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Simple models for ruptures along a heterogeneous earthquake fault zone are studied, focusin
the interplay between the roles of disorder and dynamical effects. A class of models are found
operate naturally at a critical point whose properties yield power-law scaling of earthquake statis
Various dynamical effects can change the behavior to a distribution of small events combi
with characteristic system size events. The studies employ various analytic methods as we
simulations. [S0031-9007(97)03365-6]

PACS numbers: 91.30.Px, 62.20.Fe
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The Gutenberg-Richter law [1] for the statistics o
earthquakes—frequency inversely proportional to
power of the seismic moment—is well established ove
about 10 orders of magnitude. It is clearly a property o
regional faultsystems[1]. The statistics of earthquakes
on individual faults is much more controversial; indeed
given the degree of geometrical complexity usually ob
served, it is not even clear whether single faults are we
defined. Nevertheless, statistics in various narrow fau
zones in which slip is primarily along one direction—
which we will henceforth refer to as “faults”—have been
studied, and the behavior is found to vary substantiall
In particular, Wesnousky [2] has found that faults with
large total displacement which are relatively regula
typically have a power-law distribution only for small
events—if at all—and events with a much larger cha
acteristic size in which the whole fault slips, with few
events in between. In contrast, less mature faults wi
more irregular geometries can have power-law statisti
over the whole range of observed magnitudes [2].

In this paper, we will show that simple models which
include fault plane heterogeneities can exhibit both typ
of behavior and analyze the origin of the power-law
statistics and departures from it in these systems.
particular, we will argue that power-law statistics ca
be understood quantitatively in terms of proximity to a
specific nonequilibrium dynamical critical point. Like
most critical points, the resulting exponents, althoug
“universal,” will depend on certain properties in the
system: the dimensionality, the range of interaction
randomness, and perhaps other aspects.

Most previous work on simple models have involve
variants of the Burridge-Knopoff (or “sliderblock”) model
in which the randomness can be generated dynamica
and inertia and friction laws play an essential role [3
These systems appear to exhibit power-law statistics ov
some range with a cutoff beyond some magnitude a
with most of the slip occurring in larger system-size
0031-9007y97y78(25)y4885(4)$10.00
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events. But the understanding of the origin of the powe
law behavior is very limited. Our approach here wi
be to start with an analytic understanding of a cla
of models and then add in various additional physic
features by analytic scaling arguments in the framewo
of the renormalization group (RG), aided by numeric
studies.

To investigate possible critical points, we first study in
finite systems driven by a constant drive forceF. The dy-
namical variablesusr, td represent the discontinuity acros
the fault plane in the component of the displacement in t
direction of slip. We consider general equations of m
tion of the form

h≠usr, tdy≠t  F 1 ssr, td

2 fRfusr, td, r, husr, t0 , tdjg , (1)

where

ssr, td 
Z t

2`

dt0
Z

ddr 0Jsr 2 r0, t 2 t0d

3 fusr0, t0d 2 usr, tdg (2)

is the stress andfR is a quenchedrandom “pinning”
force crudely representing inhomogeneities in the frictio
asperities, stepovers, etc., which, in general, can dep
on the local past history (e.g., as in velocity depende
friction). The dynamics will be determined by this loca
history dependence, the stress transfer functionJsr, td,
and the coefficienth [4].

Substantial simplifications occur iffR is history inde-
pendent on the time scales of interest andJsr, td $ 0
for all sr, td; we will call thesemonotonicmodels. Re-
lated monotonic models have been studied extensiv
in various other contexts [5,6]. Their crucial simplify
ing feature is that the steady state velocityy ; k≠uy≠tl
is a history independent function ofF [7]. For F less
than a critical forceFc, y  0, while just aboveFc,
© 1997 The American Physical Society 4885
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y , sF 2 Fcdb. Universal scaling behavior exists on
large length scales nearFc. Quasistatic properties such
as exponents and scaling functions depend only on a fe
quantities: the spatial dimensiond; the range of the inter-
actions if they are long range, i.e., with the static stres
transferJssrd ;

R
dtJsr, td , 1yrd1G, with G , 2; and

the range of correlations infR, which we will generally
assume are short range inu and r. Long time dynamic
properties such asb depend, in addition, on the small
v dependence ofJsq, vd. If F is adiabatically increased
towardsFc, the system moves from one metastable con
figuration to another by a sequence of “quakes” of variou
sizes. The quakes can be characterized by their radiusR,
thed-dimensional areaA which slips (by more than some
small cutoff), their momentM ;

R
ddrDusrd, a typical

displacementDu , MyA, and a durationt.
From RG expansions [5,6] around a dynamic mean

field version of Eq. (1) and scaling arguments, it is foun
that for large quakesDu , Rz , A , Rdf with df #

d a fractal dimension,M , Rdf 1z , and t , Rz . The
distribution of moments is

PsMddM , dMyM11Br`sMyM̂d (3)

with r` a universal scaling function which decays expo
nentially for large argument. The cutoff̂M for large mo-
ments is characterized by a correlation length—the large
likely radius—j , 1ysFc 2 Fdn with M̂ , jdf 1z . In
mean-field theory,B  1y2, the quakes are fractal, and
displacements are of the order of the range of correlatio
in fRsud, i.e.,z  0. The mean-field exponents are valid
for d . dcsG̃d  2G̃, where G̃ ; minsG, 2d [6]. For a
planar fault in an elastic half-space,d  2 andG  1 [8];
thephysicalsystem is thusat the upper critical dimension
d  dc [9].

As usual, at the upper critical dimension, there ar
logarithmic corrections to mean-field results. We find
barely fractal quakes withA , R2y ln R so that the
fraction of the area slipped decreases only as1y ln r away
from the “hypocenter.” The typical slip isDu , sln Rd1y3

so that M , R2ysln Rd2y3. The scaling form ofPsMd
is the same as Eq. (3) with the mean-fieldr`, although
for M ø M̂, PsMd , sln Md1y3yM3y2 so thatB will be
virtually indistinguishable from1y2.

We now consider more realistic drive and finite-fault
size effects. Driving the fault by very slow motion
far away from the fault is roughly equivalent to driv-
ing it with a weak spring, i.e., replacingF in Eq. (1)
by Fsr, td  Kfyt 2 usr, tdg. With y ! 0 the system
must then operate with the spring stretched to mak
Fsr, td & Fc at least on average; it will actually operate
just below Fc. Under a small increase,DF, with con-
stant force drive,kDul ø nDF

R
MPsMddM with n the

number of quakes per unit area per increase inDF; nsFd
is nonsingular atFc [5]. The known scaling laws yield
kDul , DFjsdf 1z ds12Bd , DFj for our case. For con-
sistency, we must have in steady state with the sprin
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drive KyDt  DF  KDu so that the system will op-
erate with a correlation lengthj , 1yK1yG̃, i.e., 1yK for
our case. For a fault section with linear dimensions
orderL, drive either from uniformly moving fault bound-
aries or from a distance,L perpendicularly away from
the fault plane will be the same asK , 1yL so that the
power-law quake distribution will extend out to roughly
the system size; i.e.,j , L. For smaller quakes, i.e.,
R ø L, the behavior will be the same as in the infinit
system with constantF drive, but the cutoff of the distri-
bution of moments will be the same form as Eq. (3) wit
a different cutoff functionr that depends on the shape o
the fault, how it is driven, and the boundary conditions.

We have tested these conclusions numerically by stud
ing a discrete space, time, and displacement version o
monotonic Eq. (1) with quasistatic stress transfer app
priate to an elastic half-space [8]. The slip,u, is purely
in the horizontal direction along the fault andfRfusrdg
is a series of equal height spikes with spacings whi
are a random function ofr. Whenssr, td . fRfusr, tdg,
usrd jumps to the next spike. The boundary condition
on the bottom and sides are uniform slip—su  ytd with
infinitesimal y —and stress free on the top. The sta
tistics of the moments of the quakes are shown by t
triangles in Fig. 1. Although the uncertainties are a
preciable, relatively good agreement is found with th
predictionB  1y2. A typical large quake is illustrated
in Fig. 2(a); it appears almost fractal as predicted and w
tend to stay away from the bottom and sides. The rat
of the moments of quakes to their areas have been st
ied and found to grow only very slowly with the area, a
predicted. This is in striking contrast to earthquakes
conventional crack models which are compact and ha
Du , R (i.e., z  1), so thatMyA ,

p
A.

Because the system is at its critical dimension, t
cutoff function r of the moment distribution appropriate
to the boundary conditions, as well as various aspects

FIG. 1. Histograms of moments for a simulation of a rec
angular fault with32 3 128 cells for the discrete monotonic
quasistatic model. Triangles: without dynamical weakenin
se  0d. Diamonds: with dynamic weakening withe  0.95.
[e is defined in Eq. (4).] The straight line indicates the pre
dicted slopeB  1y2.
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FIG. 2. Distribution of horizontal slip,u, along a fault with
32 3 128 cells for a single large quake event. The lighter a
cell the bigger its slip during the quake. (a) Almost fracta
quake with a total moment of 1750 (and 1691 cells failing) fo
the monotonic model without any dynamical effectsse  0d.
(b) “Cracklike” quake with a total moment of 16 922 (and
2095 cells failing) for the model with dynamic weakening
se  0.95d. In both cases, the system is driven by horizontal
creeping fault boundaries (sides and bottom) while the to
boundary is stress free.

the shapes and dynamics of quakes, can be compu
For quasistatic stress transfer,Jsr, td , dstdyr3, in the
infinite system the quake durations are found to b
t , Rz with z , 1 for d , dc, corresponding to an
unphysical supersonic propagation of disturbances [6].
the marginal dimensiond  dc, z  1 with logarithmic
corrections. A more physical dynamics with sound-trave
time delay has slower growth of the quakes withz  1
in all dimensions. In either case, the growth will be
very irregular—including regions starting and stopping—
in contrast to crack models and what is often assumed
seismological analyses of earthquakes. A crucial featu
of monotonic models is that the slip profileDusrd of a
quake isindependent of the dynamics[7]. But the most
interesting dynamical issues concern the effects left o
of the monotonic models that can make this feature bre
down.

We first consider including some weakening effects o
sections which have already slipped in a given quak
This is best studied in the discrete model. To crude
model a difference between static and dynamic frictio
we choose

fR  f̃Rfusrd, rg h1 2 eQfusr, td 2 usr, t 2 Tdgj (4)

with T a cutoff time much longer than the duration of th
largest quakes, but much smaller than the interval betwe
the quakes. This can crudely represent a differen
between static and dynamic friction. Fore  0 and non-
negativeJ the model is monotonic, while fore . 0 it is
nonmonotonic. The effects of small weakening can b
analyzed perturbatively.

With e  0, consider a quake of diameterR1 (øL
or j), with momentM1 and areaA1, i.e., A1 sites have
slipped. If a smalle is turned on at the end of the
quake, all slipped sites that are withine of slipping
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will now slip again—this will beNex
2 , eA1 sites. The

simplest justifiable guess is that each of these will cau
an approximately independent secondary quake. The to
moment of these secondary quakes will be dominat
by the largest one, so the extra moment will beMex

2 ,
seA1d1yB. If Mex

2 ø M1, this process can continue but
will not increase the total moment substantially. Bu
if Mex

2 , M1, the process can continue with a large
area A2 and hence a largerMex, leading to runaway.
The scaling laws yieldB  sdf 2 G̃ 1 z dysdf 1 z d and
A , Mdf ysdf 1z d with z , G̃, so that for anye, for large
enough M1, M1 * MD , e2sdf 1z dysG̃2z d, Mex

2 will be
comparable toM1, and the quake will become much
larger. In the case of interestMD , e22. In the force-
driven infinite system forF & Fc, quakes of sizej will
run away and become infinite ifj . e21ysG̃2z d. Since
j , sF 2 Fcd2n and 1yn  G̃ 2 z , this will occur for
Fc 2 F , Cwe with some constantCw. This result is
very intuitive and justifiesa posteriori the assumptions
leading to it: Since, on slipping, the random pinning
forcesfR in a region are reduced by ordere, the effective
critical force Fc for continuous slip will have been
reduced by ordere; thus if F . Fcsed  Fc 2 Cwe, the
mean velocityy will be nonzero.

A similar but more subtle effect can be caused by stre
pulses that result from nonpositiveJsr, td; these arise
naturally when one includes elastodynamic effects. W
consider

Jsr, td , dst 2 rycdyrd1G 1 ad0st 2 rycdycrd1g

(5)

with c the sound speed. The scalar approximation
elasticity in a half-space corresponds tod  2, G  1,
g  0, anda  1. If a region slips forward, the stress a
another point first has a short pulse at the sound arriv
time from the second term in Eq. (5) and then settle
down to its smaller static value, i.e., it is nonmonotonic
The magnitude of these stress pulses and their duration
set by various aspects of the models, for example, larg
h in Eq. (1) implies weaker stress pulses as the loc
motion will be slower. By considering which of the sites
in a long quake witha  0 can be caused to slip farther
by such stress pulses—here the dynamics matters—
find that runaway will occur forM $ MD , a24 for
the physical case. We have checked this ind  1 with
G  1 and g  0 finding the predicted reduced critical
force Fcsad , Fc 2 Cpa2 as shown in Fig. 3. These
1D simulations also reveal a hystereticysFd curve in
finite systems. This should also occur with the velocity
weakening-friction model.

We can now understand what should happen with e
ther weakening or stress pulses in finite systems driv
with a weak spring or with slowly moving boundaries
As the system is loaded, quakes of increasing size c
occur. If the system is small enough that it cannot su
tain quakes withM . MDse, ad then the behavior will
4887
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FIG. 3. Mean velocity versus force for a one-dimensiona
system with a nonmonotonic kernelJsx, td  dst 2 xdyx2 1
ad0st 2 xdyx for a  0.8, 0.5, 0. A spring or boundary loaded
system will traverse the hysteresis loops in the directio
indicated. Inset: the threshold force,F"

csad, on increasing the
load; Da ; f1 2 F"

csadyF"
csa  0dg1y2 is plotted vsa.

not be much different from the monotonic case wit
e  a  0. This will occur if L , RDse, ad , M

1y2
D ,

maxsCaya2, Ceyed with appropriate coefficientsCa, Ce ,
which will depend on the amount of randomness in th
fault. But if L . RD , quakes of the size of the orderRD

will run away and most of the system will slip, stopping
only when the load has decreased enough to make the lo
ing forces less than thelower end of the hysteresis loop in
ysFd (as in Fig. 3). Because of the tendency of region
that have already slipped to slip farther, and the consequ
buildup of larger stresses near the boundaries of the slipp
regions, large events in systems with dynamic weakeni
will be much more cracklike than in monotonic models
probably withDu , L. Statistics of quakes with weaken-
ing, e, reasonably large, but no stress pulsessa  0d are
shown in Fig. 1 and in [8]; note the absence of quakes wi
intermediate moments. A typical large event in this cas
is shown in Fig. 2(b); it appears to be cracklike.

In this paper we have shown that simple models o
heterogeneous faults—with the dimensionality and lon
range elastic interactions properly included—can give ris
to either power-law statistics of earthquake moments or
distribution of small events combined with characteristi
system size events. Which behavior—or intermediate b
havior—obtains is found to depend on a number of phy
ical properties such as frictional weakening and dynam
stress transfer, analogs of which should definitely exist
real systems. In the power-law regime the conventional
defined Gutenberg-Richter exponentb ; 3By2 is found to
beb  3y4. This is intriguingly close to values observed
by Wesnousky [2], but it is not clear if any significance
should be attached to this.

More significant is the framework that we have buil
which enables certain results (and many more not pr
sented here) to be obtained analytically and others to
understood by scaling arguments. It is hoped that oth
4888
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physical phenomena such as geometrical disorder, si
branching, and multiple cracks might start to be address
in this framework. We note one extra effect which can
be readily analyzed: long-range correlations in the ran
domness (perhaps caused by prior history of the fault
Varying the power law of the decay of correlations of
fR increasesB continually from1y2 to 2y3 and z con-
comitantly from 0 to 1, with the quakes becoming more
compact and crack-like as the randomness correlations b
come longer range.
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