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A method to detect the unstable periodic orbits of a chaotic dynamical system is developed.
given dynamical system our approach allows us to locate the unstable periodic cycles of, in pri
arbitrary length with a high accuracy. Preknowledge of the dynamical system is not required
demonstrate its reliability as well as efficiency we apply it to several two-dimensional chaotic map
the case of short chaotic time series we develop a dynamical algorithm which is based on a me
approach via the Voronoi diagram belonging to the time series. This algorithm enables us to dete
period cycles using a very small set of data points. The influence of noise is investigated in some
[S0031-9007(97)03430-3]
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It is a well established fact that the chaotic behavio
of low dimensional dynamical systems is to a large ex
tent determined by the position and the stability prope
ties of the unstable periodic orbits existing in the chaot
sea [1]. In particular, fractal dimensions, Lyapunov expo
nents, invariant measures, etc. of chaotic attractors can
expressed in terms of the periodic cycles [1,2]. Moreov
the quantum mechanical properties of classically chao
conservative systems possess, in the semiclassical regi
a series expansion with respect to the lengths and the s
bility coefficients of the periodic orbits. Since chaotic be
havior is inherent to many different dynamical system
periodic orbit theory possesses numerous applications a
is of relevance to different areas of physics.

Finding the unstable periodic orbits in the chaotic se
is, however, in practice, even for rather simple dynamic
systems, a difficult task. It usually requires a high numer
cal effort and bears also methodical problems. This is th
case if the dynamical law is given, but it is even mor
striking in situations where the only available information
about the system is an experimentally observed time s
ries. One has then often to extract all the properties of t
unstable periodic orbits of the underlying dynamical law
by using a small set of data. It is therefore not surprisin
that many recent works deal with the development of effi
cient methods for the detection of the periodic orbits bo
for a given dynamical law [3–5] as well as an experimen
tal time series [6–8].

In the present Letter we provide a new approach to th
problem. The basic ingredient of our method is a sui
able transformation applied to the discrete dynamical la
(or to the corresponding time series) in order to obtain
new system in which the unstable fixed points of the orig
nal system are stable but retain their original positions
space. It turns out that this transformation possesses
appealing geometrical interpretation in terms of a vect
field which is organized through the positions of the pe
riodic cycles (see below). The progress within our trea
ment is twofold: first we present a very efficient method t
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calculate periodic orbits of, in principle,arbitrary length
for a given discreteN-dimensional dynamical system with
any desired accuracy. No restriction in the dimension of
the system is assumed. Second, given a multidimensio
fully chaotic very short time series we develop a mea
field approach which allows us to determine the positio
of the lowest unstable cycles. The corresponding alg
rithm is stable with respect to noise and works remarka
well even in cases where the number of points in the ti
series is extremely small (,100 points for the Ikeda map),
i.e., for cases where the linear neighborhood of the cyc
is not visited at all.

Let us consider aN-dimensional discrete fully chaotic
dynamical system given by

U: $ri11 ­ $fs$rid . (1)

U, being fully chaotic, possesses only unstable fix
points. Our goal is to construct from Eq. (1) othe
dynamical systemsSk with the same number of fixed
points which are still at their original positions but hav
become stable through the transformationLk: U ! Sk .
The transformationLk changes therefore the stabilit
properties but not the location of the fixed points.
we succeed with our plan then the search for the fix
points (periodic cycles) of the systemU becomes a trivial
task: because of the stability of the fixed points in t
constructed systemSk every trajectory ofSk runs after
some iterations to a fixed point$rF . Per construction$rF

is then also a fixed point of the systemU. To fulfill the
requirement of the one to one correspondence between
fixed points ofU andSk the transformationLk should in
general be linear. ConsequentlySk takes on the following
appearance:

Sk : $ri11 ­ $ri 1 Lks $fs$rid 2 $rid , (2)

where Lk is an invertibleN 3 N constant matrix. It
is straightforward to show that the above definition (
satisfies the one to one correspondence of the fixed po
of U and those ofSk . The dynamical lawsU and Sk

possess fixed points at identical positions in space.
© 1997 The American Physical Society 4733
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Our next step is to stabilize the fixed points of th
transformed systemsSk by suitable choices ofLk. In
general different fixed points are then stable in differe
transformed systemsSk according to the different ma-
trices Lk. It turns out that if the absolute values o
the elements of the matricesLk are sufficiently small
(jlijj ø 1, i, j ­ 1, . . . , N) then there exists a universa
set of very restrictive matrices such that at least one m
trix belonging to this set transforms [via Eq. (2)] a give
unstable fixed point ofU to a stable fixed point of the cor-
respondingSk . In order to determine this set of matrice
let us consider the stability matricesTU andTSk of U and
Sk which obey the following relation:

Mk: TSk ­ 1 1 LksTU 2 1d . (3)

For TU we assume that it is real, invertible, and diago
nalizable. Since$rF is an unstable fixed point at least on
of the eigenvalues ofTU at $rF must possess an absolut
value greater than 1. In order to stabilize$rF we proceed
in two steps: first we use the parametrizationsLkdij ­
slCkdij with 1 ¿ l . 0 and Cij ­ Os1d. The matrix
Cij has to be chosen such that the real parts of all eige
values of the matrixCk ? sTU 2 1d are negative. If this
is achieved then the next step is to use a sufficiently sm
value for the parameterl, such that the eigenvalues of the
matrix 1 1 lCksTU 2 1d have absolute values less tha
1. It is obvious that this can always be achieved ifl is
sufficiently small.

It can be shown that it is always possible to find a in
volutory matrix Ck (C2

k ­ 1) such thatCksTU 2 1d has
eigenvalues with negative real parts. In fact, in practi
it turns out that an even more restricted form forCk is
sufficient to achieve stabilization, namely that all the m
trices correspond to special reflections in space. The e
ments of the matricesCk are thenCij [ h0, 61j and each
row or column contains only one element which is di
ferent from zero. The matricesCk are therefore orthogo-
nal. The numberaN of such matrices inN-dimensional
space is given byaN ­ N!2N (for a more elaborate discus-
sion, see [9]). Using an appropriateCk out of the above-
defined set and a sufficiently small value forl we always
succeed in making stable a chosen fixed point ofU. An
important fact is that each matrix of the sethCkj stabilizes
not only a single fixed point (periodic orbit) but a whole
rather general class of periodic orbits ranging up to arb
trarily high periods. In two dimensions, for example, an
hyperbolic fixed point with reflection belonging to arbi
trarily high iterates can be stabilized by using forCk the
unit matrix. A more detailed account of this subject goe
beyond the scope of the present paper and will be giv
elsewhere [9]. The most important advantage of the s
bilization process is its global character. Even points l
ing far from the linear neighborhood of the stabilized fixe
point are attracted to it after a few iterations of the tran
formed dynamical law. Because of the fact that differe
kinds of fixed points (e.g., hyperbolic with or without re
4734
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flection) are stabilized by different matricesCk our stabil-
ization procedure offers the possibility to distinguish i
the stabilization process among the different types of fix
points.

Having presented the basic features of our method
will discuss now briefly how it can be used to detec
the unstable periodic orbits of a givenN-dimensional
discrete fully chaotic dynamical system. Using Eq. (2
we transform the given systemU into a new system. For
the matrixLk ­ lCk we use a sufficiently small value of
l andC1 from hCkj, k ­ 1, . . . , aN . Iterating an arbitrary
starting point$r0 with S1 from Eq. (2) forward in time the
corresponding trajectory either arrives after a few steps
a fixed point $rF or the corresponding trajectory escape
to infinity. Subsequently we perform the same procedu
for the next matrixC2 of the setCk , etc. until all theaN

matricesCk have been used. In order to find the unstab
points of the periodic cycles of periodi we simply have to
replace$f in Eq. (2) by itsith iterate $fsid. Following the
above procedure it turns out that the number of starti
points needed to obtain all periodic orbits of a give
period on, for example, an attractor (see below) is on
a few times more than the number of periodic orbi
themselves. Suitable starting points can be obtained
taking, for example, a chaotic trajectory of the origina
systemU. There exists a simple but nevertheless reliab
strategy in order to ensure that all the periodic orbits of
given period have been detected. Assuming that a cert
number of periodic orbits of periodp have been found we
just have to iterate a multiple of the starting points used
the previous run. If no additional periodic orbits show u
the number of detected orbits can safely be assumed to
complete.

We applied our method to several 2D iterative map
like, for example, the Henon map, 2D logistic map, an
in particular, the more complicated Ikeda map which
given byxn11 ­ 1 1 0.9sxn coswn 2 yn sinwnd, yn11 ­
0.9sxn sinwn 1 yn coswnd, and wn ­ 0.4 2

6
11x2

n1y2
n
.

The method turns out to be fast and extremely accura
To demonstrate the reliability and efficiency of our metho
we have calculated all unstable periodic orbits of the Ike
attractor, i.e., their location and stability eigenvalues, up
period13 with a relative accuracy of10214. The number
of cycles with period 3, 5, 7, 9, 11, and 13, for example,
2, 4, 10, 26, 76, and 194, respectively. As an applicati
we have calculated the topological entropy of the attrac
and obtained 0.602. We emphasize that period 13 is
no means the maximal period which can be investigat
but was chosen for reasons of demonstration.

The transformed dynamical law (2) possesses an
pealing geometrical interpretation. Leth$rj , j ­ 1, . . . , mj
be a trajectory of the systemU. At each point of the tra-
jectory we define a vector field$VUs$rjd ­ $rj11 2 $rj. The
corresponding transformationLk represents then a reflec
tion of each vector$VUs$rjd combined with a subsequen
scale transformation of its length with the factorl. The
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resulting transformed vector field$VSk is then organized
globally around those fixed points which have been s
bilized. The flow of the vector field$VSk is, therefore,
centered and organized by the positions of the stable fix
points. The fact that the stabilized fixed points represe
the centers of the flow of the vector field$VSk

possesses a
counterpart in the original chaotic systemU: the chaotic
trajectory exhibits turning points in any direction of phas
space in the vicinity of the fixed point [10].

To illustrate the above-discussed properties we sh
in Fig. 1 the vector fields belonging to a chaotic traje
tory (100 points) on the attractor of the Ikeda map.
Fig. 1(a) the vector field$VUs$rjd is illustrated. The above-
mentioned turning point property around the fixed poi
$rF ­ s0.53, 0.25d can clearly be seen. In Fig. 1(b) the cor
responding vector field$VSk is illustrated. (For the fixed
point of the Ikeda map the stabilizing matrix isCk ­ 1.)
The global organization of the flow towards the fixed poin
$rF is evident. Obviously this property is not restricted o
specific for the linear neighborhood of the fixed point bu
provides a global feature of the dynamical system.

These properties provide an excellent starting point f
an application of our stabilization method to the analys
of time series. The important feature allowing us to app
our stabilization method to the analysis of time series
the following: to every stability matrixTU belonging to
an unstable fixed point of the original dynamical syste
there exists a matrixCn belonging to the above-defined
universal set which, applied to the dynamical law o
alternatively to the data of the time series, transforms th
fixed point to a stable one. To achieve stabilization of
fixed pointwe therefore do not assume the knowledge
TU at this fixed point:at least one of the matrices of the
sethCkj will cause stabilization of the unstable fixed poin
with stability matrixTU .

The global character of the organization of the flo
will be helpful in extracting the approximate position
of the fixed points within a very small set of data. I
the case of very short time series the linear neighborho
of the fixed points is frequently not visited at all by th
finite trajectory. Methods relying on the properties of th
dynamics in the linear neighborhood of the fixed point a

FIG. 1. (a) The vector field$VU trajectory consisting of 100
points on the Ikeda attractor. (b) The corresponding vec
field $VSk . (See text.)
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therefore expected to fail with respect to the determinat
of the fixed points (periodic orbits).

We begin our analysis by considering a finite mul
dimensional time seriesh$ri , i ­ 1, . . . , mj. We do not
address here the question of the extraction of a mu
dimensional time series from a one-dimensional expe
mental signal but instead refer the reader to the stand
reconstruction methods existing in the literature [11]. W
emphasize that our goal is to find the unstable fixed po
in a very short chaotic (and noisy) time series [8] and n
to extract as many periodic orbits as possible from a lo
time series. To achieve this we have developed a dyna
cal algorithm consisting of three main steps.

First we construct the so-called Voronoi diagram b
longing to the set of points of a given time series. T
Voronoi diagram is the union of all the Voronoi zone
For each point of the time series we construct its cor
sponding Voronoi zone. The Voronoi zone belonging
the point$rj is defined as the set of points which posses
smaller distance with respect to$rj than to any other point
of the time series. Subsequently the above-described
bilization procedure is used to create the vector field$VSk

associated with the time series. As a next step we app
mean-field approximation in order to obtain a vector fie
on the complete Voronoi diagram: to each point belon
ing to a certain Voronoi zone we assign the same vec
belonging to the point of the time series of this zone.
this way we construct a vector field defined in the ent
embedding space.

We then randomly choose a point belonging to t
Voronoi diagram and start iterating this point in the fo
lowing manner: each iteration is a translation by the ve
tor belonging to the corresponding point. After a numb
of steps the resulting trajectory has moved forward to
neighborhood of the stabilized fixed point. The trajecto
is then trapped by a few Voronoi zones. We call the
sulting set of data points corresponding to these Voro
zones a dynamically invariant set.

The determination of the coordinates of the fixed po
takes place in the third step. Knowing the dynamica
invariant set we proceed with the iterations using an ad
batic scaling procedure: everyms¿1d iterations the vector
field is rescaled to smaller and smaller values (typica
m ø 100). Finally the trajectory converges to the com
mon points of the Voronoi zones (the intersection po
of their boarder lines) of the invariant set. Its coordina
provide an excellent approximation for the position of t
fixed point.

In the following we apply this algorithm to the case o
the Ikeda map given above. Our time series consists
a trajectory ofonly 100 pointson the corresponding at
tractor. We emphasize that this trajectory does not v
the linear neighborhood of the fixed point at all and the
fore any method using properties of the linear neighb
hood in order to detect the unstable fixed points can
be successful. Using the above algorithm the result
4735
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the fixed point is $rF ­ s0.536, 0.225d which should be
compared with the exact value$rF ­ s0.53275, 0.24690d.
A graphical illustration of a typical path resulting from
our algorithm is illustrated in Fig. 2. Using 200 point
of the same trajectory we obtain for the period two cyc
s0.52184, 20.55542d; s0.57946, 0.51272d compared to the
exact valuess0.50984, 20.60837d; s0.62160, 0.60593d.

We studied the influence of noise on the stability
our results. Using the noisy data set$x

noisy
i ­ $xi 1 e $ji ,

where $xi represents the data set without noise, we vari
the parametere from 0.1 to 0.3 ratios of root means
square amplitudes of the attractor. We chose two differe
kinds of noise for the variable$ji: (a) uniform noise in
s21, 11d and (b) Gaussian distributed noise with ze
mean and a variance of0.2. To improve the statistics and
to avoid the effects of special configurations we appli
our algorithm to 100 randomly chosen starting points
the attractor. For the case ofe ­ 0.1 and 0.3 rms we
found a relative accuracy of the position of the fixed poi
of 4.5% and 16.1%, respectively, for uniform noise an
4.0% and 6.3%, respectively, for Gaussian noise.

We have presented a new method to detect unsta
periodic orbits in a fully chaotic discrete dynamical sy
tem. The most important advantage of our approach
its global character. If the dynamical law is given ou
method allows us to extract, in principle, arbitrarily hig
periodic orbits with a very high accuracy. We mentio
that our approach is not restricted to discrete dynami
systems. Periodic orbits in continuous dynamical syste
can be detected by using the Poincaré map which is a
crete map representing the original continuous dynami
system in a chosen hyperspace. Furthermore, based
this stabilization method, we developed a dynamical alg
rithm which allows us to detect unstable periodic orbits
a multidimensional chaotic time series using a very sm
set of (experimental) data points. This may be helpful f
the analysis of biological systems where in many cases
number of measurements is, due to experimental reas
extremely limited.
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computational aspects of the present work. The Europe
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FIG. 2. (a) The path resulting from the application of the
dynamic algorithm to a time series consisting of 100 data poin
of the Ikeda attractor. (b) A zoom of (a) in the neighborhoo
of the fixed point. The invariant set as well as the adiabat
scaling are clearly seen.
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