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Order Parameter and Scaling Fields in Self-Organized Criticality
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We present a unified dynamical mean-field theory for stochastic self-organized critical models. We
use a single site approximation, and we include the details of different models by using effective
parameters and constraints. We identify the order parameter and the relevant scaling fields in order to
describe the critical behavior in terms of the usual concepts of nonequilibrium lattice models with steady
states. We point out the inconsistencies of previous mean-field approaches, which lead to different
predictions. Numerical simulations confirm the validity of our results beyond mean-field theory.
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The origin of scaling in Nature [1] has become inreaches athreshold. When this happens the site relaxes
recent years a challenging problem in physics. Bak, Tandz; — z; — z.), and energy is transferred to the nearest
and Wiesenfeld (BTW) [2] have proposed self-organizecheighbors(z; — z; + y;). For conservative models the
criticality (SOC) as a unifying theoretical framework transferred energy equals the energy lost by the relaxing
to describe a vast class of driven systems that evolvsite (3. y; = z.), at least on average. Usually, the only
“spontaneously” to a stationary state, characterized bjorm of dissipation occurs at the boundary, from which en-
power law distributions of dissipation events. Despiteergy can leave the system. With these conditions the sys-
the insights SOC concepts have brought to a humber dem reaches a stationary state characterized by avalanches
problems, an agreement on the precise definition of SO@hose sizeg are distributed as a power lai(s) ~ s~
has still not been reached, and the exact meaning of th,11,12].
word “spontaneous” is quite unclear. Originally, SOC In order to simplify the description of these models, we
was associated with the absence of tuning parameters, beain reduce the number of states each site can assume in
it has been noted [3] that the driving rate acts as a tuninthe following way. We divide sites asritical, stable
parameter in most, if not all, SOC models. This ambiguityandactive[12]. Stable sites are those that do not become
has hindered the formulation of precise relations betweenctive if energy is added to them. Critical sites become
SOC and other nonequilibrium critical phenomena [4,5]. active by the addition of energy. Active sites are relaxing

In this Letter we reformulate SOC in terms of typical and transfer energy, providing an interaction with other
concepts of nonequilibrium critical phenomena [5] bysites, usually the nearest neighbors (nn). In this way we
using the dynamical single site mean-field (MF) theoryhave mapped the system in a three state cellular automaton
[6]. We provide a general scheme in which the detailfCA) on a d-dimensional lattice [5,13]. To each site,
of different models are included via effective parameters is associated with a variablg;,, which can assume
and constraints. We mainly discuss sandpile models [2fhree different values. A complete set= {s;} of lattice
with and without dissipation [7], but the formalism can variables specifies a configuration of the system. The
be directly applied to other stochastic SOC models, suckhynamics is characterized by the operatdiv|s°) which
as the forest-fire model [8]. We find two independentrepresents the transition rate from a configuratigrto
critical parameters, i.e., relevant scaling fields, both witha configurations in a time stepr. A well-established
critical value equal to zero, and, just in this double limit, technique to study these systems is the single site mean-
criticality is reached. We study the behavior of the ordeffield approximation [6]. Denoting by,, p., and p, the
parameter and evaluate critical exponents. The resul@verage densities of sites in the active, critical, and stable
we obtain are in contrast with previous MF approachestates, respectively, we write the following reaction rate
[9,10]. This is due to a subtle inconsistency in the wayequations:
critical parameters have been chosen in previous works. d
We show that some MF exponents are exact also in low- 9t P ™ Filpa. pe. ps).
dimensional systems because of conservation laws. OuBecause the densities must preserve normalization, two of
predictions are confirmed by numerical simulations ofthe above equations supplemented with the condjpor-
two-dimensional sandpile models. pe. + ps = 1 are enough to describe completely the sys-

Sandpile models are cellular automata with an intetem. The explicit form of Eq. (1) can be derived from the
ger (or continuous) variable; (energy) defined in @-  master equation of the model. This approach leaves room
dimensional lattice. At each time step an energy grain idor a systematic treatment of higher order correlations,
added to a randomly chosen site, until the energy of a sitas is done in [6]. The derivation is straightforward but

K =a,c,s. (1)
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lengthy, and it will be reported elsewhere [14]. In general For instance, a stable site will receive an energy grain with
F, can be expanded as a series of the average densitiesprobability /2, but it will turn critical only with probability
. e 3 uh. The same reasoning holds for the interaction term.
Fe= fipn + > flpupe + 0(p3), (2 After imposing stationarity, we get the following dy-
" nt namical MF equations:
where the constant term is set to zero in order to get a sta-

tionary state. The first order terms are the transition rates pa = hpe + (8 = €)pcpa.

generated by the external driving fields or by spontaneous Pa = uhps + u(g — €)pspa, (5)
transitions. The second and higher order terms charac- -, —

terize transitions due to the interaction between different Pa = Ps = Pe>

sites. In SOC models, only the active state generatesahereu, g are effective parameters which depend upon
nontrivial dynamical evolution, while stable or critical sites the particular modelge represents the dissipation, ahd
can change their state only because of the external field @ the driving field. We expecg to be an independent
the presence of an active nn site. Since the critical poinparameter of the model, while has to be obtained self-

is identified byp, = 0, in correspondence with a vanish- consistently because it is fixed once the dynamical rules
ing external field, we can neglect second order terms if the CA are given.

the density of active sites. The solutions of the stationary After some algebra from Egs. (5), we obtain a closed
equationi% p. = 0) are functions of the effective param- equation forp,,

_etersf,’j,f,’j"),which depend on the_det.ails of the model. It u(g — p2 +[1 +ull +h — g + €)lpa — uh = 0.

is expected that the critical behavior is not affected by the 6)
specific values of the parameters, while universality classes
will depend on constraints imposed on the equations, be/'e can expang, (i) for small values of the field. The

cause of symmetries and conservation laws. zero order term in the expansion vanishes and we obtain a
For the sake of clarity, we describe in detail the casdeading linear term,

of sandpile models. In this class of systems the only uh

external field is the flow of energy added to the system. pa(h) = (1)

We can describe this driving by the probability per unit I+ u—ug+ue

time h that a site will receive a grain of energy. The total This result has to be consistent with the global conserva-
amount of energy added to the system at each time stéfpn law, which states that the average input energy flux
will be Ji, = ALY, The first order terms irF, are the /i Must balance the dissipated flil, . In the stationary
transition ratesa — s, ¢ and vice versa, independent of state the conservation law can be written as

nearest neighbor sites, Jin = hL? = Jou = €poL?. (8)

fa=-L fa=0, fa=nh. (3) By comparing Eq. (7) with Eq. (8) we obtain that=
Here we considered that active sites become stable withg/(g — 1). In the limith — 0 the densities are therefore
unitary rate, stable sites never become active, and criticgjiven by
sites become active because of the external field. In

addition, there is a single interaction term that describes Pu = ﬁ, pe = 1 + O(h),

the creation of an active site from a critical site due to € 8

the relaxation of nn sites. We can write this term as g1 (9)
(g — €)pe.pa, Whereg is an effective rate that depends Ps = g + 0.

on the geometry and the energy involved in the relaxatio
process and is the average energy dissipated in each sit
[14]. We stress that is also present for fully conservative
systems, being an effective term due to the boundar
dissipation. Considering all these terms, we obtain

n estimate of can be obtained using a random neighbor
approximation, which yieldg = 24 for the BTW model

] or g = 2 for the two level models [12]. Noticeably, in
he latter casey = 1, i.e., all stable sites are subcritical,
5 as is expected for a two level model.

Fy=—ps+ hpe + (g — €pcpa + O(pz).  (4) We now discuss the critical behavior of these systems.

A similar reasoning yields the functiorf. andF,. The The balance between conservation laws and dissipation is
effect of the driving field on stable sites and the interactioressential for the critical behavior of the model, as also
between active and stable sites deserve a discussion. Theinted out in [15]. The model is critical just in the
corresponding terms contribute to the transition sate  double limith, e — 0, /e — 0, similar to the forest-fire
c¢. In sandpile models, the energy conservation imposesmodel [8]. In analogy with nonequilibrium phenomena
local constraint in the rate equations. Energy is stored if5,13], the one particle density of active sites is trder
stable sites until they become critical, but only a fraction parameterand goes to zero at the critical point. We can
of stable sites receiving an energy grain contributes to théhen distinguish several different regimes as a function of
s — ¢ process. Therefore, in this case, the reaction ratethe parameters. The system has no stationary state for
will be given by thec — a rates multiplied by the factar. & > €, since p, would have to be greater than one to
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satisfy Eq. (8). The model is supercritical far> 0 and We have derived these exponents using only conserva-
€ > h, while for h — 0 ande > 0 it is subcritical and tion laws, therefore we expect they should also describe
the dynamics displays avalanches. The phase diagralow-dimensional sandpile models. We simulate numeri-
is somehow similar to that of usual second order phaseally the BTW model with finite driving raté and bound-
transitions, if we replacé by the magnetic field and by  ary dissipation. We see in Fig. 1 that the density of active

the reduced temperature. sites goes to zero linearly with(6 = 1) with a slope that
In the supercritical regime the order parameter is lineaincreases with the system sizel&s This is in agreement
in A, with the MF theory which predicts that the susceptibility
pa ~ W2, S=1. (10)  scales ag*”, with uy = 2. To observe more clearly the

This is analogous to the MF results obtained for contacfCaling With dissipation of the sandpile model, we study the

processes and other nonequilibrium CA [5,6,13], butitis in TW model with periodic boundarly cohnditions almd fixed
contrast with previous MF approaches for sandpile modeldissipatione [19]. "In Fig. 2 we p ot the control param-
[9,10], which yieldeds = 2. This incorrect result is due Ster as a function ok/e. The scaling predicted by the

to an inconsistency present in those studies. The scali thheory(y E l)f.'s. ver.lfled with r_emarkable accu_racyb,l
is expressed in terms of the average enetgy S pizi nd we note that finite size corrections are not noticeable,

which is treated as an independent control paramete|n contrast with the case of boundary dissipation [11]. Fi-
As we have just showny and 4 are not independent nally, the exponent = 1/2 has already been measured in
Moreover,d cannot be considered as the control paramete? t'\ll'vf? d:jmensmnal d|sz|pat|v§ sandfnle model [7k] I
even forh = 0, since it does not determine completely the he fynamlfcs |n|t ehsu c_rll_tr:ca regime tades psce
state of the system: The same valu@afescribes several in the form of avalanches e exponents describing
states corresponding to different values of densities avalanche distributions, in general, will not agree with the
This is a typical property of CA with multiple absorbing MF_resuIts and have to be calculated by_ th? renormal-
states [13]. In analogy with nonequilibrium CA it is 1Zation group [20]. A complete characterization of MF
possible to define several other exponents characterizi valanche; scaling has been obtained by using the theory
the supercritical regime [14]. branchlng processes [21]. Here, we reproduce these re-
In the subcritical regime, the behavior of the system sults in an independent way. Following Grassberger and
is dominated by the dissipation. This can be seen b{'® la Tor_re [51, we cons_,lder the probability _that a small
studying the susceptibility erturbation activates sites (an avalanche in the SOC

_ 9pa(h) 1 terminology),

oh e (1) P(s.€) = 5 "G (s/sc(e)). (13)
which diverges fore = 0. The system is in a subcritical
state for any value o¢ different from zero. The critical
behavior is thus characterized by the scaling lagws-
e~ and¢ ~ e 7, whereé is the characteristic length. pa(t) ~ t" F(t/tc). (14)

We can use these exponents to characterize the cONS@fare . denotes the characteristic time which scales as
vative sandpile model, since our MF analysis treats botf; ~ e 2. We can obtain these exponents by solving
boundary and bulk dissipation. In conservative systems,
when the size is increased, the effective dissipation de-
pends on the system size. We can therefore assume that 0.40 - ' 1 .
e ~ L™ #, At the same time, the characteristic length L=256
of the avalanches should go the sameéas L to en- nL=
sure dissipation of energy. This implies that the scaling 4, ° L=128
relation vu = 1 and thaty ~ L*?. It is also possible * L=64
to show [14] that the susceptibility scales as the average
avalanche size, and in two dimensions it has been found
that (s) ~ L? exactly for L — « [16]. The same result Pa 020
also holds in MF theory if we assume that the dynamics
is diffusionlike [14,17,18].

Combining all the above results, we obtain a first set of 010 |
MF exponents,

y =1, uw =2, v=1/2. (12)
It is worthwhile to remark that it is not possible to define
. 0.00 e . . :
the equivalent of an exponeit because forh = 0 the 0.0 2.0 40 , 60 8.0 10.0
order parameter is always zero. We emphasize again that hL
ande are both control parameters responsible for different|g. 1. The density of active sites in the BTW model with
regimes of the model. boundary dissipation as a function of the driving rate
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wheres. ~ €~1/7 is the cutoff in the avalanche size. The
perturbation decays in the stationary subcritical state as
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0.0005 . . ‘ , : will clarify the precise significance of SOC in the frame-
. =04 _' work of nonequilibrium critical pher)omena.
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