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Detecting Unstable Periodic Orbits of Chaotic Dynamical Systems
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A method to detect the unstable periodic orbits of a chaotic dynamical system is developed. For a
given dynamical system our approach allows us to locate the unstable periodic cycles of, in principle,
arbitrary length with a high accuracy. Preknowledge of the dynamical system is not required. To
demonstrate its reliability as well as efficiency we apply it to several two-dimensional chaotic maps. In
the case of short chaotic time series we develop a dynamical algorithm which is based on a mean-field
approach via the Voronoi diagram belonging to the time series. This algorithm enables us to detect low
period cycles using a very small set of data points. The influence of noise is investigated in some detail.
[S0031-9007(97)03430-3]

PACS numbers: 05.45.+b

It is a well established fact that the chaotic behaviorcalculate periodic orbits of, in principl@rbitrary length
of low dimensional dynamical systems is to a large ex{or a given discret&v/-dimensional dynamical system with
tent determined by the position and the stability properany desired accuracy No restriction in the dimension of
ties of the unstable periodic orbits existing in the chaoticdhe system is assumed. Second, given a multidimensional
sea [1]. In particular, fractal dimensions, Lyapunov expo-ully chaotic very short time series we develop a mean-
nents, invariant measures, etc. of chaotic attractors can bield approach which allows us to determine the positions
expressed in terms of the periodic cycles [1,2]. Moreovepof the lowest unstable cycles. The corresponding algo-
the quantum mechanical properties of classically chaoticithm is stable with respect to noise and works remarkably
conservative systems possess, in the semiclassical regimeell even in cases where the number of points in the time
a series expansion with respect to the lengths and the staeries is extremely smak<(100 points for the Ikeda map),
bility coefficients of the periodic orbits. Since chaotic be-i.e., for cases where the linear neighborhood of the cycles
havior is inherent to many different dynamical systemss not visited at all.
periodic orbit theory possesses numerous applications and Let us consider a&-dimensional discrete fully chaotic
is of relevance to different areas of physics. dynamical system given by

Finding the unstable periodic orbits in the chaotic sea U: Fie1 = f(7). 1)
is, however, in practice, even for rather simple dynamicab . . ' '
systems, a difficult task. It usually requires a high numeri-_ . being fully cha(_)tlc, possesses only unstable fixed
cal eﬁorf and bears aI56 methodical problems. This is thgomts._ Our goal is to construct from Eq. (1) pther

. . o DA dynamical systemss;, with the same number of fixed

case if the dynamical law is given, but it is even more

striking in situations where the only available information gomts which are still at their original positions but have
ecome stable through the transformatibp U — S;.

about the system is an experimentally observed time se: ) -
ries. One has then often to extract all the properties of theé_he transformationL changes therefore the stability

unstable periodic orbits of the underlying dynamical Iawpropertles but ot the location of the fixed points. ) I
. ! .. we succeed with our plan then the search for the fixed
by using a small set of data. It is therefore not surprisin

X .?points (periodic cycles) of the systebhbecomes a trivial
that many recent works deal with the development of eff task: because of the stability of the fixed points in the

cient methods for the detection of the periodic orbits both d ) P ¢
for a given dynamical law [3—5] as well as an experimen-cons‘tmCte | systenS, every trajectory o Si_runs after
tal time series [6-8] some iterations to a fixed poim. Per construction g
In the present Letter we provide a new approach to thi& thgn also afﬂ)r(]ed point of the systefn dTO fuISII the h
problem. The basic ingredient of our method is a suit-requlremento the one to one correspondence between the

able transformation applied to the discrete dynamical IaV\fllxed points ofU and S the transformatiorL; should in

(or to the corresponding time series) in order to obtain aqeneral be linear.  Consequensly takes on the following

new system in which the unstable fixed points of the Origi_appearance:

nal system are stable but retain their original positions in Sk Fivr = F o+ A(f(F) — 7o), )
space. It turns out that this transformation possesses avhere A, is an invertible N X N constant matrix. It
appealing geometrical interpretation in terms of a vectors straightforward to show that the above definition (2)
field which is organized through the positions of the pe-satisfies the one to one correspondence of the fixed points
riodic cycles (see below). The progress within our treat-of U and those ofS;. The dynamical lawg/ and S;
ment is twofold: first we present a very efficient method topossess fixed points at identical positions in space.
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Our next step is to stabilize the fixed points of theflection) are stabilized by different matric€s our stabil-
transformed systems; by suitable choices ofA;. In ization procedure offers the possibility to distinguish in
general different fixed points are then stable in differenthe stabilization process among the different types of fixed
transformed systems, according to the different ma- points.
trices A;. It turns out that if the absolute values of Having presented the basic features of our method we
the elements of the matriceA; are sufficiently small will discuss now briefly how it can be used to detect
(2]l < 1,4,j = 1,...,N) then there exists a universal the unstable periodic orbits of a giveM-dimensional
set of very restrictive matrices such that at least one madiscrete fully chaotic dynamical system. Using Eq. (2)
trix belonging to this set transforms [via Eq. (2)] a given we transform the given systeth into a new system. For
unstable fixed point o/ to a stable fixed point of the cor- the matrixA; = AC; we use a sufficiently small value of

respondingS;. In order to determine this set of matrices A andC; from{C}, k = 1,...,ay. lterating an arbitrary
let us consider the stability matric# andTs, of U and  starting point?, with S; from Eq. (2) forward in time the
S which obey the following relation: corresponding trajectory either arrives after a few steps at

) a fixed point7r or the corresponding trajectory escapes
Mi Ts, =1+ ATy — D). G o infinits. Subsequently we SerformgtheJsameyprocegure
For Ty we assume that it is real, invertible, and diago-for the next matrixC, of the setCy, etc. until all theay
nalizable. Since is an unstable fixed point at least one matricesC; have been used. In order to find the unstable
of the eigenvalues of'y at 7 must possess an absolute points of the periodic cycles of periadve simply have to
value greater than 1. In order to stabilize we proceed replacef in Eq. (2) by itsith |teratef(l . Following the
in two steps: first we use the parametrizatioky);; =  above procedure it turns out that the number of starting
(ACy)i; with 1 > A >0 and C;; = O(1). The matrix points needed to obtain all periodic orbits of a given
Ci; has to be chosen such that the real parts of all eigerperiod on, for example, an attractor (see below) is only
values of the matri>xC; - (Ty — 1) are negative. If this a few times more than the number of periodic orbits
is achieved then the next step is to use a sufficiently smathemselves. Suitable starting points can be obtained by
value for the parameter, such that the eigenvalues of the taking, for example, a chaotic trajectory of the original
matrix 1 + AC,(Ty — 1) have absolute values less thansystemU. There exists a simple but nevertheless reliable
1. It is obvious that this can always be achieved ifs  Strategy in order to ensure that all the periodic orbits of a
sufficiently small. given period have been detected. Assuming that a certain
It can be shown that it is always possible to find a in-number of periodic orbits of period have been found we
volutory matrix C; (C3 = 1) such thatCy(Ty — 1) has just have to iterate a multiple of the starting points used in
eigenvalues with negative real parts. In fact, in practicghe previous run. If no additional periodic orbits show up
it turns out that an even more restricted form @ is  the number of detected orbits can safely be assumed to be
sufficient to achieve stabilization, namely that all the ma-complete.
trices correspond to special reflections in space. The ele- We applied our method to several 2D iterative maps
ments of the matrice€; are thenC;; € {0, =1} and each like, for example, the Henon map, 2D logistic map, and,
row or column contains only one element which is dif-in particular, the more complicated lkeda map which is
ferent from zero. The matricas, are therefore orthogo- given byx,+; = 1 + 0.9(x, cosw, — y, Sinw,), yp+1 =
nal. The numbery of such matrices inv-dimensional 0.9(x, sinw, + y,cosw,), and w, =04 — T
space is given byy = N2V (for a more elaborate discus- The method turns out to be fast and extremely ‘acturate.
sion, see [9]). Using an appropriafg out of the above- To demonstrate the reliability and efficiency of our method
defined set and a sufficiently small value fowe always we have calculated all unstable periodic orbits of the Ikeda
succeed in making stable a chosen fixed point/of An  attractor, i.e., their location and stability eigenvalues, up to
important fact is that each matrix of the €%} stabilizes  period 13 with a relative accuracy of0~'*. The number
not only a single fixed point (periodic orbit) but a whole of cycles with period 3, 5, 7, 9, 11, and 13, for example, is
rather general class of periodic orbits ranging up to arbi2, 4, 10, 26, 76, and 194, respectively. As an application
trarily high periods. In two dimensions, for example, anywe have calculated the topological entropy of the attractor
hyperbolic fixed point with reflection belonging to arbi- and obtained 0.602. We emphasize that period 13 is by
trarily high iterates can be stabilized by using @ the N0 means the maximal period which can be investigated
unit matrix. A more detailed account of this subject goedut was chosen for reasons of demonstration.
beyond the scope of the present paper and will be given The transformed dynamical law (2) POSSGSSGS an ap-

elsewhere [9]. The most important advantage of the staPealing geometrical interpretation. L}, j = N
bilization process is its global character. Even points ly-be a trajectory of the systeni. At each point Of the tra-
ing far from the linear neighborhood of the stabilized fixedjectory we define a vector fleltle(r,) = Fjs1 — rj. The

point are attracted to it after a few iterations of the trans-corresponding transformatialy. represents then a reflec-
formed dynamical law. Because of the fact that differention of each vectorVU(r]) combined with a subsequent
kinds of fixed points (e.g., hyperbolic with or without re- scale transformation of its length with the factor The
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resulting transformed vector fielﬁgk is then organized therefore expected to fail with respect to the determination
globally around those fixed points which have been staef the fixed points (periodic orbits).
bilized. The flow of the vector field/s, is, therefore, ~ We begin our analysis by considering a finite multi-
centered and organized by the positions of the stable fixedimensional time serieé;, i = 1,...,m}. We do not
points. The fact that the stabilized fixed points represenaddress here the question of the extraction of a multi-
the centers of the flow of the vector field, possesses a d|men5|o_nal time series from a one-dimensional experi-
counterpart in the original chaotic systeth the chaotic ~mental signal but instead refer the reader to the standard
trajectory exhibits turning points in any direction of phasereconstruction methods existing in the literature [11]. We
space in the vicinity of the fixed point [10]. emphasize that our goal is to find the unstable fixed points
To illustrate the above-discussed properties we shoup @ very short chaotic (and noisy) time series [8] and not
in Fig. 1 the vector fields belonging to a chaotic trajec-t0 extract as many periodic orbits as possible from a long
tory (100 points) on the attractor of the lkeda map. Intime series. To achieve this we have developed a dynami-
Fig. 1(a) the vector field’; (7;) is illustrated. The above- Ccal algorithm consisting of three main steps.
mentioned turning point property around the fixed point First we construct the so-called Voronoi diagram be-
7r = (0.53,0.25) can clearly be seen. InFig. 1(b) the cor- longing to the set of points of a given time series. The
responding vector field’s, is illustrated. (For the fixed Voronoi diagram is the union of all the Voronoi zones.
point of the Ikeda map the stabilizing matrix@ = 1.) For each point of the time series we construct its corre-
The global organization of the flow towards the fixed pointSPOnding Voronoi zone. The Voronoi zone belonging to
7+ is evident. Obviously this property is not restricted or € Pointr; is defined as the set of points which possess a
specific for the linear neighborhood of the fixed point butSMaller distance with respect fp than to any other point
provides a global feature of the dynamical system. of the time series. Subsequently the above-described sta-
These properties provide an excellent starting point foPilization procedure is used to create the vector fiejd
an application of our stabilization method to the analysi?Ssociated with the time series. As a next step we apply a
of time series. The important feature allowing us to applymean-field approximation in order to obtain a vector field
our stabilization method to the analysis of time series iN the complete Voronoi diagram: to each point belong-
the following: to every stability matri’y belonging to NG to a certain Voronoi zone we assign the same vector
an unstable fixed point of the original dynamical systemP€longing to the point of the time series of this zone. In
there exists a matrixC, belonging to the above-defined this way we construct a vector field defined in the entire
universal set which, applied to the dynamical law or€mbedding space. , _
alternatively to the data of the time series, transforms this We then randomly choose a point belonging to the
fixed point to a stable one. To achieve stabilization of a/0ronoi diagram and start iterating this point in the fol-
fixed pointwe therefore do not assume the knowledge ofoWing manner: each iteration is a translation by the vec-
Ty at this fixed pointat least one of the matrices of the tor belonging to the corresponding point. After a number
set{C;} will cause stabilization of the unstable fixed point ©f Steps the resulting trajectory has moved forward to the
with stability matrixT. neighborhood of the stabilized fixed point. The trajectory
The global character of the organization of the flowiS then trapped by a few Voronoi zones. We call the re-
will be helpful in extracting the approximate positions Sulting set of data points corresponding to these Voronoi
of the fixed points within a very small set of data. InZones adynamically invariant set. _ ,
the case of very short time series the linear neighborhood The determination of the coordinates of the fixed point
of the fixed points is frequently not visited at all by the t@kes place in the third step. Knowing the dynamically
finite trajectory. Methods relying on the properties of theinvariant set we proceed with the iterations using an adia-

dynamics in the linear neighborhood of the fixed point are?@tic scaling procedure: eveny(>1) iterations the vector
field is rescaled to smaller and smaller values (typically

m = 100). Finally the trajectory converges to the com-
®) ] mon points of the Voronoi zones (the intersection point
Y aY of their boarder lines) of the invariant set. Its coordinates
= ] provide an excellent approximation for the position of the
- = f"?«: fixed point.
S=o g ] In the following we apply this algorithm to the case of
- the lkeda map given above. Our time series consists of
, , ] a trajectory ofonly 100 pointson the corresponding at-
0 1 2 0 1 2 tractor. We emphasize that this trajectory does not visit
X x the linear neighborhood of the fixed point at all and there-
FIG. 1. (a) The vector field’, trajectory consisting of 100 fore any method using properties of the linear neighbor-
points on the lkeda attractor. (b) The corresponding vectohood in order to detect the unstable fixed points cannot
field Vs,. (See text.) be successful. Using the above algorithm the result for
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the fixed point is¥r = (0.536,0.225) which should be

compared with the exact valug = (0.53275,0.24690).

A graphical illustration of a typical path resulting from ol

our algorithm is illustrated in Fig. 2. Using 200 points  »

of the same trajectory we obtain for the period two cycle -1}

(0.52184, —0.55542); (0.57946,0.51272) compared to the

exact valueg0.50984, —0.60837); (0.62160, 0.60593). ‘ , ,

We studied the influence of noise on the stability of 0 1 2 04 06 08

our results. Using the noisy data set =~ = % + €&;, x x

wherex; represents the data set without noise, we variegt|G. 2. (a) The path resulting from the application of the

the parametere from 0.1 to 0.3 ratios of root means dynamic algorithm to a time series consisting of 100 data points

square amplitudes of the attractor. We chose two differer®f the Ikeda attractor. (b) A zoom of (a) in the neighborhood

kinds of noise for the Variable:f,-: (a) uniform noise in g{;;ﬁﬁ fixed point. The invariant set as well as the adiabatic

. It ) ; g are clearly seen.

(=1,+1) and (b) Gaussian distributed noise with zero

mean and a variance 0f2. To improve the statistics and

to avoid the effects of special configurations we appliedcommunity (F.K.D.) is gratefully acknowledged for fi-
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