
VOLUME 78, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 23 JUNE 1997

02215

We
tive
er to
ady
rent

ry.
Order Parameter and Scaling Fields in Self-Organized Criticality

Alessandro Vespignani1 and Stefano Zapperi2

1Instituut-Lorentz, University of Leiden, P.O. Box 9506 2300 RA, Leiden, The Netherlands
2Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts

(Received 17 December 1996)

We present a unified dynamical mean-field theory for stochastic self-organized critical models.
use a single site approximation, and we include the details of different models by using effec
parameters and constraints. We identify the order parameter and the relevant scaling fields in ord
describe the critical behavior in terms of the usual concepts of nonequilibrium lattice models with ste
states. We point out the inconsistencies of previous mean-field approaches, which lead to diffe
predictions. Numerical simulations confirm the validity of our results beyond mean-field theo
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The origin of scaling in Nature [1] has become in
recent years a challenging problem in physics. Bak, Tang
and Wiesenfeld (BTW) [2] have proposed self-organized
criticality (SOC) as a unifying theoretical framework
to describe a vast class of driven systems that evolv
“spontaneously” to a stationary state, characterized b
power law distributions of dissipation events. Despite
the insights SOC concepts have brought to a number o
problems, an agreement on the precise definition of SO
has still not been reached, and the exact meaning of th
word “spontaneous” is quite unclear. Originally, SOC
was associated with the absence of tuning parameters, b
it has been noted [3] that the driving rate acts as a tunin
parameter in most, if not all, SOC models. This ambiguity
has hindered the formulation of precise relations betwee
SOC and other nonequilibrium critical phenomena [4,5].

In this Letter we reformulate SOC in terms of typical
concepts of nonequilibrium critical phenomena [5] by
using the dynamical single site mean-field (MF) theory
[6]. We provide a general scheme in which the details
of different models are included via effective parameter
and constraints. We mainly discuss sandpile models [2
with and without dissipation [7], but the formalism can
be directly applied to other stochastic SOC models, suc
as the forest-fire model [8]. We find two independent
critical parameters, i.e., relevant scaling fields, both with
critical value equal to zero, and, just in this double limit,
criticality is reached. We study the behavior of the orde
parameter and evaluate critical exponents. The resul
we obtain are in contrast with previous MF approache
[9,10]. This is due to a subtle inconsistency in the way
critical parameters have been chosen in previous work
We show that some MF exponents are exact also in low
dimensional systems because of conservation laws. O
predictions are confirmed by numerical simulations o
two-dimensional sandpile models.

Sandpile models are cellular automata with an inte
ger (or continuous) variablezi (energy) defined in ad-
dimensional lattice. At each time step an energy grain i
added to a randomly chosen site, until the energy of a sit
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reaches a thresholdzc. When this happens the site relaxe
szi ! zi 2 zcd, and energy is transferred to the neare
neighborsszj ! zj 1 yjd. For conservative models the
transferred energy equals the energy lost by the relax
site s

P
yj ­ zcd, at least on average. Usually, the onl

form of dissipation occurs at the boundary, from which e
ergy can leave the system. With these conditions the s
tem reaches a stationary state characterized by avalan
whose sizess are distributed as a power lawPssd , s2t

[2,11,12].
In order to simplify the description of these models, w

can reduce the number of states each site can assum
the following way. We divide sites ascritical, stable,
andactive[12]. Stable sites are those that do not becom
active if energy is added to them. Critical sites becom
active by the addition of energy. Active sites are relaxin
and transfer energy, providing an interaction with oth
sites, usually the nearest neighbors (nn). In this way
have mapped the system in a three state cellular automa
(CA) on a d-dimensional lattice [5,13]. To each site
i is associated with a variablesi , which can assume
three different values. A complete sets ; hsij of lattice
variables specifies a configuration of the system. T
dynamics is characterized by the operatorksjW js0l which
represents the transition rate from a configurations0 to
a configurations in a time stept. A well-established
technique to study these systems is the single site me
field approximation [6]. Denoting byra, rc, andrs the
average densities of sites in the active, critical, and sta
states, respectively, we write the following reaction ra
equations:

≠

≠t
rk ­ Fksra, rc, rsd, k ­ a, c, s . (1)

Because the densities must preserve normalization, two
the above equations supplemented with the conditionra 1

rc 1 rs ­ 1 are enough to describe completely the sy
tem. The explicit form of Eq. (1) can be derived from th
master equation of the model. This approach leaves ro
for a systematic treatment of higher order correlation
as is done in [6]. The derivation is straightforward bu
© 1997 The American Physical Society 4793
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lengthy, and it will be reported elsewhere [14]. In genera
Fk can be expanded as a series of the average densitie

Fk ­
X
n

fn
krn 1

X
n,,

fn,,
k rnr, 1 O sr3

nd , (2)

where the constant term is set to zero in order to get a s
tionary state. The first order terms are the transition ra
generated by the external driving fields or by spontaneo
transitions. The second and higher order terms char
terize transitions due to the interaction between differe
sites. In SOC models, only the active state generate
nontrivial dynamical evolution, while stable or critical site
can change their state only because of the external field
the presence of an active nn site. Since the critical po
is identified byra ­ 0, in correspondence with a vanish
ing external field, we can neglect second order terms
the density of active sites. The solutions of the stationa
equationss ≠

≠t rk ­ 0d are functions of the effective param
etersfn

k , fn,,
k , which depend on the details of the model.

is expected that the critical behavior is not affected by t
specific values of the parameters, while universality clas
will depend on constraints imposed on the equations,
cause of symmetries and conservation laws.

For the sake of clarity, we describe in detail the ca
of sandpile models. In this class of systems the on
external field is the flow of energy added to the syste
We can describe this driving by the probability per un
time h that a site will receive a grain of energy. The tota
amount of energy added to the system at each time s
will be Jin ­ hLd . The first order terms inFa are the
transition ratesa ! s, c and vice versa, independent o
nearest neighbor sites,

fa
a ­ 21, fs

a ­ 0, fc
a ­ h . (3)

Here we considered that active sites become stable wit
unitary rate, stable sites never become active, and crit
sites become active because of the external field.
addition, there is a single interaction term that describ
the creation of an active site from a critical site due
the relaxation of nn sites. We can write this term a
s g 2 edrcra, whereg is an effective rate that depend
on the geometry and the energy involved in the relaxati
process ande is the average energy dissipated in each s
[14]. We stress thate is also present for fully conservative
systems, being an effective term due to the bound
dissipation. Considering all these terms, we obtain

Fa ­ 2ra 1 hrc 1 s g 2 edrcra 1 O sr2
ad . (4)

A similar reasoning yields the functionsFc andFs. The
effect of the driving field on stable sites and the interacti
between active and stable sites deserve a discussion.
corresponding terms contribute to the transition rates !
c. In sandpile models, the energy conservation impose
local constraint in the rate equations. Energy is stored
stable sites until they become critical, but only a fractionu
of stable sites receiving an energy grain contributes to
s ! c process. Therefore, in this case, the reaction ra
will be given by thec ! a rates multiplied by the factoru.
4794
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For instance, a stable site will receive an energy grain wi
probabilityh, but it will turn critical only with probability
uh. The same reasoning holds for the interaction term.

After imposing stationarity, we get the following dy-
namical MF equations:

ra ­ hrc 1 s g 2 edrcra ,

ra ­ uhrs 1 us g 2 edrsra , (5)

ra ­ 1 2 rs 2 rc ,

where u, g are effective parameters which depend upo
the particular model,e represents the dissipation, andh
is the driving field. We expectg to be an independent
parameter of the model, whileu has to be obtained self-
consistently because it is fixed once the dynamical rul
of the CA are given.

After some algebra from Eqs. (5), we obtain a close
equation forra,

us g 2 edr2
a 1 f1 1 us1 1 h 2 g 1 edgra 2 uh ­ 0 .

(6)

We can expandrashd for small values of the fieldh. The
zero order term in the expansion vanishes and we obtai
leading linear term,

rashd ­
uh

1 1 u 2 ug 1 ue
. (7)

This result has to be consistent with the global conserv
tion law, which states that the average input energy flu
Jin must balance the dissipated fluxJout. In the stationary
state the conservation law can be written as

Jin ­ hLd ­ Jout ­ eraLd . (8)

By comparing Eq. (7) with Eq. (8) we obtain thatu ­
1ys g 2 1d. In the limit h ! 0 the densities are therefore
given by

ra ­
h
e

, rc ­
1
g

1 O shd ,

rs ­
g 2 1

g
1 O shd .

(9)

An estimate ofg can be obtained using a random neighbo
approximation, which yieldsg ­ 2d for the BTW model
[2] or g ­ 2 for the two level models [12]. Noticeably, in
the latter case,u ­ 1, i.e., all stable sites are subcritical,
as is expected for a two level model.

We now discuss the critical behavior of these system
The balance between conservation laws and dissipation
essential for the critical behavior of the model, as als
pointed out in [15]. The model is critical just in the
double limit h, e ! 0, hye ! 0, similar to the forest-fire
model [8]. In analogy with nonequilibrium phenomena
[5,13], the one particle density of active sites is theorder
parameterand goes to zero at the critical point. We ca
then distinguish several different regimes as a function
the parameters. The system has no stationary state
h . e, since ra would have to be greater than one to
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satisfy Eq. (8). The model is supercritical forh . 0 and
e . h, while for h ! 0 and e . 0 it is subcritical and
the dynamics displays avalanches. The phase diag
is somehow similar to that of usual second order ph
transitions, if we replaceh by the magnetic field ande by
the reduced temperature.

In the supercritical regime the order parameter is lin
in h,

ra , h1yd, d ­ 1 . (10)
This is analogous to the MF results obtained for cont
processes and other nonequilibrium CA [5,6,13], but it is
contrast with previous MF approaches for sandpile mod
[9,10], which yieldedd ­ 2. This incorrect result is due
to an inconsistency present in those studies. The sca
is expressed in terms of the average energyu ;

P
i rizi

which is treated as an independent control parame
As we have just shown,u and h are not independent.
Moreover,u cannot be considered as the control parame
even forh ­ 0, since it does not determine completely t
state of the system: The same value ofu describes severa
states corresponding to different values of densitiesri.
This is a typical property of CA with multiple absorbin
states [13]. In analogy with nonequilibrium CA it i
possible to define several other exponents characteri
the supercritical regime [14].

In the subcritical regime, the behavior of the syste
is dominated by the dissipation. This can be seen
studying the susceptibility,

x ;
≠rashd

≠h
­

1
e

, (11)

which diverges fore ­ 0. The system is in a subcritica
state for any value ofe different from zero. The critical
behavior is thus characterized by the scaling lawsx ,
e2g andj , e2n, wherej is the characteristic length.

We can use these exponents to characterize the co
vative sandpile model, since our MF analysis treats b
boundary and bulk dissipation. In conservative syste
when the size is increased, the effective dissipation
pends on the system size. We can therefore assume
e , L2m. At the same time, the characteristic leng
of the avalanches should go the same asj , L to en-
sure dissipation of energy. This implies that the scal
relation nm ­ 1 and thatx , Lmg. It is also possible
to show [14] that the susceptibility scales as the aver
avalanche size, and in two dimensions it has been fo
that ksl , L2 exactly for L ! ` [16]. The same resul
also holds in MF theory if we assume that the dynam
is diffusionlike [14,17,18].

Combining all the above results, we obtain a first set
MF exponents,

g ­ 1, m ­ 2, n ­ 1y2 . (12)
It is worthwhile to remark that it is not possible to defin
the equivalent of an exponentb because forh ­ 0 the
order parameter is always zero. We emphasize again thh
ande are both control parameters responsible for differ
regimes of the model.
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We have derived these exponents using only conserva
tion laws, therefore we expect they should also describe
low-dimensional sandpile models. We simulate numeri-
cally the BTW model with finite driving rateh and bound-
ary dissipation. We see in Fig. 1 that the density of active
sites goes to zero linearly withh sd ­ 1d with a slope that
increases with the system size asL2. This is in agreement
with the MF theory which predicts that the susceptibility
scales asLmg, with mg ­ 2. To observe more clearly the
scaling with dissipation of the sandpile model, we study the
BTW model withperiodic boundary conditions and fixed
dissipatione [19]. In Fig. 2 we plot the control param-
eter as a function ofhye. The scaling predicted by the
MF theory sg ­ 1d is verified with remarkable accuracy,
and we note that finite size corrections are not noticeable
in contrast with the case of boundary dissipation [11]. Fi-
nally, the exponentn ­ 1y2 has already been measured in
a two-dimensional dissipative sandpile model [7].

The dynamics in the subcritical regime takes place
in the form of avalanches. The exponents describing
avalanche distributions, in general, will not agree with the
MF results and have to be calculated by the renormal
ization group [20]. A complete characterization of MF
avalanche scaling has been obtained by using the theor
of branching processes [21]. Here, we reproduce these re
sults in an independent way. Following Grassberger and
de la Torre [5], we consider the probability that a small
perturbation activatess sites (an avalanche in the SOC
terminology),

Pss, ed ­ s2tG ssssyscsedddd , (13)

wheresc , e21ys is the cutoff in the avalanche size. The
perturbation decays in the stationary subcritical state as

rastd , thF stytcd . (14)

Here tc denotes the characteristic time which scales as
tc , e2D. We can obtain these exponents by solving

FIG. 1. The density of active sites in the BTW model with
boundary dissipation as a function of the driving rateh.
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FIG. 2. The density of active sites for the BTW model with
bulk dissipation e and periodic boundary conditions as a
function of hye for L ­ 64.

Eq. (1) for a small perturbation around the subcritica
stationary statesh ­ 0d,

≠ra

≠t
­ 2ra 1 s g 2 edrarc , (15)

where, as a first order approximation, we can repla
rc ­ 1yg. We obtain in this wayrastd , exps2etygd
which impliesh ­ 0 andD ­ 1. Introducing the scaling
laws sc , jD and tc , jz, it is possible to derive [14]
another set of scaling relations,

g ­
s2 2 td

s
, D ­

1
ns

, zn ­ D ,

st 2 1d
ns

­ z ,
(16)

from which we get the second set of MF critica
exponents,

z ­ 2, D ­ 4, t ­ 3y2, s ­ 1y2 , (17)

in agreement with the theory of branching processes [2
It is worthwhile to remark that the numerical value o
these exponents is the same as in other MF approac
[9,10], but their significance is completely different, bein
defined with respect to a different scaling field.

We have obtained a complete characterization of t
critical properties of the sandpile model. The critical sta
arises due to the fine-tuning of the driving rate and the d
sipation. This condition is enforced implicitly in the BTW
model by imposing time scale separation and dissipati
only through the boundaries, which makesh ande equal
to zero in the thermodynamic limit. In this formalism
SOC appears as a special case of nonequilibrium critic
phenomena, with the only peculiarity being that the crit
cal parameters are zero. The same MF analysis applied
the forest-fire model leads to similar conclusions [14,22
but the absence of conservation laws implies that MF e
ponents are not correct in low dimensions. We hope th
4796
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will clarify the precise significance of SOC in the fram
work of nonequilibrium critical phenomena.
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