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Statistics of Earthquakes in Simple Models of Heterogeneous Faults
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Simple models for ruptures along a heterogeneous earthquake fault zone are studied, focusing on
the interplay between the roles of disorder and dynamical effects. A class of models are found to
operate naturally at a critical point whose properties yield power-law scaling of earthquake statistics.
Various dynamical effects can change the behavior to a distribution of small events combined
with characteristic system size events. The studies employ various analytic methods as well as
simulations. [S0031-9007(97)03365-6]

PACS numbers: 91.30.Px, 62.20.Fe

The Gutenberg-Richter law [1] for the statistics of events. But the understanding of the origin of the power-
earthquakes—frequency inversely proportional to daw behavior is very limited. Our approach here will
power of the seismic moment—is well established oveibe to start with an analytic understanding of a class
about 10 orders of magnitude. It is clearly a property ofof models and then add in various additional physical
regional faultsystemd1]. The statistics of earthquakes features by analytic scaling arguments in the framework
on individual faults is much more controversial; indeed, of the renormalization group (RG), aided by numerical
given the degree of geometrical complexity usually ob-studies.
served, it is not even clear whether single faults are well To investigate possible critical points, we first study in-
defined. Nevertheless, statistics in various narrow faulfinite systems driven by a constant drive foice The dy-
zones in which slip is primarily along one direction— namical variables(r, r) represent the discontinuity across
which we will henceforth refer to as “faults”—have been the fault plane in the component of the displacement in the
studied, and the behavior is found to vary substantiallydirection of slip. We consider general equations of mo-
In particular, Wesnousky [2] has found that faults withtion of the form
large total displacement which are relatively regular
typically have a power-law distribution only for small nou(r,t)/ot = F + o(r,1)
events—if at all—and events with a much larger char- ,
acteristic size in which the whole fault slips, vg\J/ith few = frlue. o). r fulr, i < 0}, (1)
events in between. In contrast, less mature faults wit
more irregular geometries can have power-law statistics

over the whole range of observed magnitudes [2]. o(r,1) = [t dr’ [ e — vt — 1)
In this paper, we will show that simple models which ’ o ’
include fault plane heterogeneities can exhibit both types X [u(e!, 1) — u(r,1)] (2)

of behavior and analyze the origin of the power-law
statistics and departures from it in these systems. lis the stress and’k is a quenchedrandom “pinning”
particular, we will argue that power-law statistics canforce crudely representing inhomogeneities in the friction,
be understood quantitatively in terms of proximity to aasperities, stepovers, etc., which, in general, can depend
specific nonequilibrium dynamical critical point. Like on the local past history (e.g., as in velocity dependent
most critical points, the resulting exponents, althougHfriction). The dynamics will be determined by this local
“universal,” will depend on certain properties in the history dependence, the stress transfer functién 7),
system: the dimensionality, the range of interactionsand the coefficieny [4].
randomness, and perhaps other aspects. Substantial simplifications occur ffz is history inde-
Most previous work on simple models have involvedpendent on the time scales of interest afd, ) = 0
variants of the Burridge-Knopoff (or “sliderblock™ model for all (r, r); we will call thesemonotonicmodels. Re-
in which the randomness can be generated dynamicallyated monotonic models have been studied extensively
and inertia and friction laws play an essential role [3].in various other contexts [5,6]. Their crucial simplify-
These systems appear to exhibit power-law statistics oveng feature is that the steady state velodity= (ou/dt)
some range with a cutoff beyond some magnitude and a history independent function @ [7]. For F less
with most of the slip occurring in larger system-sizethan a critical forceF., v = 0, while just aboveFr,,
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v ~ (F — F.)?. Universal scaling behavior exists on drive KvAr = AF = KAu so that the system will op-
large length scales ned.. Quasistatic properties such erate with a correlation length ~ 1/K'/T i.e., 1/K for
as exponents and scaling functions depend only on a feaur case. For a fault section with linear dimensions of
quantities: the spatial dimensiah the range of the inter- orderL, drive either from uniformly moving fault bound-
actions if they are long range, i.e., with the static stresgries or from a distance-L perpendicularly away from
transferJ;(r) = [ dtJ(r,t) ~ 1/r?"F, with T' < 2; and  the fault plane will be the same @ ~ 1/L so that the
the range of correlations ifir, which we will generally power-law quake distribution will extend out to roughly
assume are short range inandr. Long time dynamic the system size; i.e£& ~ L. For smaller quakes, i.e.,
properties such ag depend, in addition, on the small R <« L, the behavior will be the same as in the infinite
o dependence af(q, w). If F is adiabatically increased system with constant drive, but the cutoff of the distri-
towardsF,, the system moves from one metastable conbution of moments will be the same form as Eq. (3) with
figuration to another by a sequence of “quakes” of various different cutoff functiorp that depends on the shape of
sizes. The quakes can be characterized by their ratlius the fault, how it is driven, and the boundary conditions.
the d-dimensional ared which slips (by more than some  We have tested these conclusions numerically by study-
small cutoff), their momen/ = [ d‘rAu(r), a typical ing a discrete space, time, and displacement version of a
displacementu ~ M /A, and a duratiorr. monotonic Eq. (1) with quasistatic stress transfer appro-
From RG expansions [5,6] around a dynamic meanpriate to an elastic half-space [8]. The slip,is purely
field version of Eq. (1) and scaling arguments, it is foundin the horizontal direction along the fault antk[u(r)]
that for large quakes\u ~ R¢, A ~ R% with dy = is a series of equal height spikes with spacings which
d a fractal dimensionM ~ R%*¢, andr ~ R*. The are a random function af. Wheno(r,7) > frlu(r, )],

distribution of moments is u(r) jumps to the next spike. The boundary conditions
on the bottom and sides are uniform slig#—= vt) with
P(M)dM ~ dM /M Bp..(M /M) (3) infinitesimal v—and stress free on the top. The sta-

tistics of the moments of the quakes are shown by the
with p. a universal scaling function which decays expo-triangles in Fig. 1. Although the uncertainties are ap-
nentially for large argument. The cutoH for large mo-  preciable, relatively good agreement is found with the
ments is characterized by a correlation length—the largegiredictionB = 1/2. A typical large quake is illustrated
likely radius—¢ ~ 1/(F. — F)” with M ~ ¢%*¢. In  in Fig. 2(a); it appears almost fractal as predicted and will
mean-field theoryB = 1/2, the quakes are fractal, and tend to stay away from the bottom and sides. The ratios
displacements are of the order of the range of correlationsf the moments of quakes to their areas have been stud-
in fr(u), i.e.,,{ = 0. The mean-field exponents are valid ied and found to grow only very slowly with the area, as
for d > d.(I') = 2I', whereI' = min(I',2) [6]. For a predicted. This is in striking contrast to earthquakes in
planar fault in an elastic half-spacé,= 2 andI’ = 1 [8];  conventional crack models which are compact and have
the physicalsystem is thust the upper critical dimension Au ~ R (i.e.,{ = 1), so thatM /A ~ +/A.
d=d.[9] Because the system is at its critical dimension, the

As usual, at the upper critical dimension, there arecutoff function p of the moment distribution appropriate
logarithmic corrections to mean-field results. We findto the boundary conditions, as well as various aspects of
barely fractal quakes withA ~ R?/InR so that the
fraction of the area slipped decreases only Ak r away
from the “hypocenter.” The typical slip i&u ~ (InR)'/3
so thatM ~ R?/(InR)*3. The scaling form ofP(M)
is the same as Eq. (3) with the mean-figid, although
for M < M, P(M) ~ (InM)'/3/M3? so thatB will be
virtually indistinguishable from /2.

We now consider more realistic drive and finite-fault-
size effects. Driving the fault by very slow motion
far away from the fault is roughly equivalent to driv-
ing it with a weak spring, i.e., replacing in Eq. (1)
by F(r,t) = K[vt — u(r,t)]. With v — 0 the system
must then operate with the spring stretched to make 10
F(r,t) < F. at least on average; it will actually operate
just below F.. Under a small increase)\F, with con-
stant force drive{Au) ~ nAF fMP(M)dM with n the  FIG. 1. Histograms of moments for a simulation of a rect-
number of quakes per unit area per increas iy n(F) angular fault with32 X 128 cells for the discrete monotonic

. . . . quasistatic model. Triangles: without dynamical weakening
is nonsingular a¥. [5]. The known scaling laws yield (e = 0). Diamonds: with dynamic weakening with= 0.95.

(Au) ~ AFE@+OU-B) — AF¢ for our case. FoOr €on- [e is defined in Eq. (4)] The straight line indicates the pre-
sistency, we must have in steady state with the springicted slopes = 1/2.
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will now slip again—this will beN5* ~ €A sites. The
simplest justifiable guess is that each of these will cause
(a) an approximately independent secondary quake. The total
moment of these secondary quakes will be dominated
by the largest one, so the extra moment will H&* ~
(eA)B. If M5* < M,, this process can continue but
will not increase the total moment substantially. But,
(® i M ~ M,, the process can continue with a larger
areaA, and hence a largeM®, leading to runaway.
The scaling laws yiel& = (d; — T + ¢)/(d; + ¢) and
FIG. 2. Distribution of horizontal slipy, along a fault with A ~ M%/(@ 9 with ¢ < T', so that for anye, for large
32 X 128 cells for asingle large quake event. The lighter a enough M;, M, = My ~ e d+O/=0) MS* will be

cell the bigger its slip during the quake. (a) Almost fractal ;
quake with a total moment of 1750 (and 1691 cells failing) forcomparable toM,, and the quake W|2” ?ﬁiﬂ??orrgg_(:h

the monotonic model without any dynamical effe¢es= 0).  larger. In the case of interest, ~ e~ _ _
(b) “Cracklike” quake with a total moment of 16922 (and driven infinite system for" < F., quakes of size will

2095 cells failing) for the model with dynamic weakening run away and become infinite § > e /T~9 . Since
(¢ = 0.95). In both cases, the system is driven by h_orizontallyg ~(F - F) " andl/v = - £, this will occur for
creeping fault boundaries (sides and bottom) while the toph — F < C,e with some constan€,,. This result is

boundary is stress free. S LT g .
very intuitive and justifiesa posteriori the assumptions
leading to it: Since, on slipping, the random pinning
forcesfr in a region are reduced by ordey the effective

the shapes and dynamics of quakes, can be computedisicai force F. for continuous slip will have been

For quasistatic stress transfef(r,s) ~ 8(¢)/r3, in the reduced by ordee; thus if F > F.(e) = F. — Cye, the
infinite system the quake durations are found to b&paan velocitys will be nonzero.

7~ R* with z <1 for d <d., corresponding t0 an A gimjlar but more subtle effect can be caused by stress
unphysical supersonic propagation of disturbances [6]. “bulses that result from nonpositivé(r, 1); these arise

the marginal dimensiod = d., z = 1 with logarithmic  51rally when one includes elastodynamic effects. We
corrections. A more physical dynamics with sound-travel-.qnsiger

time delay has slower growth of the quakes with= 1
in all dimensions. In either case, the growth will be J(r,1) ~ 8(t — r/c)/r®*t + a8'(t — r/c)/cr?™”
very irregular—including regions starting and stopping— 5)
in contrast to crack models and what is often assumed in
seismological analyses of earthquakes. A crucial featur@ith ¢ the sound speed. The scalar approximation to
of monotonic models is that the slip profileu(r) of a  elasticity in a half-space correspondsdo=2, I' = 1,
quake isindependent of the dynami¢g]. But the most y = 0, anda = 1. If a region slips forward, the stress at
interesting dynamical issues concern the effects left ouanother point first has a short pulse at the sound arrival
of the monotonic models that can make this feature breame from the second term in Eq. (5) and then settles
down. down to its smaller static value, i.e., it is nonmonotonic.
We first consider including some weakening effects ofThe magnitude of these stress pulses and their duration is
sections which have already slipped in a given quakeset by various aspects of the models, for example, larger
This is best studied in the discrete model. To crudelyy in Eq. (1) implies weaker stress pulses as the local
model a difference between static and dynamic frictionmotion will be slower. By considering which of the sites
we choose in a long quake withw = 0 can be caused to slip farther
by such stress pulses—here the dynamics matters—we
fr = Frlu@),r]{l — €O[u(r,t) — u(r,t — T)]} (4) find that runaway will occur forM = Mp ~ a~* for
the physical case. We have checked thig/is= 1 with
with T a cutoff time much longer than the duration of thel' = 1 and y = 0 finding the predicted reduced critical
largest quakes, but much smaller than the interval betweeforce F.(a) ~ F. — C,a* as shown in Fig. 3. These
the quakes. This can crudely represent a differenc&D simulations also reveal a hysterefiF) curve in
between static and dynamic friction. Fer= 0 and non- finite systems. This should also occur with the velocity-
negativeJ the model is monotonic, while for > 0itis  weakening-friction model.
nonmonotonic. The effects of small weakening can be We can now understand what should happen with ei-
analyzed perturbatively. ther weakening or stress pulses in finite systems driven
With € = 0, consider a quake of diametd®; (<L  with a weak spring or with slowly moving boundaries.
or &), with momentM; and aread;, i.e., A; sites have As the system is loaded, quakes of increasing size can
slipped. If a smalle is turned on at the end of the occur. If the system is small enough that it cannot sus-
guake, all slipped sites that are within of slipping tain quakes withM > Mp(e, @) then the behavior will
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physical phenomena such as geometrical disorder, side
branching, and multiple cracks might start to be addressed
in this framework. We note one extra effect which can
be readily analyzed: long-range correlations in the ran-
domness (perhaps caused by prior history of the fault).
Varying the power law of the decay of correlations of
fr increasesB continually from1/2 to 2/3 and ¢ con-
comitantly from 0 to 1, with the quakes becoming more
compact and crack-like as the randomness correlations be-

1.0
3.0

come longer range.
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system with a nonmonotonic kernélx,:) = 8(t — x)/x* +
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system will traverse the hysteresis loops in the direction
indicated. Inset: the threshold forcB!(«), on increasing the
load; A, =[1 — Fl(a)/F!(a = 0)]"? is plotted vsa.

. . (1]
not be much different from the monotonic C?./Sze with

e = a = 0. ThiswilloccurifL < Rp(e,a) ~ Mp
max(C,/a?, C./€) with appropriate coefficient€,, C.,

which will depend on the amount of randomness in the
fault. Butif L > Rp, quakes of the size of the ord&yp

will run away and most of the system will slip, stopping
only when the load has decreased enough to make the Ioad[-2
ing forces less than tHewer end of the hysteresis loop in ]
7(F) (as in Fig. 3). Because of the tendency of regions ]
that have already slipped to slip farther, and the consequenE
buildup of larger stresses near the boundaries of the slipped
regions, large events in systems with dynamic weakening
will be much more cracklike than in monotonic models,
probably withAu ~ L. Statistics of quakes with weaken-
ing, €, reasonably large, but no stress pulées= 0) are
shown in Fig. 1 and in [8]; note the absence of quakes with [5]
intermediate moments. A typical large event in this case

is shown in Fig. 2(b); it appears to be cracklike.

In this paper we have shown that simple models of
heterogeneous faults—with the dimensionality and long-
range elastic interactions properly included—can give rise
to either power-law statistics of earthquake moments or a
distribution of small events combined with characteristic
system size events. Which behavior—or intermediate be-
havior—obtains is found to depend on a number of phys-
ical properties such as frictional weakening and dynamic
stress transfer, analogs of which should definitely exist in [6]
real systems. In the power-law regime the conventionally
defined Gutenberg-Richter exponént 3B/2 is found to
beb = 3/4. This is intriguingly close to values observed [8]
by Wesnousky [2], but it is not clear if any significance
should be attached to this.

More significant is the framework that we have built [9]
which enables certain results (and many more not pre-
sented here) to be obtained analytically and others to be
understood by scaling arguments. It is hoped that other
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In contrast, for very large quakes that rupture through the
whole depth of the crust, the fault becomes essentially one
dimensional withI" = 2, although the different boundary
conditions, etc., will make our analysis not applicable.



