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Localized Synchronization in Two Coupled Nonidentical Semiconductor Lasers
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The dynamics of two mutually coupled but nonidentical semiconductor lasers are studied
experimentally, numerically, and analytically for weak coupling. The lasers have dissimilar relaxation
oscillation frequencies and intensities, and their mutual coupling strength may be asymmetric. We
find that the coupled lasers exhibit a form of localized synchronization characterized by low amplitude
oscillations in one laser, but large oscillations in the second laser. [S0031-9007(97)03442-X]

PACS numbers: 42.65.Sf, 42.55.Px
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Coupled arrays of semiconductor lasers are of great te
nological importance due to their potential application
high power coherent light sources [1]. A successful devi
will require quality synchronization between lasers. Trad
tionally, synchronization describes the phenomenon of f
quency entrainment in a system of individual elements th
have slightly different intrinsic frequencies but that lock t
one common frequency as they are weakly coupled [
How weakly coupled oscillators synchronize is a comm
question for a variety of systems from coupled mechani
oscillators, populations of biological cells, pairs of neu
rons, and Josephson Junctions to chemical oscillators
lasers [3–7].

Synchronization in a set of coupled oscillators is typ
cally modeled mathematically by considering units
identical oscillators with the same amplitude but slight
different frequencies that are symmetrically coupled [8
Synchronization is found when the spread of the osc
lating frequencies is not too large. In a physical settin
however, the individual oscillators can be quite dissim
lar in amplitude as well as in oscillating frequency du
to manufacturing constraints. Also, the coupling betwe
the oscillators need not be symmetric. The possible for
of synchronization between quite different oscillators a
much harder to predict theoretically. For laser arrays, t
may depend on the particular laser system considered, s
as solid state versus semiconductor lasers or evanesce
coupled versus mutually coupled.

One new form of synchronization,localized synchro-
nization, appears when one or more oscillators in
coupled array exhibit large amplitude oscillations where
the remaining oscillators exhibit small oscillations. The
spatially localized solutions are often called breathers a
are currently intensively investigated [9]. In the context
two coupled oscillators localized synchronization mea
that one of the oscillators exhibits strong oscillation
and the other one weak oscillations [10]. This kind o
synchronization was recently analyzed theoretically in
system of two weakly coupled solid state lasers [11].

The response of two coupled lasers has been first stud
for CO2 [4] and Nd:YAG lasers [5,6]. In these system
instabilities arise through successive subharmonic re
0031-9007y97y78(25)y4745(4)$10.00
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nances [12]. In contrast, instabilities in coupled semico
ductor lasers appear through Hopf bifurcations [7]. Syn
chronization in lasers was demonstrated experimenta
in spatially coupled—but nearly identical—pump modu
lated Nd:YAG lasers for chaotic amplitude fluctuation
[6]. It has been suggested theoretically that three evan
cently coupled identical semiconductor lasers can exhib
synchronized chaotic amplitude fluctuations for a range
coupling strength [7]. Experimentally these prediction
have yet to be verified.

In this Letter we demonstrate experimentally, numer
cally, and analytically that a system of two mutually
coupled but nonidentical semiconductor lasers can exhi
a form of stable localized synchronization. Specifically
we investigate a system of two coupled semiconduct
lasers where each laser is pumped at a different lev
Thus they admit dissimilar free-running relaxation osci
lating frequencies and intensities; in addition the couplin
strength may be asymmetric. Surprisingly we find that th
laser which is pumped at the lower level may entrain th
laser that is pumped at a considerably higher level. He
synchronization means locking of the relaxation oscillatio
frequencies of the individual lasers. This is the first ex
perimental demonstration of localized synchronization
a system of coupled nonidentical semiconductor lasers.

In our system we couple two semiconductor lasers b
mutually injecting light from one into the other (Fig. 1).
This configuration enables us in the experiment to in
dependently control the coupling strength, the detunin
between the optical frequencies of the lasers, and their
dividual pump levels. We deliberately keep the couplin

FIG. 1. Schematic of a system of two nonidentical semicon
ductor lasers mutually coupled at a distanceL used to ob-
serve localized synchronization. We find that the laser whic
is pumped at a high level may be forced to entrain to the las
which is pumped at a significantly lower level.
© 1997 The American Physical Society 4745
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strength weak in order to avoid the excitation of more th
one external cavity mode [13,14]. We extract the unde
lying dynamics by observing the optical spectra [15] sin
the intensity fluctuations in coupled semiconductor lase
may take place at a subnanosecond time scale [16].

In the experiment we used two commercially availab
single-mode semiconductor lasers (Sharp LT015 lasing
830 nm) and coupled them at a distance ofL ­ 20 cm.
Two collimating lenses were used to mode-match t
beams of the two lasers. The coupling strength w
controlled by a set of three polarizers so that less th
1024 of the intensity of one laser was injected into th
other. Symmetric mutual coupling, i.e.,h1 ­ h2 (Fig. 1),
was ensured by imaging the beam of laser 1 and the li
of laser 2, which passed the polarizers and was reflec
from the front facet of laser 1, on the same spot. T
same procedure was repeated for the beam of laser 2
the transmitted beam of laser 1. Through adjustments
the temperature, the lasers were tuned to the same op
frequency, but their pump levels were kept dissimila
Laser 1 was pumped at 46% and laser 2 at 54% ab
threshold, resulting in output powers of 25.4 and 31.4 mW
and free-running relaxation oscillation frequencies off1 ­
3.4 GHz andf2 ­ 4.0 GHz. The optical spectrum was
monitored with a scanning Fabry Perot interferomet
which had a free spectral range of 2000 GHz (Newpo
SR-240C). The optical spectra confirmed that each of
lasers was lasing at only one single external cavity mod

Figures 2(a) and 2(b) show the optical spectra of lase
and laser 2 with no coupling. The arrows show the loc
tion of the free-running relaxation oscillation frequencie
f1 and f2. As the two lasers are weakly coupled,f1 in
laser 1 becomes undamped as indicated by strong rela
tion oscillation sidebands atf1 and higher harmonics of
f1 [Fig. 2(c)]. The spectrum of laser 2 [Fig. 2(d)] take
for the same coupling strength shows sidebands that
also located atf1 but that are considerably weaker. Thu
the two coupled lasers exhibit a form of localized synchr
nization characterized by frequencyf1. Note that laser 2
is pumped at a high level, but is forced to oscillate at t
relaxation oscillation frequency of laser 1 which is pumpe
at a lower level. We have also observed that laser 1 m
be entrained to laser 2 at frequencyf2 by slightly mis-
aligning the collimating lenses and thereby introducing
asymmetry. However, the individual coupling strength f
each laser could not be estimated with sufficient accura

The system of these two mutually coupled semicondu
tor lasers can be modeled using single-mode semicond
tor laser rate equations. Each laser is described by
equation for the normalized complex electric field,E, and
one for the normalized carrier number above threshold,N
[7]. The coupling is accounted for by adding a delaye
electric field of laser 2,E2st 2 td, with a real coupling
efficiency of h1 to the equation for the complex electri
field of laser 1 and vice versa [14]. Self-coupling caus
by reflections from the front facet of one laser back into t
other is neglected because it is ofO sh2

md smallsm ­ 1, 2d
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FIG. 2. Experimental optical spectra of the two lasers demo
strating localized synchronization. Arrows show the location
weak relaxation oscillation sidebands atf1 ­ 3.4 GHz (a) and
at f2 ­ 4.0 GHz (b) for no coupling. The frequencies hav
been measured by expanding the vertical scale. With we
coupling (c) laser 1 exhibits strong undamped relaxation osc
lation sidebands atf1 and (d) laser 2 exhibits weak sideband
also atf1.

and is therefore much smaller than the cross coupling. T
complete set of equation is given by:

E0
1 ­ s1 1 iadN1E1 1 h1E2st 2 td 1 iv1E1 , (1)

E0
2 ­ s1 1 iadN2E2 1 h2E1st 2 td 1 iv2E2 , (2)

TN 0
1 ­ P1 2 N1 2 s1 1 2N1d jE1j

2, (3)

TN 0
2 ­ P2 2 N2 2 s1 1 2N2d jE2j

2. (4)

Prime indicates a derivative with respect to time, whe
time is measured in units of the photon lifetimetp,
a is the linewidth enhancement factor,vm denotes the
normalized optical frequencies of each laser, andT is
the ratio of the carrier lifetimets to tp. The delay time
t ­ Lyctp corresponds to the time it takes for the ligh
to travel the distanceL from one laser to the other.Pm

denotes the pumping above threshold for each laser.
We numerically integrated Eqs. (1)–(4) using typica

parameters for the GaAlAs lasers used in the experime
T ­ 700, t ­ 476 sL ­ 20 cmd, a ­ 5, v1 ­ v2, and
vmt ­ 2np, n integer. The lasers were pumped a
31.3% and 43.3% above threshold to match the relaxat
oscillation frequencies off1 and f2 in the experiment.
Figures 3(a) and 3(b) show optical spectra comput
for h1 ­ 8.1 3 1024 and a ratio ofC ; h2yh1 ­ 1.0.
The optical spectrum of laser 1 shows strong undamp
relaxation oscillation sidebands atf1 [Fig. 3(a)] and
laser 2 also has sidebands atf1 but smaller in amplitude
[Fig. 3(b)]. Thus laser 2 which is pumped at a highe
level is entrained to the relaxation oscillation frequenc
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FIG. 3. Optical spectra of the two lasers computed from
Eqs. (1)–(4) demonstrating localized synchronization (tp ­
1.4 ps, ts ­ 1 ns, T ­ 700, t ­ 476, a ­ 5, P1 ­ 0.313,
P2 ­ 0.433, v1 ­ v2, h1 ­ 8.1 3 1024, and C ­ 1.0).
(a) Laser 1 shows strong sidebands atf1. (b) Laser
2 shows weak sidebands atf1. (c) Corresponding nu-
merical bifurcation diagram depicting the maxima o
the deviation from steady statee1 and e2, where Em ­p

Pm s1 1 emyad expfisFm 1 vmtdg, versus the normalized
coupling strengthL1 ­ ah1yV. The lasers undergo a Hopf
bifurcation into a limit cycle forL1 ­ 0.1 and quasiperiodicity
appears forL1 ­ 0.16 as a frequency close to the externa
cavity frequency is excited.

of laser 1. As we change the coupling ratio toC . 1.4,
we observe that laser 1 is entrained by laser 2 atf2
where laser 2’s sidebands are much stronger than th
of laser 1. We thus found numerically that each las
can exhibit localized synchronization at the relaxatio
oscillation frequency of the other laser, dependin
on the asymmetric coupling coefficientC. System-
atic insight into the dynamical behavior of the system
can be gained by computing a corresponding bifurcatio
diagram [Fig. 3(c)]. As the coupling strength is increase
the lasers undergo a bifurcation from steady state in
a limit cycle for which both lasers oscillate atf1, laser
1 strongly and laser 2 weakly. The limit cycle then
bifurcates into a quasiperiodic state.

In order to understand the mechanism of localized sy
chronization analytically, we apply an asymptotic metho
that takes advantage of the two large parameters t
are inherently present in a semiconductor laser, the
tio T and the linewidth enhancement factora [17]. We
have verified numerically that the leading approximatio
is in good agreement with the solution of the full lase
equations [Eqs. (1)–(4)] ifT ­ 1000 and a ­ 10. For
smaller values ofa we have found no qualitative change
in the bifurcation diagram (i.e., same bifurcation tran
sitions). Introducings ­ Vt, where V ­

p
2P1yT is

the free-running relaxation oscillation frequency of lase
f
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1, Em ­
p

Pm s1 1 emyad expfisFm 1 vmtdg and N ­
Vnmya into Eqs. (1)–(4) and neglecting allO s1yad cor-
rection terms, we obtain the following set of equations:

F000
1 1 j1F00

1 1 F0
1 1 rL1 cosc1 ­ 0 , (5)

F000
2 1 j2F00

2 1 r2F0
2 1 rL2 cosc2 ­ 0 , (6)

where c1 and c2 are defined byc1 ­ F2ss 2 Vtd 2

F1ssd 2 v2t 2 Ds, c2 ­ F1ss 2 Vtd 2 F2ssd 2

v1t 1 Ds. In these equationsLm ­ ahmyV is
proportional to the mutual coupling strength,jm ­
s1 1 2PmdyVT is the damping constant,r2 ­ P2yP1 is
the ratio of the two pumps, andD ­ sv1 2 v2dyV is the
scaled detuning between the optical frequencies. N
that the terms multiplyingjm areO sT2 1

2 d small and could
be neglected. They are not needed for our bifurcati
analysis of Eqs. (5)–(6), but are essential for all numeric
studies of these equations by providing the natural dam
ing term. Equations (5)–(6) have a simple interpretatio
when the delayt is neglected. Then the system reduce
to two phase oscillators, one oscillating withs1 ­ 1
ssm ­ 2pfmyVd and the other withs2 ­ r, driven
nonlinearly by the cossF1 2 F2d term, their common
phase difference.

Pertinent features of the bifurcation diagram of th
rate equations [Fig. 3(c)] can be studied by analyzin
slow time amplitude bifurcation equations valid for sma
Lm. For simplicity we shall restrict our analysis o
the phase equations (5)–(6) to the case of small dela
sVt ø 1d. The delay has the main effect of introducin
external cavity modes into the system for sufficient
strong coupling, a regime we avoid by considering on
weak coupling. A minor effect is to shift the bifurcation
points, but it does not lead to new instabilities. For th
case the leading approximation of the solution is given b

F1 ­ A1 sinss 1 n1d 1 B1 , (7)

F2 ­ A2 sinsrs 1 n2d 1 B2 , (8)

whereAm andBm andnm are slowly varying functions of
s. They satisfy amplitude equations given by:

A0
1 ­ 2j1A1y2 1 rL1J0sA2dJ1sA1d sinsQ 2 vtd , (9)

A0
2 ­ 2j2A2y2 2 sL2yrdJ0sA1dJ1sA2d sinsQ 1 vtd ,

(10)

Q0 ­ 2L1FJ0sA1dJ0sA2d , (11)

where v ­ sv1 1 v2dy2, Q ­ B2 2 B1, and J0, J1

are Bessel functions andF ­ Cr21 cossQ 1 vtd 2

r cossQ 2 vtd. From a linear stability analysis of the
zero solution and assumingvt ­ 2np , we find a Hopf
bifurcation point to a pure mode solution (only one o
the free-running relaxation frequencies is undampe
A1 fi 0, A2 ­ 0, andQs ­ py2 located at:

LH1
1 ­ j1yr . (12)
4747
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At this point laser 1 oscillates strongly withs1 ­ 1.
The solutions areF1 ­ A1 sins 1 B1 and F2 ­ B2 in
first approximation. A higher order analysis shows th
F2 > s2rL2d sr2 2 1d21J1sA1d sinQ sins 1 B2, indicat-
ing that laser 2 oscillates withs1 ­ 1 but smaller am-
plitude. We verify the analytically predicted location
of the Hopf bifurcation point by integrating numerically
Eqs. (5)–(6) forT ­ 1000, a ­ 10, and a small delay of
t ­ 5. Figure 4 shows that both lasers undergo a Ho
bifurcation from steady state to a limit cycle atL1 ­
0.058, which agrees very well with the predicted valu
of L1 ­ 0.055. Laser 1 oscillates with a much stronge
amplitude than laser 2, clearly showing localized synchr
nization. The branches then evolve into a mixed solutio
where both relaxation oscillation frequencies are prese
As we compare Fig. 4 to Fig. 3(c) we note the same s
quence of bifurcation transitions. Thus the phase equ
tions (5)–(6) are in good qualitative agreement with ra
equations (1)–(4).

There exists a second Hopf bifurcation from the zer
intensity solution to a pure mode solutionA1 ­ 0, A2 fi 0,
andQs ­ 2py2 at:

LH2
1 ­ j2ryC . (13)

Both lasers now oscillate with frequencys2 ­ r. A
critical value of the asymmetric coupling coefficientCp ­
r2 determines which pure mode solutions will be th
stable one. Specifically, ifC , Cp we expect that laser 2
entrains to laser 1, and ifC . Cp laser 1 entrains to laser
2. This explains the numerical observation of switchin
between the two possible localized states asC increases.
Our analysis of the slow time equations (11)–(13) show
that two Hopf bifurcation points provide the mechanism
for localized states characterized by dominant oscillatio
for one of the two lasers.

In conclusion, we have demonstrated experimental
numerically, and analytically that localized synchroniza
tion is the main form of synchronization between two rela

FIG. 4. Numerical bifurcation diagram computed with
Eqs. (5)–(6) forT ­ 1000, t ­ 5, a ­ 10, P1 ­ 0.313, P2 ­
0.433, C ­ 1.0, and v1 ­ v2. Both lasers undergo a Hopf
bifurcation from steady state to a limit cycle atL1 ­ 0.058
very close to the analytically predicted ofL

H1
1 ­ 0.055. Laser

1 oscillates with a much larger amplitude than laser 2, clear
showing localized synchronization. The branches then beco
quasiperiodic at L1 ­ 0.43 as both relaxation oscillation
frequencies are undamped.
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tively different semiconductor lasers that are weakl
coupled at a distance. One laser is forced to oscillate
the relaxation oscillation frequency of the other laser an
with relatively smaller amplitude. In fact, synchronization
may even appear in the form that the laser which is pump
at a higher level entrains to the laser which is pumped
a lower level. Physically, the relaxation oscillations ca
be undamped with a lower injection rate in the laser th
is pumped at a lower level. Thus this laser will exhibi
stronger amplitude oscillations and the strong oscillat
will entrain the weak oscillator. The weak oscillator then
in return injects the same oscillation frequency back in
laser 1. The oscillation is self-initiated and self-sustaine
These findings may have implications in large arrays
semiconductor lasers.
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