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We suggest that the close-coupling (CC) approach to ionization requires an infinite expansion of
square-integrable pseudostates to completely solve thee-H three-body breakup problem. The slow
convergence is due to the fact that the single-differential cross section, arising in CC calculations,
should have a step at the point where the two outgoing electrons have the same energy. However,
all discrete transitions, including total ionization, as well as angular differential ionization profiles, are
able to be described accurately in calculations using relatively small finite expansions of the total wave
function. [S0031-9007(97)03327-9]
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In recent times the convergent close-coupling (CCC
method for the calculation of electron-impact excitatio
and ionization of atoms has proved to be extreme
successful. It was developed initially for thee-H system
by Bray and Stelbovics [1] and demonstrated that th
discrete excitation and total ionization transitions could b
accurately obtained at any projectile energy by expandi
the total wave function with a sufficiently large numbe
N of square-integrable states obtained from an orthogon
Laguerre basis.

A critical test of the method is provided by the appli
cation to the Temkin-Poet model [2,3] ofe-H scattering
[4]. This model retains the complexity of a true three
body problem, but is simpler than the full problem in tha
it treats only states with zero orbital angular momentum
The ability to obtain accurate total ionization cross se
tions (TICS) has attracted a great deal of interest, a
there is now almost complete agreement between vario
numerical approaches [4–10].

The successful application to the Temkin-Poet mod
has also led to success when applied to real scatter
problems. The CCC theory yields good agreement wi
very detailed electron-impact discrete excitation data
the case of sodium [11] and helium [12]. The exper
mental electron-impact total ionization cross sections ha
been reproduced in the case of atomic hydrogen at a bro
energy range [13] and near threshold [14], He1 ion [15],
sodium [16,17], and helium [12].

The ability to obtain accurate total ionization cross se
tions has led to the extension of the CCC method to t
calculation of differential ionization cross sections [18
At a single projectile energy of 100 eV it was demon
strated that a single CCC calculation yielded accurate d
ferential cross sections for electron-impact excitation
the ground state of helium to states with principal qua
tum numbern # 3, as well as single- (SDCS), double-
(DDCS), and triple-differential (TDCS) ionization cross
sections [19]. Such an unprecedentedly successful res
tempted the authors to wonder if the CCC method was
“complete scattering theory.” Here we report that whil
this may be so at say energies of four or more time
0031-9007y97y78(25)y4721(4)$10.00
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the ionization threshold, at lower energies a systema
problem arises.

As the total energyE is decreased we find tha
convergence in the SDCS is not obtained. This does
affect the accuracy of the CCC results for the discre
transitions, but leads to increasingly incorrect magnitud
in the case of the DDCS and TDCS. However, in th
latter case the theory is still able to achieve correct angu
distributions in all kinematical regions, even when the tw
outgoing electrons have similar energy.

This is an astounding state of affairs that is contrary
our initial expectations. We know that the CCC theo
obtains correct TICS at all energies, yet the distribution
energy (SDCS), which yields TICS upon integration, do
not converge for small-enoughE as the number of expan-
sion statesN is increased. Then, if this least detailed o
the differential ionization cross sections is unstable, ho
can the more detailed ones (DDCS and TDCS) be accu
in angular profile yet yield magnitudes that are incorre
by a single (for a given ejected electron energy) mul
plicative constant? Furthermore, the CCC theory of ion
zation [18] is inconsistent with formal ionization theor
due to the fact that the cross sections are obtained from
incoherent sum of two pairs of coherently summed dire
and exchange amplitudes, which, however, is crucial
obtaining good agreement with experimental angular p
files in the equal-energy sharing kinematical region [20

The purpose of this work is to shed some light o
the above-mentioned anomalies. The details of the C
approach to ionization have been given by Bray and Fu
[18]. The idea is almost unaltered from application
discrete processes. The total wave function is expande
a set ofN negative- and positive-energy square-integrab
states, obtained by diagonalizing the target Hamiltoni
with a truncated orthogonal Laguerre basis. AsN is
increased the negative-energy states converge to the
discrete eigenstates of the target, and the positive-ene
states provide an increasingly dense integration rule
the target continuum [21]. The basis has been chosen
that we could be sure of “completeness” of the expans
as N ! `. Upon solution of the coupled equations
© 1997 The American Physical Society 4721
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scattering amplitudes, which are coherent combinatio
of a direct and an exchange part, are generated
all open No # N states. Amplitudes for the negative
energy states may be used directly to calculate discr
transition observations. The amplitudes for the positiv
energy states are placed onto the continuous scale
multiplying them by the overlap of the pseudostate wi
the true continuum wave function of the same energ
This transforms the sum over open positive-energy sta
to an integral over secondary electron energy from 0
E. At a specified secondary energye (other electron
has energyE 2 e) the ionization amplitudesfse, E 2 ed
are then obtained by interpolation over the amplitud
available at the discrete energies of the pseudostates
each target symmetry. However, as the CCC theo
distinguishes between the ionization events on either s
of Ey2 we combine the amplitudesfse, E 2 ed and
fsE 2 e, ed incoherently when making comparison with
experiment. This idea follows from obtaining TICS b
simply summing the cross sections for excitation of th
positive-energy pseudostates [22].

It is truly remarkable that the simple Temkin-Poe
model can be used to address nearly all of the abo
mentioned anomalies. Let us begin first by resolvin
why the TICS may be stable while the correspondin
SDCS is not. In Fig. 1 we present the results of CCCsNd
calculationssN ­ 10, . . . , 50d of the singlet and triplet
TICS in the Temkin-Poet model at the total energyE ­
2 Ry. We chose this energy because it is near the peak
both cross sections [23]. We see that with as few as
states relatively accurate estimates are obtained, but
rate (withN) of convergence is rather slow. Nevertheles
it is clear that the CCC method is numerically stab
and is able to handle as many as 50 states of the sa
target symmetry. This is a very important strength of th
method that allows us to perform the present study.

Now let us see the corresponding SDCS, given
Fig. 2. Concentrating on the triplet case first, we see ve

FIG. 1. The total ionization cross section in the Temkin-Po
model of e-H scattering at total energyE ­ 2 Ry, calculated
with the given number of statesN. Spin weights have been
included in the cross sections.
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good convergence in this SDCS. The individual point
are at the energies of the pseudostates with the cro
section (for the excitation of the pseudostate) being p
onto the continuous scale by multiplying by the absolut
value of the square of the overlap of the pseudostate a
the Coulomb wave of same energy [22]. The integra
over the secondary energy should yield the result give
in Fig. 1. A point to note here is that the triplet SDCS
vanishes atEy2, as must be the case by the Paul
principle, but in addition, remains zero at higher energie
This is a welcome result because the physics on either s
of Ey2 is identical, and double-counting problems hav
been avoided numerically by yielding nonzero SDCSsed
for only e , Ey2. In experiment, a symmetric (about
Ey2) SDCS would be measured, but to avoid doubl
counting the TICS is defined as the integral from 0 t
Ey2. So we see that in the close-coupling approac
to ionization we obtain convergent triplet TICS and
SDCS, and there are no formal theory problems, sinc
an incoherent combination of amplitudes on either sid
of Ey2 simply involves adding zero to a nonzero cros
section.

Now let us consider the singlet case. There is a cle
lack of convergence in going from 10 to 50 states. Ye
the integral for eachN should yield the stable result
given in Fig. 1. Note that the integration rule associate

FIG. 2. The triplet and singlet single-differential cross sec
tions in the Temkin-Poet model at total energyE ­ 2 Ry aris-
ing in the CCCsNd calculations. The singlet result denoted by
CCCs`d is an educated guess; see text for detail. The inte
gral over the SDCS, available at discrete points only, shou
approximate the results given in Fig. 1. The points have bee
connected with straight lines to help guide the eye.
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with the discrete points, at which the SDCS is calculate
must be known [24], or else an accurate interpolatio
must be implemented. The cross section atEy2 is small
but not zero, and diminishes further pastEy2. The
immediate conclusion is that the CCC theory is unable
obtain the correct singlet SDCS for any finiteN, and we
suspect neither can any other theory based on the tim
independent close-coupling formalism [10]. By contras
the time-dependent approach [25] appears not to ha
such problems.

From the simple model singlet SDCS results present
here we can explain all of the problems alluded to abov
The convergence in the TICS is assured by unitarity of t
close-coupling formalism. Since the total cross secti
(TCS) may be obtained by the optical theorem we on
require convergence in the elastic amplitude to have
accurate TCS. Subtracting the true discrete transitio
which also converge rapidly withN , yields a convergent
TICS. However, there is no requirement for convergen
within the SDCS. We have demonstrated earlier th
strength of unitarity in obtaining convergent TICS withou
convergent partial angular momentum contributions [16
here the same argument applies to yield convergent TI
without convergent SDCS.

Also given in Fig. 2 is a curve CCCs`d which we guess
would be the true singlet SDCS in this model if we wer
able to takeN ! `. We hypothesize that there should
be a step atEy2 with the SDCS being zero pastEy2.
There are two reasons for this. The first is numerica
As the number of states is increased we see that
slope of the SDCS atEy2 becomes increasingly vertica
and the magnitude of the SDCS pastEy2 diminishes.
We checked that this behavior also occurs at lower, ne
threshold energies. The second is that as in the triplet c
we need the SDCS to be zero pastEy2 in order to avoid
the incoherent combination of cross sections on either s
of Ey2. Given that the singlet SDCS is not zero atEy2,
we must have a step at this point. If this is so then it
clear why for any finiteN we do not obtain the correct
SDCS. An infinite discretization would be required t
obtain a step function. The choice for the CCCs`d curve
is constrained by having to give the correct TICS upo
integration and, just as for true SDCS, must have ze
slope ase ! Ey2 (from below). We took the functional
form to be quadratic.

The step function hypothesis also explains why th
SDCS, DDCS, and TDCS obtained from full CCC ca
culations are too small, when compared with experime
at theEy2 point by factors that increase with decreasin
E [26]. At smaller E the true SDCS flattens out with
the corresponding CCCs`d step atEy2 being particularly
large. The “averaging” by the discrete pseudostates o
the neighborhood aroundEy2 leads to a much too small
result. On the other hand, it also explains why the CC
theory yields very good results for largeE. In this case
the true SDCS atEy2 is particularly small with the step
d,
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that should arise in the CCC calculations being relative
less significant.

The last thing we need to do is explain why th
CCC theory is able to obtain accurate angular DDC
and TDCS profiles given the lack of convergence in th
SDCS. These profiles arise from distribution of electro
flux in various angular momentum channels. The
include target-space and projectile-space channels. W
sufficiently large (in angular momentum) calculation
there is no problem in obtaining convergence in th
angular momentum channels for most of the angu
regions of the cross sections. The error in the SDC
is fixed once a particularN has been taken, and is the
same irrespective of the partial wave. Since in practi
we use the same set of states for all partial waves the e
propagates in the same manner for all of them and we
left with the TDCS and DDCS results being in error b
a single multiplicative constant which may be obtaine
by comparison of the experimental and the calculat
SDCS. If, on the other hand, we chose a different s
of states for each partial wave, then there would not
any convergence in the angular profiles.

There is one feature of the presented results that is a
true in realistic calculations [20] that we are unable
explain. This is the fact that there is apparent convergen
in the SDCS atEy2. Though the slope of the single
SDCS varies atEy2 as a function ofN, the SDCS value
at Ey2 (after interpolation) appears relatively stable. Th
apparent convergence is unfortunate as it is to the wro
value, and has led us to needlessly suspect the accurac
experimental absolute value determination. Detailed jo
experimental and theoretical study ofe-He ionization at
a broad range of total and secondary energies makes
problem with the CCC results clear [26].

To summarize, the CCC theory yields correct resu
for all discrete transitions including total ionization at a
energies. Problems arise in the CCC calculations of t
SDCS whenever the true result atEy2 is of substantial
magnitude. Since we believe that the SDCS obtain
in the CCC calculations asN ! ` should be zero past
Ey2, a finite N calculation may be in substantial erro
depending on the size of the step atEy2. Thus, the
inconsistency with formal ionization theory arises due
the finite size of the calculation. However, if the sam
N states are used in each partial wave, as is typically
case, then correct DDCS and TDCS may be obtained
these are scaled by the ratio of the experimental to t
calculated SDCS.

Some years ago we had set out to understand just w
it means to expand the total wave function in a large s
of square-integrable states. We developed numerical te
niques towards this end, and together with the continu
growth in computational power, have finally been able
complete our original goals. We now can state with som
confidence what the close-coupling approach to electr
impact scattering will and will not get right. Resolution
4723
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of the discrepancy with formal ionization theory depend
on the contentious hypothesis that the SDCS calcula
via the close-coupling approach should be a step functi
thus requiring an infinite number of expansion states.
may not come as a surprise to a number of readers that
convenience of the square-integrable approach, employ
the same boundary conditions for the discrete and io
zation channels thereby doing away with the three-bo
boundary conditions [27], has resulted in the necessity
taking an infinite basis size in order to completely solv
the problem. Nevertheless, for practical purposes fin
basis CCC calculations still yield an amazing and unsu
passed amount of accurate information.

It will be very interesting to see the SDCS arising i
other theories. We are particularly looking forward t
the application of the time-dependent approaches as th
should be free of the difficulties encountered here usi
the time-independent close-coupling method.

The author is indebted to Dmitry Fursa, Ian McCarth
Chris Greene, Colston Chandler, and Bob Nesbet
many stimulating and rewarding discussions. Supp
of the Australian Research Council and The Flinde
University of South Australia is acknowledged. We ar
also indebted to the South Australian Centre for Hig
Performance Computing and Communications.

*Electronic address: I.Bray@flinders.edu.au
[1] I. Bray and A. T. Stelbovics, Phys. Rev. A46, 6995

(1992).
[2] A. Temkin, Phys. Rev.126, 130 (1962).
[3] R. Poet, J. Phys. B11, 3081 (1978).
[4] I. Bray and A. T. Stelbovics, Phys. Rev. Lett.69, 53

(1992).
4724
d
,

t
he
g

i-
y
r

e
-

se
g

r
t

[5] J. Callaway and D. H. Oza, Phys. Rev. A29, 2416 (1984).
[6] D. Kato and S. Watanabe, Phys. Rev. Lett.74, 2443

(1995).
[7] K. W. Meyer, C. H. Greene, and I. Bray, Phys. Rev. A52,

1334 (1995).
[8] W. Ihra, M. Draeger, G. Handke, and H. Friedrich, Phy

Rev. A 52, 3752 (1995).
[9] M. S. Pindzola and D. R. Schultz, Phys. Rev. A53, 1525

(1996).
[10] K. Bartschat and I. Bray, Phys. Rev. A54, R1002 (1996).
[11] I. Bray, Phys. Rev. A49, 1066 (1994).
[12] D. V. Fursa and I. Bray, Phys. Rev. A52, 1279 (1995).
[13] I. Bray and A. T. Stelbovics, Phys. Rev. Lett.70, 746

(1993).
[14] K. Bartschat and I. Bray, J. Phys. B29, L577 (1996).
[15] I. Bray, I. E. McCarthy, J. Wigley, and A. T. Stelbovics

J. Phys. B26, L831 (1993).
[16] I. Bray, Phys. Rev. Lett.73, 1088 (1994).
[17] A. R. Johnston and P. D. Burrow, Phys. Rev. A51, R1735

(1995).
[18] I. Bray and D. V. Fursa, Phys. Rev. A54, 2991 (1996).
[19] I. Bray and D. V. Fursa, Phys. Rev. Lett.76, 2674 (1996).
[20] I. Bray, D. V. Fursa, J. Röder, and H. Ehrhardt, J. Phys.

30, L101 (1997).
[21] I. Bray and A. T. Stelbovics, Comput. Phys. Commun.85,

1 (1995).
[22] I. Bray and D. V. Fursa, J. Phys. B28, L435 (1995).
[23] I. Bray and A. T. Stelbovics, At. Data Nucl. Data Table

58, 67 (1994).
[24] D. A. Konovalov, I. Bray, and I. E. McCarthy, J. Phys. B

27, L413 (1994).
[25] M. S. Pindzola and F. Robicheaux (to be published).
[26] J. Röder, H. Ehrhardt, I. Bray, and D. V. Fursa, J. Phys.

30, 1309 (1997).
[27] M. Brauner, J. S. Briggs, and H. Klar, J. Phys. B22, 2265

(1989).


