
VOLUME 78, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 23 JUNE 1997

cut in
atom
every

uations
-9007
Phase and Phase Diffusion of a Split Bose-Einstein Condensate

Juha Javanainen
Department of Physics, University of Connecticut, Storrs, Connecticut 06269-3046

Martin Wilkens
Fakultät für Physik, Universität Konstantz, 78434 Konstantz, Germany

(Received 25 February 1997)

We analyze theoretically an experiment in which a trapped Bose-Einstein condensate is
half, and the parts are subsequently allowed to interfere. If the delay between cutting and
detection is small, the interference pattern of the two halves of the condensate is the same in
experiment. However, for longer delays the spatial phase of the interference shows random fluct
from one experiment to the other. This phase diffusion is characterized quantitatively. [S0031
(97)03441-8]
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Progress in experiments with weakly interacting Bose
Einstein condensates in alkali vapors [1–4] has spurr
a vigorous interest in the phase of the condensate.
condensed-matter physics it is routinely assumed that,
the process of spontaneous breaking of gauge symmetr
condensate picks up a phase akin to the phase of the elec
field of laser light [5,6]. The phase should lead to spati
interference of two condensates [7–10], and analogs
the Josephson effect [11,12]. Recently it has transpir
that the assumption of spontaneous symmetry breaking
unnecessary for the explanation of these effects. Instead
measurement looking for interference of two condensat
will find the characteristic consequences of the phase, ev
if there is no phase in the initial state of the system [7,9,13
16]. Just as the phase of laser light diffuses, it is als
becoming clear that the observed phase of the condens
is subject to random time evolution [17–21]. Here th
analog to lasers is not entirely accurate, though, becau
in a condensate the mechanism of phase diffusion is t
interactions between the atoms.

Experimental observations of spatial interference o
two condensates have been reported by the MIT gro
[3]. Their key technical innovation is the capability to
split the magnetic trap holding a condensate into two b
making use of the dipole forces of far-off resonant lase
light. The question naturally arises about the difference
the outcome of an experiment depending on whether t
trap is first split and evaporative cooling is subsequent
applied to produce two condensates, or if the condens
is formed first and then cut. The MIT experiments [3
were of the former variety, while we in this Letter addres
the latter “cool-cut-interfere” scheme. We show that th
two halves of the split condensate start out with a fixe
relative phase between them: the interference pattern
the same every time the experiment is repeated. O
the other hand, a setup for quantitative studies of pha
diffusion arises when the condensate halves are allow
to evolve between the splitting and the measurement
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interference. We present quantitative predictions for suc
an experiment. In particular, after an initial period, the
standard deviation of the measured phase grows linea
in time at a rate we are about to determine. Our entir
analysis is carried out without assuming spontaneo
breaking of gauge symmetry.

We first consider a single atom in a one-dimensiona
infinite potential well in the intervalx [ s2Ly2, Ly2d.
The normalized wave functionscnsxd with n ­ 0, 1, . . .,
which we order according to ascending energy, are we
known. Suppose that next a delta function potentia
barrierV sxd ­ adsxd is erected atx ­ 0. An elementary
analysis shows that in the limita ! ` the odd wave
functions c1, c3, . . . remain untouched, while the even
wave functionsc0, c2, . . . develop an additional node at
the origin. In fact, the new wave functionsxn may be
chosen asx2n11 ­ c2n11 andx2nsxd ­ sgnsxdc2n11sxd,
where sgn is the signum function. The states also becom
doubly degenerate:́2n11 ­ ´2n. It is therefore possible
to choose another set of normalized wave functionsx6

n ­
1p
2
sx2n 6 x2n11d, degenerate for eachn, in such a way

that the wave functionx1
n (x2

n d is only nonzero forx . 0
(x , 0). This is from a microscopic point of view how
the splitting of the trap works. Degenerate states a
created that correspond to the atom being either entirely
the “left” (x , 0) or to the “right” (x . 0) of the barrier.

Continuing with the preceding example, suppos
that there initially areN noninteracting bosons in the
ground state of the potential well. The correspond
ing many-body wave function iscsx1, . . . , xN d ­
c0sx1dc0sx2d . . . c0sxN d. If the barrier is erected adiabati-
cally, over a time scale long compared to the inverses
the excitation frequencies of the potential well, each on
particle wave functionc0 obviously evolves intox0. By
virtue of the Bose symmetry, the many-body wave func
tion turns intoxsx1, . . . , xN d ­ x0sx1dx0sx2d · · · x0sxN d.
Besides, the one-body wave functionx0 may be repre-
sented as a superposition of two statesx

6
0 , each of which
© 1997 The American Physical Society 4675
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is confined to half of the trap:x0 ­
1

p
2
sx1

0 1 x
2
0 d. The

many-body wave function may correspondingly be writt

xsx1, . . . , xN d ­
1

2Ny2 fx1
0 sx1d 1 x2

0 sx1dg

· · · fx1
0 sxN d 1 x2

0 sxN dg

­
1

2Ny2

NX
k­0

sµ
N
k

∂
x21

k,N2ksx1, . . . , xN d , (1)

where x
21
k,N2k stands for a unit-normalized and proper

symmetrized boson wave function withk atoms in the
statex

2
0 and N 2 k atoms in the statex1

0 . When the
left and right statesx6

n are chosen as the basis for seco
quantization, the state vector is

jxl ­
1

2Ny2

NX
k­0

sµ
N
k

∂
jk, N 2 k l , (2)

wherejk, N 2 kl stands for a number state withk atoms
in the ground statex2

0 of the left half of the potential well
andN 2 k atoms in the ground statex1

0 of the right half.
The infinite delta function barrier isolates the halv

of the potential well from one another, and may thus
thought of as cutting the well into two separate physic
systems. From this angle, the splitting has generated
entangled state of the two halves.

Next suppose that both the potential well and the de
function barrier are removed instantaneously, whereu
the atoms begin ballistic evolution, and at some la
time t the positions of the atoms are detected. As
as the time evolution of a free atom is concerned,
one-body wave functionx0sx1d evolves intox0sx1; td, and
similarly for x2, . . . , xN . Because the Bose symmetry
preserved, the total wave function att again is simply
xsx1, . . . , xN ; td ­ x0sx1; td · · · x0sxN ; td. On the other
hand, we have earlier proposed a detection theory
atoms along the lines of standard photon detection the
[7]. It may be seen easily that within this approa
the joint probability density for detecting an atom
x1, . . . , xN is equal to the absolute square of the man
body wave function. In the present case the probabi
density is

Psx1, . . . , xN ; td ­ jx0sx1; tdj2 · · · jx0sxN ; tdj2. (3)
Equation (3) implies that the atoms are detected in

pendently of one another, in whatever interference patt
the wave functionx0 ­

1
p

2
sx1

0 1 x
2
0 d has evolved into.

Our thorough experiment constitutes anN-fold repetition
of Young’s double slit experiment all at once,x

6
0 being

the two waves that interfere. The spatial phase of
interference is the same in every run of the experime
This should be contrasted with the case of two numb
state condensates, for instance, if the initial state of
expansion werejxl ­ jNy2, Ny2l instead of (2). Then
there would still be an interference pattern, but with
spatial phase that varies at random from one run of
experiment to the other [7,13,14].
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The wave functionsx6
0 are both half-period pieces

of a sine wave, so the double-slit interference pattern
rather trivial. How the interference arises in the actua
experiments [3] is discussed in Refs. [8–10]. Here w
digress with a toy model. We assume that at the sam
time as the atoms are released, the halves of the trap
launched toward one another; the atoms on the left a
given a momentum translation to the right with the wav
number per particlek ¿ 1yL, and each atom on the right
receives the momentum translation2h̄k The relevant left
and right one-atom wave functions arex̃

2
0 ­ x

2
0 eikx and

x̃
1
0 ­ x

1
0 e2ikx . When the ballistic atom clouds overlap

they evidently develop an interference pattern of the for
coss2kxd superimposed on a slowly varying background
Suppose now that the left atoms are somehow giv
an additional phase shiftw, so that the initial one-
atom wave function becomes̃xswd ­

1
p

2
sx̃2

0 eiw 1 x̃
1
0 d.

The interference pattern then shifts, and is proportion
to coss2kx 1 wd. On the other hand, the state vecto
analogous to (2) becomes

jx̃swdl ­
1

2Ny2

NX
k­0

eiwk

sµ
N
k

∂
jk, N 2 kl , (4)

where second quantization now is with respect to th
statesx̃

6
0 . This example graphically demonstrates how

the spatial phase of the interference pattern is in seco
quantization encoded in the entanglement of the numb
states of the two halves of the trap.

Let us now relax the simplistic assumptions of ou
development. We allow for three-dimensional shapes
the atom trap and of the barrier that splits it. Moreove
we take into account the interactions between the atom
These are characterized by thes-wave scattering lengtha
and the corresponding interaction energy parameterU0 ­
4p h̄2aym, so that the two-body interaction is written
ysri , rjd ­ U0 dsri 2 rjd. Inasmuch as a condensate ca
reasonably be represented with a Hartree type ansatz
the Gross-Pitayevski equation (GPE) [22–25], most o
our analysis continues to hold true with straightforwar
modifications. The main difference is that one employ
the solutions of the respective GPE for the wave function
c0, x0, and x

6
0 . The barrier should again be erected

adiabatically, slowly compared to the inverse of th
excitation frequencies of the trap, and it should be mad
high enough to render the tunneling time between th
halves much longer than the time scale of the experime
We assume that the interactions between the atoms
not significantly alter the entanglement from the form
of Eq. (2). At the moment we have no proof to this
effect, but at least in the limit of weak interactions the
assumption clearly is valid.

With interactions between the atoms, phase diffusio
becomes an issue. We assume that the barrier is erec
fast enough so that phase diffusion does not intervene, a
also ignore phase diffusion during the time between th
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release and the detection of the atoms. However, this t
around we turn our scheme into a controlled experim
on phase diffusion: Before the atoms are released,
stay in the split trap a timet. The spatial phase of th
observed interference pattern then varies at random f
one experiment to the other. Our objective is to anal
how the statistics of the phase depends on the wait timt.

To get a handle on time evolution, we need t
energies of the statesjk, N 2 kl. We reason as follows
For a given numberk of atoms on, say, the left side
we first solve the GPE to obtain the self-consiste
energy eigenstatex2

0 . Since the GPE is the Hartre
equation for the boson problem, the many-body st
x

2
0 sr1dx2

0 sr2d · · · x
2
0 srkd is a variational minimum, the

product state with the lowest possible energy. Denot
the expectation value of the Hamiltonian in this state
E2skd, and similarlyE1skd for the right side, we assign
the energyE2skd 1 E1sN 2 kd to the statejk, N 2 kl.

For convenience we henceforth take the number
atomsN to be large and even, and continue to assume
both halves of the trap are identical,E2skd ­ E1skd ;
Eskd. Since the atom statistics from Eq. (2) is binom
and strongly peaked aroundk ­ Ny2, we expand the
energy as

E2skd 1 E1sN 2 kd . h̄fv0 1 jsk 2 Ny2d2g , (5)

with

v0 ­
2EsNy2d

h̄
, j ­

1
h̄

d2Eskd
dk2

Ç
k­Ny2

. (6)

The state vector (2) evolves as

jx , tl ­
e2iv0t

2Ny2

NX
k­0

sµ
N
k

∂
e2ijtsk2Ny2d2

jk, N 2 kl .

(7)

This shows scrambling of the phases, hence poss
phase diffusion.

In earlier work models have been constructed that sh
how the act of measurement brings about a value
the condensate phase, even if the state of the conde
per sedoes not have any [7,9,13–16]. Here we do n
go into such constructs. Instead, we propose a gen
framework for discussing measurements of conden
phase: Whatever the precise procedure of the experim
is, to a useful approximation the relative phase operato
the statesx6

0 as discussed in quantum optics literature
Luis and Sanchez-Soto [26] is measured [27]. The p
sible eigenvalues of the phase operator may be chose
fp ­ 2ppysN 1 1d, p ­ 2Ny2, 2Ny2 1 1, . . . , Ny2,
and the corresponding eigenstates are

jfpl ­
1

p
N 1 1

NX
k­0

eikfp jk, N 2 kl . (8)

The orthonormal statesjfpl, p ­ 2Ny2, . . . , Ny2, span
the same Hilbert space as the statesjk, N 2 kl, k ­
0, . . . , N. Second, we will shortly see that the state (
ime
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which corresponds to a fixed interference pattern, yie
a distribution of phases peaked around 0 and having
narrow width 1y

p
N . Third, whereas the phasew in

Eq. (4) was already noted to correspond to aw shift of the
phase of the spatial interference pattern of the two halves
the condensate, it is easy to see that the phase distribu
predicted on the basis of Eq. (8) shifts byw as well. These
remarks provide an operational justification for the use
the states (8) as eigenstates of the relative phase betw
two condensates, given a fixed total atom numberN.

For N ¿ 1 we may use an integral to calculate th
pertinent sum, and find

Psfd ­ jkfjx, tlj2 ­
r

p

2sDfd2
exp

∑
2

f2

2sDfd2

∏
, (9)

where the root-mean-square width of the phase distrib
tion is

Dfstd ­

s
1
N

1 Nj2t2 . (10)

Here we treat the phasef as a continuous variable, and
adjust the normalization so that the integral of the pha
distribution is unity. At t ­ 0 the width of the phase
distribution is1y

p
N . It is unclear how much stock should

be put on the initial width, because the precise proced
for measuring the phase may well affect the results
the 1y

p
N level. The spreading of the phase distributio

at the rateR ­
p

Nj at later times probably is not as
sensitive to such a caveat. As the width of the pha
distribution grows linearly in time [17] and not as

p
t,

the term “diffusion” may not be the most appropriat
one. In analogy with the spreading of a Gaussian wa
packet, “dispersion” might be more accurate. Howeve
we continue to comply with the entrenched terminology

To get a feel for the numbers, we take both sid
of the trap to be harmonic oscillator wells with th
geometric mean of the three trapping frequencies and
corresponding length scale given byv and, ­

p
h̄ymv.

Solving the GPE and calculating the energyEskd within
the Thomas-Fermi approximation [22,23], i.e., ignorin
kinetic energy altogether, we find

R ­

µ
72

125

∂1y5µ a
,

∂2y5 v

N1y10 . (11)

Although the corresponding results in Refs. [18] an
[21] display the same functional dependence on t
parameters, they differ from Eq. (11) in the numeric
factors. One reason is that these authors in effect w
Eskd ­ kmskd, where mskd is the chemical potential
obtained from the GPE, while our method amoun
to setting Eskd ­

R
dk mskd. The latter form may be

derived directly from the variational principle underlyin
the GPE, and also concurs with the thermodynam
definitionm ­

≠E
≠N . In current experiments a typical value

for the ratio of scattering length to trap size parame
is ay, , 1023 and the number of condensate atoms
4677
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N , 106, so R , 0.01 v. The rate of phase diffusion
is two orders of magnitude smaller than the excitatio
frequencies of the trap, implying a phase diffusion tim
of the order of one second.

According to Eq. (7) the initial state vector, and henc
the initial phase distribution, is regenerated at integ
multiples of the timeT ­ 2pyj ­ 2p

p
NyR. Such

revivals [18,21] are beyond the continuum approximatio
for largeN , which we have used to arrive at Eq. (9).

We have carried out our analysis without ever invokin
spontaneously broken gauge symmetry. If one were
adhere to symmetry breaking, one should also postul
what happens to the phase when the condensate is
in two. Admittedly such a supplementary rule is easy
come by. One begins with the initial condensate havi
a phase assigned by virtue of symmetry breaking, a
integrates the GPE in time as the barrier is being rais
By symmetry, such an argument reproduces our predict
that the phases of the two halves come out the sam
Nevertheless, spontaneous breaking of gauge symmetr
a postulate above and beyond statistical mechanics, and
statement that the evolution of the phase is described by
GPE is another. In fact, if one takes the latter assumpt
literally, the conclusion is that there never is any pha
diffusion. More postulates evidently have to be added
one desires to study phase diffusion within the framewo
of symmetry breaking. When one starts down the ro
of making up a new principle, chances are that addition
principles are also needed—and eventually it becom
hard to know which are the right ones. This is the essen
of our objection against spontaneous symmetry break
as the concept is introduced in statistical mechanics a
condensed-matter physics: it does not lead to unambigu
answers to all legitimate experimental questions.

Of course, we have ourselves assumed that the relat
phase operator of Ref. [26] is useful as a generic desc
tion of a measurement of phase. We promote this appro
for reasons of expediency. Nevertheless, the relati
phase operator could (in principle) be verified or disprov
with anab initio analysis of any given experiment for mea
suring the phase. While we have not yet carried out su
studies, we expect them to be illuminating.

In summary, we have provided a theoretical descripti
of an experiment in which a Bose-Einstein condensate
split in two, and the parts are then allowed to interfere. W
show that studies of the interference pattern with differe
time delays between splitting and atom detection amo
to quantitative tests of the recently developed notions
condensate phase [7,9,13–16] and phase diffusion [1
21]. Only the insufficient mechanical stability of the
apparatus [3] now seems to stand in the way of t
experiments.

The bulk of the present paper evolved in two mee
ings, “Seminar on Fundamentals of Quantum Opti
IV” in Kühtai, Austria, and “Atom Laser Workshop”
in Tucson, Arizona. We thank the respective organ
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