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Close-Coupling Theory of lonization: Successes and Failures
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We suggest that the close-coupling (CC) approach to ionization requires an infinite expansion of
square-integrable pseudostates to completely solvectHethree-body breakup problem. The slow
convergence is due to the fact that the single-differential cross section, arising in CC calculations,
should have a step at the point where the two outgoing electrons have the same energy. However,
all discrete transitions, including total ionization, as well as angular differential ionization profiles, are
able to be described accurately in calculations using relatively small finite expansions of the total wave
function. [S0031-9007(97)03327-9]

PACS numbers: 34.80.Bm, 34.80.Dp

In recent times the convergent close-coupling (CCC}he ionization threshold, at lower energies a systematic
method for the calculation of electron-impact excitationproblem arises.
and ionization of atoms has proved to be extremely As the total energyE is decreased we find that
successful. It was developed initially for tkeH system  convergence in the SDCS is not obtained. This does not
by Bray and Stelbovics [1] and demonstrated that theffect the accuracy of the CCC results for the discrete
discrete excitation and total ionization transitions could bdransitions, but leads to increasingly incorrect magnitudes
accurately obtained at any projectile energy by expandingh the case of the DDCS and TDCS. However, in the
the total wave function with a sufficiently large number latter case the theory is still able to achieve correct angular
N of square-integrable states obtained from an orthogonalistributions in all kinematical regions, even when the two
Laguerre basis. outgoing electrons have similar energy.

A critical test of the method is provided by the appli- This is an astounding state of affairs that is contrary to
cation to the Temkin-Poet model [2,3] efH scattering our initial expectations. We know that the CCC theory
[4]. This model retains the complexity of a true three-obtains correct TICS at all energies, yet the distribution in
body problem, but is simpler than the full problem in thatenergy (SDCS), which yields TICS upon integration, does
it treats only states with zero orbital angular momentumnot converge for small-enough as the number of expan-
The ability to obtain accurate total ionization cross secsion statesV is increased. Then, if this least detailed of
tions (TICS) has attracted a great deal of interest, anthe differential ionization cross sections is unstable, how
there is now almost complete agreement between variousan the more detailed ones (DDCS and TDCS) be accurate
numerical approaches [4-10]. in angular profile yet yield magnitudes that are incorrect

The successful application to the Temkin-Poet modeby a single (for a given ejected electron energy) multi-
has also led to success when applied to real scatteringicative constant? Furthermore, the CCC theory of ioni-
problems. The CCC theory yields good agreement wittzation [18] is inconsistent with formal ionization theory
very detailed electron-impact discrete excitation data irdue to the fact that the cross sections are obtained from an
the case of sodium [11] and helium [12]. The experi-incoherent sum of two pairs of coherently summed direct
mental electron-impact total ionization cross sections havand exchange amplitudes, which, however, is crucial for
been reproduced in the case of atomic hydrogen at a broabtaining good agreement with experimental angular pro-
energy range [13] and near threshold [14],'Hen [15], files in the equal-energy sharing kinematical region [20].
sodium [16,17], and helium [12]. The purpose of this work is to shed some light on

The ability to obtain accurate total ionization cross secthe above-mentioned anomalies. The details of the CCC
tions has led to the extension of the CCC method to thapproach to ionization have been given by Bray and Fursa
calculation of differential ionization cross sections [18].[18]. The idea is almost unaltered from application to
At a single projectile energy of 100 eV it was demon- discrete processes. The total wave function is expanded in
strated that a single CCC calculation yielded accurate difa set of N negative- and positive-energy square-integrable
ferential cross sections for electron-impact excitation ofstates, obtained by diagonalizing the target Hamiltonian
the ground state of helium to states with principal quanwith a truncated orthogonal Laguerre basis. KAsis
tum numbern = 3, as well as single- (SDCS), double- increased the negative-energy states converge to the true
(DDCS), and triple-differential (TDCS) ionization cross discrete eigenstates of the target, and the positive-energy
sections [19]. Such an unprecedentedly successful residtates provide an increasingly dense integration rule for
tempted the authors to wonder if the CCC method was ¢he target continuum [21]. The basis has been chosen so
“complete scattering theory.” Here we report that whilethat we could be sure of “completeness” of the expansion
this may be so at say energies of four or more timesas N — o«. Upon solution of the coupled equations,
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scattering amplitudes, which are coherent combinationgood convergence in this SDCS. The individual points
of a direct and an exchange part, are generated fare at the energies of the pseudostates with the cross
all open N, = N states. Amplitudes for the negative- section (for the excitation of the pseudostate) being put
energy states may be used directly to calculate discretento the continuous scale by multiplying by the absolute
transition observations. The amplitudes for the positivevalue of the square of the overlap of the pseudostate and
energy states are placed onto the continuous scale lifje Coulomb wave of same energy [22]. The integral
multiplying them by the overlap of the pseudostate withover the secondary energy should yield the result given
the true continuum wave function of the same energyin Fig. 1. A point to note here is that the triplet SDCS
This transforms the sum over open positive-energy stategmnishes atk/2, as must be the case by the Pauli
to an integral over secondary electron energy from O tgrinciple, but in addition, remains zero at higher energies.
E. At a specified secondary energy (other electron This is a welcome result because the physics on either side
has energy — ¢) the ionization amplitudeg(e, E — ¢)  of E/2 is identical, and double-counting problems have
are then obtained by interpolation over the amplitudedeen avoided numerically by yielding nonzero SD&S
available at the discrete energies of the pseudostates ftar only e < E/2. In experiment, a symmetric (about
each target symmetry. However, as the CCC theor¥/2) SDCS would be measured, but to avoid double
distinguishes between the ionization events on either sideounting the TICS is defined as the integral from 0 to
of E/2 we combine the amplitudeg(e,E — ¢) and E/2. So we see that in the close-coupling approach
f(E — e,e) incoherently when making comparison with to ionization we obtain convergent triplet TICS and
experiment. This idea follows from obtaining TICS by SDCS, and there are no formal theory problems, since
simply summing the cross sections for excitation of thean incoherent combination of amplitudes on either side
positive-energy pseudostates [22]. of E/2 simply involves adding zero to a nonzero cross
It is truly remarkable that the simple Temkin-Poet section.
model can be used to address nearly all of the above- Now let us consider the singlet case. There is a clear
mentioned anomalies. Let us begin first by resolvinglack of convergence in going from 10 to 50 states. Yet
why the TICS may be stable while the correspondinghe integral for eachv should yield the stable result
SDCS is not. In Fig. 1 we present the results of Q8L given in Fig. 1. Note that the integration rule associated
calculations(N = 10,...,50) of the singlet and triplet
TICS in the Temkin-Poet model at the total enelfgy=
2 Ry. We chose this energy because it is near the peaks of
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tions in the Temkin-Poet model at total energy= 2 Ry aris-

ing in the CCQN) calculations. The singlet result denoted by
FIG. 1. The total ionization cross section in the Temkin-PoetCCCO«) is an educated guess; see text for detail. The inte-
model of e-H scattering at total energf = 2 Ry, calculated gral over the SDCS, available at discrete points only, should
with the given number of state¥. Spin weights have been approximate the results given in Fig. 1. The points have been
included in the cross sections. connected with straight lines to help guide the eye.
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with the discrete points, at which the SDCS is calculatedthat should arise in the CCC calculations being relatively
must be known [24], or else an accurate interpolatiorless significant.
must be implemented. The cross sectiorE 42 is small The last thing we need to do is explain why the
but not zero, and diminishes further paBf2. The CCC theory is able to obtain accurate angular DDCS
immediate conclusion is that the CCC theory is unable tand TDCS profiles given the lack of convergence in the
obtain the correct singlet SDCS for any finite and we SDCS. These profiles arise from distribution of electron
suspect neither can any other theory based on the timélux in various angular momentum channels. These
independent close-coupling formalism [10]. By contrast,include target-space and projectile-space channels. With
the time-dependent approach [25] appears not to havaufficiently large (in angular momentum) calculations
such problems. there is no problem in obtaining convergence in the
From the simple model singlet SDCS results presentedngular momentum channels for most of the angular
here we can explain all of the problems alluded to aboveregions of the cross sections. The error in the SDCS
The convergence in the TICS is assured by unitarity of thés fixed once a particulaN has been taken, and is the
close-coupling formalism. Since the total cross sectiorsame irrespective of the partial wave. Since in practice
(TCS) may be obtained by the optical theorem we onlywe use the same set of states for all partial waves the error
require convergence in the elastic amplitude to have apropagates in the same manner for all of them and we are
accurate TCS. Subtracting the true discrete transitiondeft with the TDCS and DDCS results being in error by
which also converge rapidly withv, yields a convergent a single multiplicative constant which may be obtained
TICS. However, there is no requirement for convergencdy comparison of the experimental and the calculated
within the SDCS. We have demonstrated earlier theSDCS. |If, on the other hand, we chose a different set
strength of unitarity in obtaining convergent TICS without of states for each partial wave, then there would not be
convergent partial angular momentum contributions [16];any convergence in the angular profiles.
here the same argument applies to yield convergent TICS There is one feature of the presented results that is also
without convergent SDCS. true in realistic calculations [20] that we are unable to
Also given in Fig. 2 is a curve CO@) which we guess explain. This is the fact that there is apparent convergence
would be the true singlet SDCS in this model if we werein the SDCS att/2. Though the slope of the singlet
able to takeN — . We hypothesize that there should SDCS varies aE/2 as a function ofV, the SDCS value
be a step atZ/2 with the SDCS being zero pag¢t/2. atE/2 (after interpolation) appears relatively stable. The
There are two reasons for this. The first is numericalapparent convergence is unfortunate as it is to the wrong
As the number of states is increased we see that thealue, and has led us to needlessly suspect the accuracy of
slope of the SDCS ak/2 becomes increasingly vertical experimental absolute value determination. Detailed joint
and the magnitude of the SDCS pasf2 diminishes. experimental and theoretical study efHe ionization at
We checked that this behavior also occurs at lower, nea broad range of total and secondary energies makes the
threshold energies. The second is that as in the triplet caggoblem with the CCC results clear [26].
we need the SDCS to be zero p&st2 in order to avoid To summarize, the CCC theory yields correct results
the incoherent combination of cross sections on either sidir all discrete transitions including total ionization at all
of E/2. Given that the singlet SDCS is not zeroBt2, energies. Problems arise in the CCC calculations of the
we must have a step at this point. If this is so then it isSDCS whenever the true result Bf2 is of substantial
clear why for any finiteN we do not obtain the correct magnitude. Since we believe that the SDCS obtained
SDCS. An infinite discretization would be required toin the CCC calculations a& — o should be zero past
obtain a step function. The choice for the C@Ccurve E/2, a finite N calculation may be in substantial error
is constrained by having to give the correct TICS upondepending on the size of the step BEf2. Thus, the
integration and, just as for true SDCS, must have zerinconsistency with formal ionization theory arises due to
slope ase — E/2 (from below). We took the functional the finite size of the calculation. However, if the same
form to be quadratic. N states are used in each partial wave, as is typically the
The step function hypothesis also explains why thecase, then correct DDCS and TDCS may be obtained if
SDCS, DDCS, and TDCS obtained from full CCC cal-these are scaled by the ratio of the experimental to the
culations are too small, when compared with experimentgalculated SDCS.
at the E/2 point by factors that increase with decreasing Some years ago we had set out to understand just what
E [26]. At smaller E the true SDCS flattens out with it means to expand the total wave function in a large set
the corresponding CA®) step atE/2 being particularly  of square-integrable states. We developed numerical tech-
large. The “averaging” by the discrete pseudostates ovariques towards this end, and together with the continued
the neighborhood around/2 leads to a much too small growth in computational power, have finally been able to
result. On the other hand, it also explains why the CCQcomplete our original goals. We now can state with some
theory vyields very good results for large In this case confidence what the close-coupling approach to electron
the true SDCS aE/2 is particularly small with the step impact scattering will and will not get right. Resolution
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