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Ab initio Calculations for the Polarizabilities of Small Semiconductor Clusters
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Polarizabilities of small Sin, Gen (n # 10), and GanAsm (n 1 m # 8) clusters are calculated using
the higher-order finite-difference pseudopotential method in real space. We find the polarizabilities of
the clusters considered to be higher than the value estimated from the “hard sphere” model using
the bulk static dielectric constant. The computed polarizabilities per atom tend to decrease with
increasing the cluster size. This trend resembles the case of metallic clusters, for which the bulk
limit is approached from above, and confirms the “metalliclike” nature of small semiconductor clusters.
[S0031-9007(97)03429-7]

PACS numbers: 71.24.+q, 33.15.Kr, 61.46.+w
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Despite the fact that the electronic and structural prop
ties of semiconductor clusters have been intensively inv
tigated over the last decade, only two attempts to calcul
the polarizabilities of some selected clusters have been
ported [1,2]. The first approach was based on an empiri
tight-binding method [1], and the second implemented
ab initio pseudopotential plane-wave technique [2]. Un
fortunately, the available calculations exhibit rather stron
diversity. The tight-binding calculations yield polariza
bilities which overestimate the measured values. T
plane-wave method also has some disadvantages.
conventional supercell approach introduces an artificial p
riodicity for localized systems. Since the position operat
is not uniquely defined in a periodic environment, evalua
ing the polarizability is not trivial. In order to describe th
polarizability in momentum space, the plane-wave meth
employs perturbation theory and evaluates the dielect
function on a spatial grid [3], which requires a large num
ber of bands to be included in the calculations, and s
nificantly increases computing time. On the other han
our calculations are performed in real space, where pol
izability can be defined in a very straightforward fashio
and the associated computational work requires minim
effort.

Our calculation technique is based on the higher-ord
finite-difference method [4]. We used Troullier-Martin
nonlocal pseudopotentials [5] in Kleinman-Bylander form
[6]. The exchange-correlation term was approximat
by the Ceperley-Alder functional with the Perdew-Zunge
parametrization [7]. With this approach, the Schröding
equation for electronic states of a cluster was solved se
consistently on a three-dimensional Cartesian grid with
a spherical domain. Boundary conditions were impos
on the system by requiring wave functions to vanis
outside the sphere. This method has proved its e
ciency for localized systems and has allowed us to d
termine the minimum-energy structures for the clusters
interest [8–10].

We implemented a finite-field method [11,12] to ca
culate the polarizability. In real space, we can includ
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an external electric field into the Hamiltonian simply by
adding one extra term to the effective potential:µ

2
h̄2=2

2m
1 Veffsrd 2 eF ? r

∂
fisrd ­ Efisrd , (1)

where the effective potentialVeffsrd includes ionic,
Hartree, and exchange-correlation terms,fisrd is the
one-electron pseudowave function, andF is the applied
uniform electric field. From the solution of Eq. (1), we
can determine the dipole moment and the total groun
state energy as functions of the applied electric field.

The polarizability is defined by

aij ­
≠misFd

≠Fj
­ 2

≠2EsFd
≠Fi≠Fj

; i, j ­ hx, y, zj . (2)

Using the finite difference expressions for the first an
second derivatives, we can find the diagonal elemen
of the polarizability tensoraii from the dipole moment
msFd, or from the total energyEsFd at F ­ 0, andF ­
6dFi applied along theith axis. The value normally
measured in experiments is the average polarizabili
given by kal ­

1
3 trsaijd ­ saxx 1 ayy 1 azzdy3. Be-

cause of rotational invariance of the trace of the polariza
bility tensor, this value does not depend on the choice
the coordinate system.

To determine the ground-state structures, we proceed
as described in a previous work [8]. We used a grid spa
ing h ­ 0.7 a.u., and required at least an 8 a.u. separatio
between the position of any atom and the spherical boun
ary. The choice of these parameters was justified by th
fact that no significant changes in the value of the tota
energy and the interatomic forces were detected with
further increase of the radius of the boundary sphere
decrease of the grid spacing. The resulting geometries
Sin and Gen clusters withn # 10 are shown in Fig. 1(a).
In all cases, the configurations of Gen clusters were found
to be similar to those of Sin with an average increase of
interatomic distances by about 4%. Because of the lar
number of possible stoichiometries, the minimum-energ
structures for GanAsm were determined only for clusters
© 1997 The American Physical Society 4805
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FIG. 1. (a) Structures of Sin and Gen clusters. Two quaside-
generate isomers are shown forn ­ 6. (b) Structures of
GanAsm clusters.

with the ratio nym close to unity, and the total number
of atoms #8. The calculated structures are shown i
Fig. 1(b), and their geometries often resemble those of Sn

or Gen clusters with alternating Ga and As atoms. Thes
results agree with recent calculations [8,9,13].

We found that a larger spherical domain had to b
included in the polarizability calculations than that neede
for the structural minimization. However, the compute
polarizabilities were relatively insensitive to the size o
the grid spacing. This behavior agrees with the fact th
polarizabilities mainly depend on the “outer” part of the
electron density of a cluster, whereas the “inner” part
responsible for the bonding properties. Therefore, we us
h ­ 0.8 a.u., and increased the radius of the bounda
sphere up to 16 a.u. In order to determine the stabili
of our calculations with respect to the magnitude of th
applied electric field, we examined the influence of thi
parameter on the computed polarizabilities for sever
clusters. We found that the best region of linear respon
lies betweendF ­ 1024 1022 a.u., and that within this
range the values of polarizabilities calculated from the tot
energy and from the dipole moment coincide within 1%
Consequently, for all polarizability calculations we hav
chosendF to be 1023 a.u. A test performed on a CO
molecule demonstrated that our calculated polarizabili
of 1.99 Å3 was in good agreement with the experimenta
value of1.95 Å3 [14]. We also investigated the possible
influence of relaxing ionic positions in the finite field
4806
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calculations. We found that including ionic relaxatio
does not affect the calculated polarizabilities to with
,s2 3d%.

Our results are summarized in Table I. The sta
dipole moments were computed by direct summation ov
all grid points at zero electric field. The listed data fo
polarizabilities are the average polarizabilities divided b
the total number of atoms in the cluster. We compar
the data in Table I for single atoms with polarizabilitie
determined by pseudonatural-orbital calculations [15] a
found that our values typically agree with those within (5
10)%. Our calculated polarizabilities for Si4 and Si6 are
in excellent agreement with otherab initio calculations
performed with a plane-wave basis, which reportkal ­
5.0, 4.3, and4.4 Å3yatom for Si4, Si6 (I), and Si6 (II),
respectively [2].

The variation of the computed values for polarizabilitie
with the number of atoms in the cluster is shown
Fig. 2. As a reference, we included the bulk limit fo
the polarizability, estimated from the Clausius-Mosso
relation:

a ­
3

4p

µ
´b 2 1
´b 1 2

∂
yat , (3)

where yat is an elementary volume per atom in th
crystalline state, and́ b is the bulk dielectric constant.
Equation (3) yields a ­ 3.71 Å3yatom for silicon,
4.50 Å3yatom for germanium, and4.14 Å3yatom for
gallium arsenide. Figure 2 demonstrates that in all ca
our values lie higher than the corresponding bulk estima
and the polarizabilities decrease with increasing the s
of the cluster.

In some respects, semiconductor clusters resem
metallic clusters. They tend to have higher coordinati
numbers than that in the crystalline state. In fact, the
structures are thought to be more closely related
the high pressure metallic phases than to the diamo
structure [16]. It has been shown that polarizabilitie
of typical metallic clusters, such as Lin, Nan, and Kn,
significantly exceed the bulk limit, and tend to decrea
with increasing the cluster size [17]. The fact that w
found similar tendencies in the polarizabilities of Sin,
Gen, and GanAsm clusters confirms the “metalliclike”
nature of small semiconductor clusters.

The only available experimental data [18,19] report p
larizabilities for gallium arsenide and silicon clusters
reside above and below the bulk limit. Unfortunatel
those data mostly refer to larger particles (n ­ 9 120
for Sin andn 1 m ­ 4 30 for GanAsm). Therefore, the
correlation between computed and measured polarizab
ties is not straightforward. The experimental data for ga
lium arsenide indicate higher polarizabilities for cluste
with an odd number of atoms. The suggested explanat
[19] connects this phenomenon with the value of the e
ergy gap in a cluster. The simple perturbation theory (u
ing one-electron wave functions) provides the followin
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TABLE I. Static dipole moments (debyes) and average polarizabilities (Å3yatom) of
semiconductor clusters.

Silicon Germanium Gallium arsenide
Cluster jmj kal Cluster jmj kal Cluster jmj kal

Si 0 6.12 Ge 0 6.45 Ga 0 8.63
Si2 0 6.29 Ge2 0 6.67 As 0 4.83
Si3 0.33 5.22 Ge3 0.43 5.89 GaAs 1.74 6.38
Si4 0 5.07 Ge4 0 5.45 GaAs2 0.46 5.16
Si5 0 4.81 Ge5 0 5.15 Ga2As 1.68 6.47
Si6 (I) 0 4.46 Ge6 (I) 0 4.87 Ga2As2 0 5.66
Si6 (II) 0.19 4.48 Ge6 (II) 0.14 4.88 Ga2As3 0 4.79
Si7 0 4.37 Ge7 0 4.70 Ga3As2 0.95 5.17
Si8 0 4.52 Ge8 0 4.99 Ga3As3 0.41 4.79
Si9 0.36 4.38 Ge9 0.28 4.74 Ga3As4 0.39 4.81
Si10 0.69 4.31 Ge10 0.68 4.66 Ga4As3 0.06 4.87

Ga4As4 0 4.63
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expression for polarizability:

aii ­ 2
0X

k,l

jkkjmi jllj2

El 2 Ek
, (4)

where the matrix elements correspond to dipole tran
sitions between occupied and unoccupied states.
one makes the assumption that the contribution fro
transitions from the highest occupied molecular orbita
(HOMO) to the lowest unoccupied molecular orbita
(LUMO) constitute the major part of polarizability,
then polarizability can be related to the energy gap
Eg ­ ELUMO 2 EHOMO. In our calculations, the general
tendencyan­m11 . an­m21 for GanAsm clusters was
consistent with En­m11

g , En­m21
g . However, our

calculations do not confirm the proposed hypothes
[19] about donorlike and acceptorlike states in sma
gallium arsenide clusters with odd number of atoms (i.e
En1m­odd

g ø En1m­even
g ). Furthermore we found the

average polarizabilitiesaodd ­
1
2 san­m11 1 an­m21d

to be close toaeven for adjacent clusters. We also
found that in Eq. (4) the higher energy transition matrix
elements can be equally important, or even be domina
depending on the value of the HOMO! LUMO matrix
element. For clusters where this matrix element vanishe
polarizability cannot be related toEg as defined above.

In order to compare our results with experimenta
data, it is essential to keep in mind that the averag
polarizability can be directly measured in experiment
only if the static dipole moment of the cluster is zero
Otherwise, the experimental value typically includes a
additional contribution from the dipole rotating in externa
electric field. In the high temperature or low field limit,
the effective measured polarizability becomes

aeff ­ kal 1
m2

3kT
, (5)

where kal is the average polarizability andm is the
static dipole moment of the cluster. Evaluating Eq. (5
at room temperature with our data from Table I, we
-
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found this correction to be less than 10% for all Sin and
Gen clusters withm fi 0. However, it can be significant
for GanAsm clusters with high dipole moments, e.g
our calculations yieldaeff ­ 18 Å3yatom for GaAs,
14 Å3yatom for Ga2As, 5.7 Å3yatom for GaAs2, and
6.6 Å3yatom for Ga3As2. In general (with the exception
of the GaAs diatomic molecule), the contribution to th
measured polarizabilities from the static dipole mome
tends to be greater for GanAsm clusters with n fi m.
This may account, at least in part, for the experimenta
observed even/odd oscillations of the polarizabilities wi
the cluster size.

It is worthwhile to compare our results to related wor
on semiconductor clusters. For example, the polarizab
ties which we calculate are larger than the values obtain
for quantum dots [20]. The effects of confinement in qua
tum dots tend to increase the gap and, as a conseque
lower the polarizability. However, these systems are n
comparable to our small clusters. Quantum dots, wh
are truncatedbulk fragments passivated at the boundarie
do not possess free surfaces in contrast to the clusters
sidered here. The contribution to the polarizabilities fro
the unsaturated bonds at the cluster surface dominate,
result in large polarizabilities. For larger clusters, it is co
ceivable that the effects of confinement may exceed
contribution from the free surface. This, in addition t
the changes in growth patterns from open to more co
pact geometries as the size is increased [21], may low
the polarizabilities. This would be consistent with the r
cent experimental work for the larger clusters [18].

In conclusion, we have implemented a real-spa
ab initio computational technique to calculate polariz
bilities of small Sin, Gen, and GanAsm clusters. Our
calculations indicate that in all considered cases t
polarizabilities lie higher than the value estimated fro
the “hard sphere” model with the bulk static dielectr
constant. This work represents the first systema
theoretical study for the polarizabilities of semiconduct
clusters.
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FIG. 2. Average polarizabilities per atom of Sim, Gen, and
GanAsm clusters vs cluster size. Dotted lines correspond
the bulk polarizabilities calculated according to Eq. (3). Fo
GanAsm clusters with an odd number of atoms the dashed li
passes through the midpoint between polarizabilities of Ga-r
and As-rich structures.
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