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Localized Synchronization in Two Coupled Nonidentical Semiconductor Lasers
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The dynamics of two mutually coupled but nonidentical semiconductor lasers are studied
experimentally, numerically, and analytically for weak coupling. The lasers have dissimilar relaxation
oscillation frequencies and intensities, and their mutual coupling strength may be asymmetric. We
find that the coupled lasers exhibit a form of localized synchronization characterized by low amplitude
oscillations in one laser, but large oscillations in the second laser. [S0031-9007(97)03442-X]

PACS numbers: 42.65.Sf, 42.55.Px

Coupled arrays of semiconductor lasers are of great tecmances [12]. In contrast, instabilities in coupled semicon-
nological importance due to their potential application asductor lasers appear through Hopf bifurcations [7]. Syn-
high power coherent light sources [1]. A successful devicehronization in lasers was demonstrated experimentally
will require quality synchronization between lasers. Tradi-in spatially coupled—but nearly identical—pump modu-
tionally, synchronization describes the phenomenon of frelated Nd:YAG lasers for chaotic amplitude fluctuations
quency entrainment in a system of individual elements thafit]. It has been suggested theoretically that three evanes
have slightly different intrinsic frequencies but that lock to cently coupled identical semiconductor lasers can exhibit
one common frequency as they are weakly coupled [2]synchronized chaotic amplitude fluctuations for a range of
How weakly coupled oscillators synchronize is a commorcoupling strength [7]. Experimentally these predictions
guestion for a variety of systems from coupled mechanicahave yet to be verified.
oscillators, populations of biological cells, pairs of neu- In this Letter we demonstrate experimentally, numeri-
rons, and Josephson Junctions to chemical oscillators arélly, and analytically that a system of two mutually
lasers [3—7]. coupled but nonidentical semiconductor lasers can exhibit

Synchronization in a set of coupled oscillators is typi-a form of stable localized synchronization. Specifically,
cally modeled mathematically by considering units ofwe investigate a system of two coupled semiconductor
identical oscillators with the same amplitude but slightlylasers where each laser is pumped at a different level.
different frequencies that are symmetrically coupled [8].Thus they admit dissimilar free-running relaxation oscil-
Synchronization is found when the spread of the oscilating frequencies and intensities; in addition the coupling
lating frequencies is not too large. In a physical settingstrength may be asymmetric. Surprisingly we find that the
however, the individual oscillators can be quite dissimi-laser which is pumped at the lower level may entrain the
lar in amplitude as well as in oscillating frequency duelaser that is pumped at a considerably higher level. Here
to manufacturing constraints. Also, the coupling betweersynchronization means locking of the relaxation oscillation
the oscillators need not be symmetric. The possible formfequencies of the individual lasers. This is the first ex-
of synchronization between quite different oscillators areperimental demonstration of localized synchronization in
much harder to predict theoretically. For laser arrays, thig system of coupled nonidentical semiconductor lasers.
may depend on the particular laser system considered, suchln our system we couple two semiconductor lasers by
as solid state versus semiconductor lasers or evanescenthutually injecting light from one into the other (Fig. 1).
coupled versus mutually coupled. This configuration enables us in the experiment to in-

One new form of synchronizatiogcalized synchro- dependently control the coupling strength, the detuning
nization, appears when one or more oscillators in abetween the optical frequencies of the lasers, and their in-
coupled array exhibit large amplitude oscillations whereaslividual pump levels. We deliberately keep the coupling
the remaining oscillators exhibit small oscillations. These
spatially localized solutions are often called breathers and

are currently intensively investigated [9]. In the context of Laser 1 YL >| Laser 2

two coupled oscillators localized synchronization means Opt. Freq. o, m Opt. Freq. o,
that one of the oscillators exhibits strong oscillations Pump Level P, < Pump Level P,
and the other one weak oscillations [10]. This kind of L — ’

synchronization was recently analyzed theoretically in a

system of two weakly coupled solid state lasers .[11]' _ductor lasers mutually coupled at a distanteused to ob-
The response of two coupled lasers has been first StUd'Ps‘irve localized synchronization. We find that the laser which

for CO, [4] and Nd:YAG lasers [5,6]. In these systemss pumped at a high level may be forced to entrain to the laser
instabilities arise through successive subharmonic resavhich is pumped at a significantly lower level.

Schematic of a system of two nonidentical semicon-
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strength weak in order to avoid the excitation of more than
one external cavity mode [13,14]. We extract the under-
lying dynamics by observing the optical spectra [15] since
the intensity fluctuations in coupled semiconductor lasers
may take place at a subnanosecond time scale [16].

In the experiment we used two commercially available
single-mode semiconductor lasers (Sharp LT015 lasing at
830 nm) and coupled them at a distanceLof 20 cm.

Two collimating lenses were used to mode-match the
beams of the two lasers. The coupling strength was
controlled by a set of three polarizers so that less than
10~* of the intensity of one laser was injected into the
other. Symmetric mutual coupling, i.ep; = 1, (Fig. 1),

was ensured by imaging the beam of laser 1 and the light
of laser 2, which passed the polarizers and was reflected
from the front facet of laser 1, on the same spot. The
same procedure was repeated for the beam of laser 2 and
the transmitted beam of laser 1. Through adjustments of Frequency [ GHz ]

the temperature, th_e lasers were tuned to the Sa_m? O_ptqulg_ 2. Experimental optical spectra of the two lasers demon-
frequency, but their pump levels were kept dissimilar.strating localized synchronization. Arrows show the location of
Laser 1 was pumped at 46% and laser 2 at 54% abowgeak relaxation oscillation sidebands fat= 3.4 GHz (a) and
threshold, resulting in output powers of 25.4 and 31.4 mwat /2 = 4.0 GHz (b) for no coupling. The frequencies have

and free-running relaxation oscillation frequencieg pf= een measured by expanding the vertical scale. With weak
coupling (c) laser 1 exhibits strong undamped relaxation oscil-

3.4 (_;HZ and-_fZ =40 GH_Z' The optical spectrum Was |ation sidebands af; and (d) laser 2 exhibits weak sidebands
monitored with a scanning Fabry Perot interferometeriso atf,.

which had a free spectral range of 2000 GHz (Newport

ES;:(JVC;)S' I;2?190gftl%ﬂlj%i?sai:g;gflé;qg?ngfa?/?;hn?ééggnd is therefore much .smgller_ than the cross coupling. The
Figures 2(a) and 2(b) show the optical spectra of laser ;I"omplete set of equation is given by:

and laser 2 with no coupling. The arrows show the loca- E} = (1 + ia)NE| + mEx(t — 7) + iwE;, (1)

tion of the free-running relaxation oscillation frequencies .

f1 and f>. As the two lasers are weakly couplef], in Ey = (1 +ia)NoEr + mE(t — 7) + iwEr, (2)

laser 1 becomes undamped as indicated by strong relaxa-

tion oscillation sidebands gt and higher harmonics of

f1 [Fig. 2(c)]. The spectrum of laser 2 [Fig. 2(d)] taken ; )

for the same coupling strength shows sidebands that are INy = P2 = N2 = (1 + 2W)) | Eof". (4)

also located af; but that are considerably weaker. ThusPrime indicates a derivative with respect to time, where

the two coupled lasers exhibit a form of localized synchrotime is measured in units of the photon lifetims,

nization characterized by frequengy. Note that laser 2 « is the linewidth enhancement factan,, denotes the

is pumped at a high level, but is forced to oscillate at thenormalized optical frequencies of each laser, ghds

relaxation oscillation frequency of laser 1 which is pumpedhe ratio of the carrier lifetime to 7,. The delay time

at a lower level. We have also observed that laser 1 may = L/c7, corresponds to the time it takes for the light

be entrained to laser 2 at frequengy by slightly mis-  to travel the distancé from one laser to the otherpP,,

aligning the collimating lenses and thereby introducing ardenotes the pumping above threshold for each laser.

asymmetry. However, the individual coupling strength for We numerically integrated Eqgs. (1)—(4) using typical

each laser could not be estimated with sufficient accuracyparameters for the GaAlAs lasers used in the experiment:
The system of these two mutually coupled semiconduc? = 700, 7 = 476 (L =20 cm), @« = 5, w; = w,, and

tor lasers can be modeled using single-mode semicondues,, 7 = 2nm, n integer. The lasers were pumped at

tor laser rate equations. Each laser is described by orl.3% and 43.3% above threshold to match the relaxation

equation for the normalized complex electric fielf),and  oscillation frequencies of; and f, in the experiment.

one for the normalized carrier number above thresh@ld, Figures 3(a) and 3(b) show optical spectra computed

[7]. The coupling is accounted for by adding a delayedfor n; = 8.1 X 10™* and a ratio ofC = 7,/n; = 1.0.

electric field of laser 2E,(r — 7), with a real coupling The optical spectrum of laser 1 shows strong undamped

efficiency of n; to the equation for the complex electric relaxation oscillation sidebands at; [Fig. 3(a)] and

field of laser 1 and vice versa [14]. Self-coupling causedaser 2 also has sidebandsfatbut smaller in amplitude

by reflections from the front facet of one laser back into thgFig. 3(b)]. Thus laser 2 which is pumped at a higher

other is neglected because it is@f{n2) small(im = 1,2)  level is entrained to the relaxation oscillation frequency

4746

[ (@ laser 1] |[ () laser 2/

N
(=]
T

=
(=)
—
T

O#
o*;

[\S)
g
o

laser 2

Optical Spectrum [a.u.]

=
S
—T

| .

T (I S B R
6420246 -6-4-2024°E6

TN; = Py = Ny — (1 + 2N |E%, ®)



VOLUME 78, NUMBER 25 PHYSICAL REVIEW LETTERS 23UNE 1997

T T y T T T

0.1 0.2 analysis of Egs. (5)—(6), but are essential for all numerical
Coupling strength A, studies of these equations by providing the natural damp-

, ing term. Equations (5)—(6) have a simple interpretation
FIG. 3. Optical spectra of the two lasers computed fromyhan the delayr is neglected. Then the system reduces
Egs. (1)-(4) demonstrating localized synchronizatiery € to two ph illat illati i — 1
14ps, 7, =1ns, T =700, 7 =476, « =5, P, = 0313, phasé oscillators, one osciiating wid -
P, =0433, @ =w; 7 =81X107% and C=10). (0w =27f,/Q) and the other witho, = r, driven
(@) Laser 1 shows strong sidebands At (b) Laser nonlinearly by the cdsb; — ®,) term, their common
2 shows weak sidebands af;. (c) Corresponding nu- phase difference.
merical bifurcation diagram depicting the maxima of * perinent features of the bifurcation diagram of the
the deviation from steady state; and e,, where E,, = . . . .
JPu (1 + e,/a)exdi(®, + w,1)], versus the normalized 'ate e_quatlons_[Flg. 3(c)] can be stgdled by analyzing
coupling strengthA; = an,/Q. The lasers undergo a Hopf Slow time amplitude bifurcation equations valid for small
bifurcation into a limit cycle forA; = 0.1 and quasiperiodicity A,,. For simplicity we shall restrict our analysis of
appears forA; = 0.16 as a frequency close to the external the phase equations (5)—(6) to the case of small delays
cavity frequency is excited. (Qr < 1). The delay has the main effect of introducing

_ _ external cavity modes into the system for sufficiently

of laser 1. As we change the coupling ratiodo> 1.4,  strong coupling, a regime we avoid by considering only
we observe that laser 1 is entrained by laser 2fat weak coupling. A minor effect is to shift the bifurcation
where laser 2's sidebands are much stronger than thoggints, but it does not lead to new instabilities. For this

of laser 1. We thus found numerically that each lasegase the leading approximation of the solution is given by:
can exhibit localized synchronization at the relaxation

oscillation frequency of the other laser, depending ®; = A;sin(s + v1) + By, (1)
on the asymmetric coupling coefficien®. System- .

atic insightyinto the dyna?migal behavior of th)(/e system D2 = Asin(rs + v2) + By, (8)
can be gained by computing a corresponding bifurcatiofvherea,, andB,, andv,, are slowly varying functions of
diagram [Fig. 3(c)]. As the coupling strength is increasedy. They satisfy amplitude equations given by:

the lasers undergo a bifurcation from steady state into _

a limit cycle for which both lasers oscillate #i, laser Al = —&1A1/2 + rAJo(A2)J1(A) si® — @7), (9)

1 strongly and laser 2 weakly. The limit cycle then . _
bifurcatgsyinto a quasiperiodic s?{[ate. / Ay = —6A2/2 = (Aa/1)]o(A1)]1(A2) siN(O + @),

- 1LE,=JP,1+ e,/a)exdi(P, + w,t)] andN =
b . :
2 @ faser 1] || (®) laser 2 Qn,,/a into Egs. (1)—(4) and neglecting &1 (1/«) cor-
E 02 i rection terms, we obtain the following set of equations:
E .l i O + £ D) + ) + rAjcosyy =0,  (5)
= 0.
& ®) + &) + 204 + rAycosg, =0,  (6)
3 l T T T LI ll L] ; LI lII T H
B 00 6420246 6420246 where ; and ¢, are defined by, = ®,(s — Q1) —
= Frequency [ GHz ] Di(s) — w1 — As, 4o = @i(s — Q1) — Dofs) -
S w7 + As. In these equationsA,, = an,/Q is
o ol [ @ Taserl proportional to the mutual coupling strengtly,, =
g O laser2 o (1 + 2P,)/QT is the damping constant? = P,/P; is
Y s the ratio of the two pumps, aml = (w; — w,)/Q is the
< 1.0 Yt scaled detuning between the optical frequencies. Note
s @ o _1
g &:,:;.,f;ié@;ﬁ that the terms multiplying,, are® (T 2) small and_could'
5 0.0 e A T be neglected. They are not needed for our bifurcation
=

In order to understand the mechanism of localized syn- (10)
chronization analytically, we apply an asymptotic method )
that takes advantage of the two large parameters that 0" = —A1FJy(A1)Jo(A2), (11)

are inherently present in a semiconductor laser, the T — _ _

. . . ere w = + 2, ® =B, — By, and Jy, J
tio T and the linewidth enhancement facter[17]. We are Bea;sel (?ulnctig)nzs),/ and” = Czr’l cols(® n 607) _1
have verified numerically that the leading approximationr cog® — @7). From a linear stability analysis of the
is in good agreement with the solution of the full laser,.."< tion a;nd assumingr = 2n, we find a Hopf
equations [Eqgs. (1)—(4)] il" = 1000 ande = 10. FOr g reation point to a pure mode solution (only one of

_smﬁllerb\(?luest_ofx v(;/_e have fqund no quakl;.t:\twet_char;gesthe free-running relaxation frequencies is undamped)
in the bifurcation diagram (i.e., same bifurcation ran-4 "+ 0, A, = 0, and®, = /2 located at:

sitions). Introducings = Q¢, where Q = /2P,/T is
the free-running relaxation oscillation frequency of laser A =g /r. (12)
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At this point laser 1 oscillates strongly withr; = 1. tively different semiconductor lasers that are weakly
The solutions areb; = A;sins + B; and ®, = B, in coupled at a distance. One laser is forced to oscillate at
first approximation. A higher order analysis shows thatthe relaxation oscillation frequency of the other laser and
®, = (2rAy) (r2 — 1) 'J1(A)) sin® sins + B,, indicat-  with relatively smaller amplitude. In fact, synchronization
ing that laser 2 oscillates withr; = 1 but smaller am- may even appear in the form that the laser which is pumped
plitude. We verify the analytically predicted location at a higher level entrains to the laser which is pumped at
of the Hopf bifurcation point by integrating numerically a lower level. Physically, the relaxation oscillations can
Egs. (5)—(6) forT = 1000, o = 10, and a small delay of be undamped with a lower injection rate in the laser that
7 = 5. Figure 4 shows that both lasers undergo a Hopfs pumped at a lower level. Thus this laser will exhibit
bifurcation from steady state to a limit cycle & =  stronger amplitude oscillations and the strong oscillator
0.058, which agrees very well with the predicted value will entrain the weak oscillator. The weak oscillator then
of A; = 0.055. Laser 1 oscillates with a much stronger in return injects the same oscillation frequency back into
amplitude than laser 2, clearly showing localized synchrolaser 1. The oscillation is self-initiated and self-sustained.
nization. The branches then evolve into a mixed solutiormhese findings may have implications in large arrays of
where both relaxation oscillation frequencies are presensemiconductor lasers.
As we compare Fig. 4 to Fig. 3(c) we note the same se- AH. wishes to thank the NRC and AFOSR. T.E. was
guence of bifurcation transitions. Thus the phase equasupported by U.S. AFOSR Grant AFOSR F49620-95-
tions (5)—(6) are in good qualitative agreement with rateD065, NSF Grant DMS-9625843, NATO Grant 961113,
equations (1)—(4). the Fonds National de La Recherche Scientifique (Bel-
There exists a second Hopf bifurcation from the zerogium), and the InterUniversity Attraction Pole of the
intensity solution to a pure mode solutigan = 0, A, # 0,  Belgian government. The authors would like to thank
and®, = —7/2 at: R. Kalmus for technical assistance.
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