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Synchrony in an Array of Integrate-and-Fire Neurons with Dendritic Structure
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A one-dimensional array of pulse-coupled integrate-and-fire neurons, each filtering input through
an idealized passive dendritic cable, is used to model the nonlinear behavior induced by axodendritic
interactions in neural populations. The relative firing phase of the neurons in the array is derived in the
weakcoupling regime. It is shown that for long-range excitatory coupling the phases can undergo a
bifurcation from a synchronous state to a state of traveling oscillatory waves. We establish the possible
role of dendritic structure in the desynchronization of cortical oscillations. [S0031-9007(97)03311-5]

PACS numbers: 87.10.+e, 05.45.+Db

In recent years neurobiologists have become inlead to traveling waves [8]. It has been suggested that this
creasingly interested in the role of the dendritic tree incould account for the fact that oscillatory behavior in the
neural behavior. Indeed, there is growing evidence twisual cortex tends towards synchrony, whereas the olfac-
suggest that the dendrites constitute a highly complexory cortex tends to produce traveling oscillatory waves;
nonlinear information processing system (see, e.gthe latter has long-range excitatory connections and hence
Ref. [1] and references therein). In spite of this, mostonger axonal delays. In this Letter, we shall show that the
mathematical studies of the dynamical behavior of neurdlcation of synaptic inputs on the dendritic tree also sig-
populations neglect the influence of the dendritic treenificantly affects the stability of synchronous oscillatory
completely. This is particularly surprising since, even atstates and, hence, provides an alternative mechanism for
the passive level, the diffusive spread of activity along thethe onset of traveling waves and other related phenomena.
dendritic tree implies that a neuron’s response depends on For concreteness, consider a one-dimensional array of
(i) previous input history due to the existence of distributedntegrate-and-fire neurons distributed along theaxis.
delays and (ii) the particular locations of the stimulatedLet U(x, r) denote the somatic membrane potential of the
synapses on the tree (i.e., the distribution of axodendritioeuron located at position € R attimer. Suppose that
connections). It is well known that delays can radicallyU satisfies the equation
alter the dynamical behavior of a system. Moreover, the aU (x, 1)
effects of distributed delays can differ considerably from —
those due to discrete delays arising, for example, from ot
finite axonal transmission times [2]. Certain models dowherel(x,¢) is the net input into the soma due to synaptic
incorporate distributed delays using so-caltedunctions  connections with other neurons in the array. When
or some more general kernel [3]. However, the fact that/(x) = 1 the neuron ak fires and is reset t&/(x) = 0.
these are not linked directly to dendritic structure meangn the absence of any synaptic inpdif each neuron
that feature (i) has been neglected. As has recentlfires with a period7 = f(l) dUf(U)~'. The dendritic
been established within the context of neural patternree of a neuron is idealized as a uniform infinite one-
formation [4], the incorporation of dendritic structure in a dimensional cable. Denote the membrane potential at the
neurodynamical model that combines features (i) and (iipointé € R on the cable of the neuron atoy V (&, x, 1).
can lead to novel behavior. Let W(&,|x — x']) be the connection from a neuron.dt

In this Letter, we investigate the influence of dendriticimpinging on a synapse locatedébn the dendritic cable
structure on another important aspect of neurodynamef a neuron ak. We shall assume for simplicity that there
ics, namely, synchronization of coupled neural oscillatorsare no direct connections to the soma. Using standard
There has been considerable work on the effects of delaysable theory [9], one can write the following equation for
on the synchronization of neural firing (see, e.g., Refs. [5-the dendritic potentiaV':

7]). In the case of sufficiently small axonal delays or

= fUx, 1)) + I(x,1), 1)

v V.V

fast synaptic responses, it is known that excitatory synap- = D— — — + I(&x,1)

tic coupling tends to synchronize neural firing, whereas at ag?

inhibitory coupling tends to generate antisynchrony. On o

the other hand, for larger axonal delays or slower synaptic + f W, |x = XDEG, ndx', ()

responses, inhibition rather than excitation produces syn-

chrony. It has also been shown that, in the case of a onavhereE(x/, r) represents the postsynaptic potential due to
dimensional array of coupled oscillators, destabilization ofan input spike train from the neuron at, 7(&,x,t) =

a synchronous state due to an increase in axonal delays café)[U(x,t) — V(&, x,1)] is the current density flowing
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from the soma to the cable & and p(¢) is a conduc-
tance. We assume that the functipii¢) has compact
support, i.e., it is localized to the contact region between
the soma and the dendritic cable. By current conserva-
tion at the somal(x,7) = — [~ I(&¢,x,1)dé. In order

over a single period’, one finds that

ap(x,1)
ar

Po fz d¢' ]Z dyW (€', 1yl)

to simplify our analysis, we shall assume that the current X H(E ¢(x + y,t) — d(x,1), (7)

I(&,x,t) in EqQ. (2) is negligible compared to the synap- where

tic current, and take (£) = pod(£), whereé is the Dirac o

delta function. Then(x,1) = poV (0, x,t) [after a term H(é, @) = f dOG(£,0T)F(6 — o). (8)
0

—poU has been absorbed into the definition of the func-
tion f in Eq. (1)]. We now solve Eqg. (2) foV (£, x,t) in
terms of the synaptic inputs [4] and sét= 0 to give

Equation (7) gives the general phase equation for
a network of weakly coupled oscillators with den-
dritic structure. As discussed in [6], the function
F is the phase interaction function of the model
in the case of an instantaneous synapse. For sim-
plicity, we shall take F(6) = —sin2760, which is
known to be a good approximation wheghof Eq. (1)
has an experimentally determined form [12]. The
function H(¢,¢) involves the convolution of the
instantaneous interaction functioR with the synap-
tic response functionG(¢,¢) which depends on the

I(x,1) = po f_; dt’ f:@ dé'G(Et — 1))

x ] dX'W(E' |x — XDEG. 1), (3)

whereG(&, 1) = e~ ©!=€/4Dt /. /47 Dy is the fundamental
solution of the cable equation aneh = 7~ !. In the

following analysis we fix length and time scales by setting
D =1ande = 1. (Thus ¢ is measured in terms of

electronic distance, which has typical values in the rang
1-10 cm. Typical values for the membrane time constan

location ¢ of the synapse on the dendritic cable. Equa-

gon (8) may be evaluated using the following Fourier

epresentation of the fundamental solutio{(¢,?) =
?277)*1 [7 . dke*¢=<®r where e(k) = k* + 1. The

7 are 5—20 msec.) Iti
Jesult is

In order to solve Egs. (1) and (3) we shall assume th
the coupling between neurons is weak so that, to a first
approximation, each neuron still oscillates with period

H(, ¢) = j % e ¢[A(k)sin2m ¢
The relevant dynamical variable is then the phase) of -

each oscillator, and we can use a standard phase-reduction — Blk)cos2mg],  (9)
technique [6,10,11]. In particular, following Ref. [6], we Wherew = 27/T,
introduce the nonlinear weak-coupling transform e(k) ®
Ak) = ——"—, Blk)=——. (10)
4 U du’ 6(k)2 + ? 6(k)2 + w?
¢ +1t/T=YU)=T o fUn” (4) Following Crooket al. [8], we shall consider traveling
wave solutions of equation Eq. (7) of the forgr(x, 1) =
The phase variablée satisfies the equation Bx + Qgt, with the frequencyl satisfying the disper-
9 (x.1) sion relation
—— = I(x,))F(t/T + ¢(x,1)), (5) % o
" 0p=po [ _ag [ awebbue. gy ay
where F(z) =T !/[f o ¥~ l(z)], and F(z + n) = - -

It is clear that whenB = 0 the solution is synchronous.
We wish to explore the stability of the traveling wave
solutions¢. Linearizing Eq. (7) abou® gives

89//;);, 1) = o f,m dé' fim dyW (&', |y)H' (&', By)

F(z), n € Z. The neuron atx fires whent = [n —
¢ (x,1)]T for integern. A synaptic input spike train then
takes the form

0
E(x,)) = > Et + [¢(x,1) — nlT)

n=-—o

(6)

for0 <t + To(x,t) < T, whereE, represents the post- XLt 3.0~ g)] (12)
synaptic potential. For simplicity, we shall tak&g(r) =  which has solutions of the form(x, ) = e*»'"iP* with
5(t), that is, we neglect the shape of the postsynaptic
potential and the additional delays associated with the
opening and closing of ionic channels; the latter could be
incorporated using aa function E;(r) = a’te” ' [6].

Now assume that/T varies much more quickly than
¢(x). This is valid if the system is weakly coupled. Note thatH'(£, ¢) indicates differentiation with respect
Substituting Egs. (6) and (3) into Eqg. (5) and averagingo ¢. The traveling wave solution will be stable provided
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that Rea, < Oforall p # 0. (The neutrally stable mode 16

Ao = 0 represents constant phase shifts> ¢ + 8.) " Q
We shall now study the stability of the synchronous

state B8 = 0 using Eqgs. (9) and (13) for two general 12

choices of the axodendritic weight distributi®in(¢, x).
(I) Uncorrelated weight distributior—Suppose that the

weight distribution has the product form ol 8
W(&,x) =P(EWK), P& =0, (14) 6
In other words, the distribution of axon collaterals across 4
the dendritic tree of a postsynaptic neuron is independent
of the separation between the neuron and the corresponding 2
presynaptic neuron. The distributidi{¢) determines the 0
probability density of these axon collaterals. Substituting oz 4 6 & 10 12 14 16

®

Eq. (14) into (7) generates the standard phase equation o . o

describing weakly coupled oscillator systems [10]. Thef!G- 1. ~Stability diagram for the uncorrelated weight distribu-
. . . A _ tion, | &l vs w. White (black) regions correspond to instability

rexsultlng phase interaction functlpn is given B ¢) = (stability) for the synchronous solution.

[~ P(§)H(¢, ¢)dé. From equations Egs. (9), (13), and

14), the real part of the eigenvalug can be written as . . . . . .
(14) P g ® pled somatic oscillators including passive dendritic struc-

ReA, = 1 20 f dkP()AK)[W(p + 27 B) ture has been independently explored by Crook [14] that
2 - captures the essential features of the uncorrelated weight
= = distribution considered here.

. * Wf(p 27pB) 2W(27T_’8)]’ (15) (I) Correlated weight distributior—When one consid-
where P(k) and W(p) denote the Fourier transforms of grs the synaptic organization of the brain [15] one finds
P(¢) and W(y). Following Ref. [8], suppose that the that the decoupling of network and dendritic coordinates
weight distribution (x) is excitatory and an exponentially s an over simplification. For example, recurrent collat-
decaying function ofy, W(y) = ¢ *M/2. The interac-  erals of pyramidal cells in the olfactory cortex feed back
tions are short range (long range) for large (smglliThen oo pasal dendrites of nearby cells and onto apical den-
W(p) = v/(y¥* + p?), and one can show that the term grites of distant pyramidal celis [15,16]. Thus a synapse
in square brackets of Eq. (15) is negative (positive) wheflends to be located farther away from the soma as the
p? > 12m?B% — y* (p* < 12a*B% — y?). Thismeans  separation between cortical neurons increases. This results
that the synchronous stajg = 0 will be stable (with jn 5 reduction in the effectiveness of the synaptic connec-
y > 0)if and only if A = [~ dkP(k)A(k) is positive.  tion due to diffusion along the dendritic tree. Motivated
To investigate the latter condition, sets) = 6(¢ — §0)  py this observation concerning the synaptic organization
so that the location of each synaptic input on the denf cortical tissue, we make the following assumption about
dritic tree is uniformly fixed atfo. Then P(k) = e™ the distributionW (¢, x): The average distance of a synapse
and the integrall can be evaluated by closing the contourfrom the somdé| increases with the separatign — x|

in the upper-half complex plane. One finds thal is  petween neurons. This property can be realized by a dis-
positive if co$r|£o| sin(6/2) + 6/2] > 0 and is negative  ripution of the form [2]

otherwise. Here? = V1 + w? andd = tan !(w) with 1

0=6=m/2 W, x)= =Wx)[6x — & + 6(x + &]. (16)
We deduce from the above analysis that, as the distance 2

|&| of the synapse from the soma increases from zerd;or the weight distribution (16), our model has certain

it reaches a critical valué,. = =(7 — 0)/2rsin(6/2).  formal similarities to the model considered by Croek

Increasingé, further produces alternating bands of sta-al. [8]. Long-range interactions are delayed by the effects

bility and instability of the synchronous state as showrof diffusion in the former case [13] and by the effects of

in Fig. 1. (These regions of stability/instability would axonal transmission times in the latter case. Indeed, if

be reversed in the case of inhibitory weights.) Hége one tookG(&,7) = 6(r — |£|/v) then Egs. (7), (8), and

plays an analogous role to that of an axonal time delay(16) would formally reduce to the model of Ref. [8] with

since it characterizes the effective delay due to diffusiorv interpreted as an axonal transmission speed.

along the dendrites [13]. It should be noted that, when Substituting Eq. (16) into Eq. (13) gives

the synchronous state is unstable, the solutigri®r all 1 o ~

B # 0 are also unstable. Hence, destabilization of the ReA, = 5 Po f dkA(k)[W(p + k + 27 3)

synchronous state does not lead to the formation of trav- w

eling oscillatory waves. It is also clear that for this exam- + W(p + k —27p) — 2W(k + 27B)].
ple the range of the coupling~! does not influence the
stability of the synchronous state. A model of two cou- a7
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In order to simplify the analysis, we shall tak@é(x) = We conclude from our results that, for a correlated
Wo®(L — |x]), where ® is a step function. Herd.  weight distribution, increasing the range of excitatory
determines the range of the interactions rather thah  interactions can destabilize the synchronous state leading

asin case l. TheW(p) = 2Wyp ' sinpL and to the onset of stable traveling oscillatory waves when
1 w > 1. This can be confirmed numerically as will be
ReA, = EpOWO[B(p + 27 B) shown in a more detailed analysis elsewhere. Thus

dendritic structure provides an alternative to axonal delays
+ B(p — 2w B) — 2BQ2wB)], (18) [8] as a possible mechanism underlying the differences
between oscillations in the visual and olfactory cortex.

whereB(p) = 2w[A(p) + C(p) + C(=p)], The fact that bifurcations occur whem = O(1) andL =
—rLcosf/2 g J+0/2 0O(1) is particularly suggestive since these correspond to
C(p) = ¢ Lpsing — rcodt + 6/2)] (19) the typical frequencies (10—100 Hz) and length scales (1—

2 2 i ’
2rlp? + 12 + 2prsin(6/2)] 10 cm) relevant to cortical oscillations [17,18].

andd = rLsin(6/2) + 0/2 + pL with r, 0 defined asin  This work was supported by Grant No. GR86220
example I. from the EPSRC (UK).
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