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Anisotropic Latent Heat of Vortex-Lattice Melting in Untwinned YBa;Cu3O7—5
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We report a distinct thermal signature of the first-order vortex-lattice melting for the external magnetic
field H both parallel and perpendicular to theaxis of an untwinned YB&w;0,-5 single crystal.
Latent heats and discontinuities in specific heat were observed for each configuration. The entropies
of melting and the melting line#,(T) both scale with an anisotropy parameter= 8. The specific
heat of the vortex fluid is considerably larger than that of the vortex solid (by Word/mole K?),
which is not explained by simple arguments based on counting the numbers of thermodynamic degrees
of freedom. [S0031-9007(97)03400-5]

PACS numbers: 74.25.Bt, 74.60.Ge, 75.30.Gw

There is currently considerable effort, both theoreti-themselves. In the context of the earlier work, and
cal and experimental, directed to elucidation of thebecause the “superconducting layers” perpendicular to the
“solid-liquid” transition that occurs at a phase bound-vortex lines, which might determine vortex segmentation
ary H,,(T) within the vortex state of cuprate supercon-and thus the number of degrees of freedom for thermo-
ductors. Thermodynamic information has been obtainedynamic quantities fo# || ¢, are not present fof L c,
mainly by magnetization measurements, on single crystalspecific-heat measurements férL ¢ are of considerable
of Bi,SrLCaCuyO0Og [1,2] and YBaCw;O,—5 [3,4]. The interest. We report here more detailed specific-heat
observation of associated thermal effects requires highnavestigations at the vortex-lattice melting line of un-
precision measurements on very high-quality crystals [5]twinned YBaCu;O;- s that giveL andAC for bothH || ¢
The first measurements that showady thermal effect andH 1 c.
at H,,(T), on twinned single crystals of YB&WwO,_5, The untwinned YBgCuw;O,_5 crystal (3.3 mg,7. =
indicated slight but clearly resolved increask€ in the 92 K) was used earlier to measure the latent heat of
specific healC for external magnetic field& parallel to  vortex-lattice melting forH || ¢ [8]. The specific-heat
the ¢ axis [6]. A similar, but somewhat larger, effect in C(H,T) data were obtained by the method described
another twinned crystal was reported later [7]. The earin Refs. [5] and [16]. C(H,T) was measured fo® =
liest thermal measurements to reveadfirat-order phase 0° = 4° (H || ¢) and 90° = 2° (H ||a). The magnetiza-
transition from the vortex lattice to the vortex-fluid phasetion M(H,T) was detected with a commercial SQUID
gave a latent healt = 0.5kzT per vortex per supercon- magnetometer (Quantum Design).
ducting layer in untwinned YBZL w0, for H || ¢, and The specific-heat data fdf¥ || ¢ are displayed in Fig. 1
thermodynamic consistency was proven by a comparisoas C/T vs T. To visualize details irC/T more clearly,
with magnetization data for the same crystal [8]. A simi-we have subtracted the data taken in zero magnetic
lar estimate forL was later reported by other authors field, and plotted the difference in Figs. 2(a) and 2(b)
[9,10], but the latent heat was observed only fayH =  for H||c¢ and H || a, respectively. The inset of Fig. 1
6 T and was not thermodynamically consistent with theshows data fougH = 1 T||c andugH = 8 T||a. The
magnetization data. two curves are almost identical, not only in their over-

Transport-property measurements have suggestal temperature dependence along the gradual crossover
the occurrence of a first-order transition also for afrom the normal to the superconducting state, but also
near-H L ¢ geometry in YBaCu;O;—5 [11,12], and in the position, the amplitude, and the shape of a first-
the angular-dependent scaling of the melting line in theorder-like feature that we ascribe to vortex-lattice melt-
magnetic phase diagram of YBawsO,;_s has been in- ing. In Fig. 3 the comparison of specific-heat data
vestigated [12—14]. However, it has not been establishefbr the two geometries is extended to other magnetic
whether or not there is a latent heat of vortex-latticefields. In larger fields (i.e.uoH > 4 T|la and uoH >
melting in the moderately anisotropic YBaL5O;_5 in 0.5 T||¢), both the shape of the peaks and the tem-
any geometry other thaii/ || c. Recent magnetization peratures at which the specific-heat features occur co-
data for the highly anisotropic BSrCaCuyOg [15] incide reasonably well if we compare pairs of curves
show a discontinuity in magnetization that persists, withthat belong to external magnetic-field strengths differ-
increasing angl® betweenH andc, from H || ¢ almost  ing by a factor 8 for the respective geometries. Below
to H L ¢c. The dependencies of the latent heatson woH =4 Tlla and uoH = 0.5 T|| ¢ the first-order-like
the orientation ofH are expected to be quite different features vanish in the instrumental noise. Nevertheless,
in the two systems, however, as are the phase diagranssep-like increasedC/T can still be resolved for both

0031-900797/78(25)/4833(4)$10.00  © 1997 The American Physical Society 4833



VOLUME 78, NUMBER 25

PHYSICAL REVIEW LETTERS

23UNE 1997

1460

Hilc A

1440

1420 |

1400

1380 -

C/T (mJ/mole K2)

1360

1340

1320

84 8 88 90 92 94 96
1300 1 L Il L 1 Il

74 76 78 80 82 84 86 88 90 92 94 96
T(K)
FIG. 1. Total specific heat of an untwinned Y#asO,_;
single crystal forH ||c. The numbers on top of the peaklike
specific-heat features indicate the strength of the externally
applied magnetic field. The inset shows representative data
for woH = 1 T|lc and woH = 8 T||a (shifted vertically by
—10 mJ/mole K? for clarity).

configurations. As a consequence of the apparent scaling
of these features, the melting fields,(7) in the H-T
phase diagram differ by a factet8 for the two configu-
rations. An empirical power-law fit to all the data with
H, = Hy(1 — T/T.)" for H|l¢c and H, = yHy(1 —
T/T.)" for H|la gives uoHo = (873 *3.1) T, T. =
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C(H)/ T-C(0)/T (mJ/mole K?)

of the order ofy.

(91.87 £ 0.04) K, n = (1.24 = 0.02), and an anisotropy
ratio y = (m./mga)"/* = (7.76 = 0.15), with the effec-
tive charge-carrier masses. andm,, for current trans-
port |[¢ and L ¢, respectively [14,17,18].
value is consistent with the results of other experiments
probing the angular dependence of vortex-lattice melting
in YBaCws07-5 (y = 7.4-8.7 [12,14,19)).
The latent heatd = TAS can be obtained by inte-
grating the area under the peaks in théT vs T curves
At a fixed T, the entropy discontinuiAS per
unit volumeis approximately the same for both geome-
tries [see Fig. 4(a), inset], indicating thafS/H,, (which
is proportional toAS per vorte} scales with a factor
It has become a standard procedure
to use the unit “per vortex per superconducting layer”
(with the spacing of the layers usually taken as the dis-
tancec between the Cu©double layers) for latent heats
measured forH || ¢, although in the quasi-3D system
YBa,Cu;0,-s one independent vortex segment contribut-
ing additional degrees of freedom may extend over several

This latter
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FIG. 3. Comparison between the specific-heat differences

C(H)/T — C(0)/T measured in various external magnetic

FIG. 2. Specific-heat difference€(H)/T — C(0)/T vs T,
for H||c (@) andH || a (b).
been shifted arbitrarily for clarity.
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fields, for H || ¢ (upper curves, shifted by-1.5 mJ/mole K?)
In each figure, the curves have and H || a (lower curves). The magnetic-field values for each
pair of curves differ by a factor 8.



VOLUME 78, NUMBER 25 PHYSICAL REVIEW LETTERS 23UNE 1997

@ V7 [see Fig. 4(b)] make a direct quantitative comparison
" between the two sets of data somewhat difficult. In
] Fig. 4(b), we compar&\S for H || ¢ in different units:
(kg/vortex)/superconducting layer with interlayer separa-
tions = ¢ = 11.7 A, mJmole ! T"'K~!, andkg/vortex
segment of the lengty, /-y for H || ¢ (inset). Although the
latter way of counting does not change the order of mag-
nitude ofAS, it has a significant influence on ifsdepen-
dence, introducing a strong increase nggi.e..H — 0),
] which is very similar to the trend that has been observed
e for A_S in BiZSrz(_ZaCLQOg_[Z]_.
7578 80 82 &1 85 85 o0 o2 It is WOI’f[hWhIl.e mentioning that for a'nerfect”H lec
T(K) geometry (i.e., Wlt.h an accuracy.@ that is significantly
better than 1), no first-order transition should be observed

T
1N
a

AS (mJ/mole K)

(b),.\ 10 ' ' ol 06~ [21]. The intrinsic-pinning effect, i.e., the localization of
§ - g | Hle _0.5,:_< the vortices between the CuyQdouble layers, has been
T 081 Hi/c g1t °°°§o = demonstrated to broaden the sharp resistivity features
5 2t 06,904 @ associated with vortex-lattice melting f@r > 89.5° [22].
€ 06r % S In addition to the distinct peaks i€/ due to the
2 [ o % moH() 10335 |atent heat that are visible in Figs. 1 and 2, a nearly step-
& 04r ? -ozg’ like increase in the specific heat occurs at the vortex-
W é 3 "I lattice melting, by typicallyAC/T =~ 1.5 mJ/mole K for
<02 H/a © lo1=  Hlec. Similar increases irC/T upon transforming the

- I I i i i ¢ ¢ ® CQ vortex solid to a fluid have been reported previously

0 @ 0 [6,7,10], with or without an accompanying first-order
0 > 7 6 ) 10 peak in the specific-heat data. A discontinuity Gif T

uoH (T) is not unexpected; it is observed at the melting transition

of most conventional solids. In Fig. 5 we have plotted
YBayCwO, 5 for Hlc (open symbols) andd Jla (illed the differences inC/T between the vortex fluid and the

symbols). Circles correspond to first-order melting, while VOrtex-solid phases, both faf || c andH Lc.
triangles reflect the positions of step-like features GAT Below the melting line, the vortex-lattice is very sus-
without a clearly detectable latent heat. The dotted linexeptible to pinning, and hence thermodynamic equilib-

correspond to an empirical power-law fit (see text). The insetiuym is not a priori guaranteed. To check thermody-
displaysAS at vortex-lattice melting per mole YBE&wO;—5 namic consistency of théf || ¢ data we compare them

near 7. as a function of7. (b) Entropies of vortex-lattice -
melting, in units of (kg/vortex)/superconducting layer (left with (9M/aT)y data measured on the same sample that

scale), mJmole! T-' K~ (right scale), and/vortex segment
of the lengthay/y (inset), forH || ¢ (open symbols) (see text).
The filled symbols show the corresponding values bl a

FIG. 4. (a) Vortex-lattice transition linesH,(T) for

. —~ 25 . . . ; : .
(right scale). °:'<
2 o0l

unit cells. This oversimplified way of counting degrees of g

freedom would also imply that vanishes forH L ¢ be- S

cause “superconducting layers” perpendicular to the vor- E 15T % 1
tex lines are not present in this geometry. A comparison &

of the elastic tilt energy accumulated along an individ- '%1-0' % % % 1
ual vortex line with the interaction energy between neigh- (¥

boring vortices yields another estimate of the length of 0.5} O Hllc, thermal ]
an independent vortex segmef®) = aoy!/2(sit @ + 2 ﬁ %g Ei?:g'c ; ]
y2cog ©)~34 [20], where ay = (¢o/B)"/? is the dis- S R e e e

0 N 1 1
tance between the vorticegy = 2.07 X 107! Vs is the 76 78 80 82 TB(f'() 86 8 90 92

magnetic-flux quantum, an® is the magnetic induc-

tion. As a consequencé\S for H || ¢ (® = 0°) should FIG.5. Specific-heat differencAC/T between the vortex
be larger tham\S for H L ¢ (® = 90°) by a fact0r73/2’ fluid and the vortex-solid phases of YBab0;-5 for H | c
if counted in the same units, which is in qualitative (0P€N Symbols) and/ || a (filled symbols). The triangles cor-

. . . respond to estimates &fC/T for H || ¢ based on magnetization
agreement with our experimental data [Fig. 4(b)]. HOW-y/ 7y measurements on the same sample and using Eq. (1) in
ever, the marked dependence oAS for H || c and the  the text. Experimental uncertainties in some of the terms in

considerable experimental uncertainty &8 for H || a Eqg. (1) are included in the error bars.
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are within the experimental accuracy reversible [23]. One may argue instead that the geometrical vortex
Taking the total derivative of the Clapeyron equationconfiguration changes significantly when the (nearly)
AS = —AMdH,,/dT along H,,(T) with respect toT, triangular vortex lattice melts to a disordered fluid state.

we find for a first-order transition the relation Therefore, geometrical factors (like the Abrikosov ratio
C oM\ dH,, dAM dH,, B4 [28]) are expected to change their value upon melting,
A( T > + A( T >H T T ar ar and may therefore alter tedependence of the electronic
LH free energy agcordlngly.
+ AM 2’“ =0, (1) We would like to thank to Professor D. R. Nelson and
dr Professor G. Blatter for stimulating discussions. A.S.

where AM(T) is the T-dependent discontinuity il  would like to thank to the Schweizerische National-
at the melting lineH,(T') as reported in Refs. [4] and fonds zur Férderung der Wissenschaftlichen Forschung
[8]. The estimate obtained foAC/T is also shown for Grant No. 8220-042855 and for previous support. The
in Fig. 5. The good agreement of the data suggestwork at Berkeley and at Argonne, respectively, was sup-
that the AC/T steps reported here foi || ¢ represent ported by the Director, Office of Basic Energy Sciences,
thermodynamic-equilibrium properties of the vortex mat-Materials Sciences Division of the U.S. Department of
ter of YBaCwO7-5. The data for thed L ¢ geome- Energy under Contracts No. DE-AC03-76SF00098 and
try (see Fig. 5), however, are not accurate enough tdo. W-31-109-ENG-38 (U.W., W.K.K., G.W.C.).
check thermodynamic consistency, or to reliably exam-
ine angular-dependent scaling &C/T.
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