus there

o 3 3 o is a difference of normalization. Second, because of
Dvp(Za) = —w(Za) + [— — In(Za) + EVP(ZQ)} their relatively large effect at higiz, finite-nuclear-size

4 15 effects were included in [7], while here, because we

X (Za)?, (6) are interested in making predictions for muonium, the
point-Coulomb limit was taken for alf. Finally, and

most importantly, we have increased the accuracy of the

previous calculation, because the previous values were

not precise enough to make a reliable determination of

eD(szlg(la) needed to infer the muonium hyperfine splitting.
Several issues had to be addressed to reach an accu-

racy of 1 X 1072 claimed in the present calculation for

£ =372 of 2 X 1073 for Z =2, and of 3 X 1073

where the first term inE%)) has recently been recal-
culated [4,10] and determined to be% In2 + % =
—0.218567. The coefficient of the logarithmic term of
the next order has also been calculated tot8& /24
[5]. Remaining higher-order corrections should be quit
unimportant.

The starting point of our calculation dD(szﬁ(Za) is
the standard formula for the self-energy shift of a boun

electron,
. d*k exfdik - (x —y)] TABLE I. Contributions toDézE)(Za).
AE = —zezfd3x[d3y -
2m)* k* +i8 z EA E{ + E) E) +E Total
Xy (X)y uSF(X,¥; €, — ko)y* by (y) . (7) 1 —001097 270998  —2.26093 0.43808(3)
If a nuclear magnetic-dipole field is present in addition to ;24, _8'8§? zé g'ig? ;i _gigi 28 0.37347(2)
. . —0. . —2. 0.30759(1)
the nuclear Coulomb field, 'Fhe wave functions, gl_ectron 4 —007730 239220 507387 0.24103(1)
propagator, and the energy in Eq. (7) are all modified, g5 _gj0495 220875 201976 0.17405(1)
and each modification gives rise to a different contribution §  —0.13432 221025 ~1.96909 0.106 84(1)
to the hyperfine structure. The wave function modifica- 7 —0.16510 2.12616 —1.92156 0.03950(1)
tion term, denoted:s in the following, is evaluated using 8  —0.19706  2.04607 —1.87691  —0.02791(1)
numerical techniques developed for the self-energy prob-9  —023003 196960  —1.83492  —0.09535(1)
lem [11], with one of the wave functions replaced by al0 026389  1.89644  —1.79538  —0.16283(1)
wave function modified by the magnetic-dipole field. The 18 _8'2‘3‘2 28 }%é 2‘9‘ _}'2(2)‘9‘ gg _8-22; (5)28;
modification of the electron propagator leads to a term w 5 _084884 106406 _1A1144  —1.19621(1)

refer to as the vertex termy, and the modification of
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for Z = 1. First, E; and E{ behave asymptotically as terms is very small, contributing approximateh0.09 to
Ef = -2 In2Za) — % andE) =2 In(2Za) + 1. By EZ(1a). A detailed fit gives the sum of all previously
subtracting out these large terms, remaining integrationgncalculated terms to be
could be controlled to well unde0~>. Most of the other FOa) = —12.02.0), (8)
terms are treated in c_oordlnatg space, with th? Iohom%hich, taken together with the other terms in Eg. (5),
propagator expanded in a partial-wave expansion. Be'ives the main result of this Letter
cause the partial-wave sum cannot be extended to infinity; @) !
it is necessary to work to sufficiently high values that Egp(la) = 16.079(15). 9)
a clear asymptotic behavior is found. At the lowest The error corresponds to an uncertainty of 0.008 kHz for
this required going to values of aboilit= 50 in both ~ muonium ground-state hyperfine splitting.
Ej + E} and the part ofE¢ that is carried out in co- We note that if we fit directly tQ‘ZézE)(Za) in Table I,
ordinate space. Our estimated errors are dominated byithout necessarily assuming the correctness of the first
the numerical uncertainty in these partial-wave extrapolapyo terms in Eg. (5), we infenlzgzg(la) = 16.10(5), a
tions, as well as the uncertainty in the par#gfevaluated value consistent with (9), though less accurate. We
in momentum space, which is significantly more difficult note also that there are some discrepancies between our
to control than the corresponding term in the Lamb shiftoresent results and those given in Ref. [6]. Specifically,
calculation. our results of 0.43808, 0.30759, 0.174 05, 0.03950, and
We carry out our analysis of the data in Table I in _o 16283 for D2(Za) at Z =1, 3, 5, 7, and 10,
two parts. In the first, we fitZsy (Zar), which is tabu- respectively, disagree in the third or fourth digit with
lated in Table II, to the form given in Eq. (5), but with the quoted results of 0.4379, 0.3072, 0.1733, 0.0366, and
undetermined coefficients. This is meant to provide a-0.1640 from that work. These discrepancies can lead to
check of the consistency of the recent calculations withvery different inferred values of higher-order corrections
our method. The fits are relatively insensitive to the formig £2 (1 o),

chosen forF s (Za), and a typical fit yields 17.2(1) forthe  Before discussing the comparison with experiment, we
constant and—26.5(2.0) for the coefficient of the loga- mention that our total result foEie(1a) above differs
rithmic term, which ana_lytlcally IS-26.615. _Here and _from an earlier calculation [12] that founﬂgzé(la) =
later, errors quoted for fits reflect the sensitivity of the flt15 1(3). However, the previous calculation, while similar

to the higher-order terms included, in particular, to IOga'to the present one in that some terms were evaluated to

rithmic terms in ordefZe)" in D™ (Za). all orders inZ«, was based on a perturbative expansion

In the next part of the analygis We assume the correcgf the Dirac-Coulomb Green'’s function in terms of a
ness of the constant and logarithmic terms in Eq. (5), an elativistic generalization of the nonrelativistic Coulomb

evaluateFs;(Za), which is tabulated in TabIeZII. Even Green’s function. Terms that explicitly started in order
before doing any fitting, we note the fact thﬂéE)(Zoz) (Za)? were not treated, though some such terms were
varies smoothly in the range= Z = 25 (towards about included if they were part of expressions that entered in
—12 at Z = 1) is again a confirmation that the first two a lower order. Because the portion of the relatively large
terms of Eq. (5) have been correctly incorporated intchigher-order terms included in the previous calculation
our all-order calculation. We also find our most impor-has not been determined, the results are not necessarily
tant conclusion, namely, that the sum of all higher-orderiscrepant. However, the present calculation is meant to
supplant that work.

Now that E(Szlg(la) is very accurately known, a theo-
retical prediction can be made for ground-state muonium

TABLE Il. Contributions toEézE)(Za) andFézﬁ)(Za).

(2) (2)

7 EQ(Za) FQ(Za) hyperfine splitting. If we use the value af infe{red

1 15.66(56 ~70077) from the electron anomalous magnetic momeant’ =

: 15'29E9)) ey 137.03599993(52) [13] and m,,/m, = 206768 262(62)

3 14.60(2) —1364(5)  [1,14], thenEg is

4 13.97(1) —13.85(40) Er = 4453839.38(1.33) (0.03) kHz. (20)

5 13.379(8) —14.46Q21) A principal aim of the new experiment [2] is the reduction
g gggg(i) —14.92(12) of the first error, which arises from the uncertainty of the
8 11'7988 :gggigg; muon mass. To complete the nonrecoil corrections, we
9 11.321(2) 1585635y hote thatthe functio®® (Z«) has been determined to be
10 10.862(2) —16.113(26)  [15-17]

15 8.7901(8) —17.240(8) DW(Za) = a® + [0.7717(4)]7(Za)
20 6.9746(5) —~18.307(3) 4
25 5.3255(3) —19.380(2) + [_ 3 |n2(Za):|(Zoz)2. (11)
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Nonleading log terms in ordeiZa)? have been consid- tions have been calculated, so these are replacedaith
ered [13], and are estimated to contribut®.110 kHz.  The dominant recoil corrections are [18]
No binding corrections to higher-orddd™(Z«a) func- |

37 mem m YA 2 2 65 7 .
AP rcoil = EF‘{‘ s R Lt m[—2|n(2a) —8In2 + —} y 2lZa) m
v m,u — myg me mem,u, 18 . m’u

13 21 35 4 4
X [—zm2 e SO @ + T+ 21504) + i(— T Zu g 3 ﬂ)
a

m, 12 m, m, m,
8mZa E)} N 3(Za)? me My
4

+

In

T M, M

In*(Za) <2 - In Za}. (12)
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