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Synchrony in an Array of Integrate-and-Fire Neurons with Dendritic Structure
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A one-dimensional array of pulse-coupled integrate-and-fire neurons, each filtering input thro
an idealized passive dendritic cable, is used to model the nonlinear behavior induced by axodend
interactions in neural populations. The relative firing phase of the neurons in the array is derived in
weak-coupling regime. It is shown that for long-range excitatory coupling the phases can underg
bifurcation from a synchronous state to a state of traveling oscillatory waves. We establish the pos
role of dendritic structure in the desynchronization of cortical oscillations. [S0031-9007(97)03311-
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In recent years neurobiologists have become
creasingly interested in the role of the dendritic tree
neural behavior. Indeed, there is growing evidence
suggest that the dendrites constitute a highly compl
nonlinear information processing system (see, e.
Ref. [1] and references therein). In spite of this, mo
mathematical studies of the dynamical behavior of neu
populations neglect the influence of the dendritic tr
completely. This is particularly surprising since, even
the passive level, the diffusive spread of activity along t
dendritic tree implies that a neuron’s response depends
(i) previous input history due to the existence of distribute
delays and (ii) the particular locations of the stimulate
synapses on the tree (i.e., the distribution of axodendr
connections). It is well known that delays can radical
alter the dynamical behavior of a system. Moreover, t
effects of distributed delays can differ considerably fro
those due to discrete delays arising, for example, fro
finite axonal transmission times [2]. Certain models d
incorporate distributed delays using so-calleda functions
or some more general kernel [3]. However, the fact th
these are not linked directly to dendritic structure mea
that feature (ii) has been neglected. As has recen
been established within the context of neural patte
formation [4], the incorporation of dendritic structure in
neurodynamical model that combines features (i) and
can lead to novel behavior.

In this Letter, we investigate the influence of dendrit
structure on another important aspect of neurodyna
ics, namely, synchronization of coupled neural oscillato
There has been considerable work on the effects of del
on the synchronization of neural firing (see, e.g., Refs. [
7]). In the case of sufficiently small axonal delays o
fast synaptic responses, it is known that excitatory syna
tic coupling tends to synchronize neural firing, where
inhibitory coupling tends to generate antisynchrony. O
the other hand, for larger axonal delays or slower synap
responses, inhibition rather than excitation produces s
chrony. It has also been shown that, in the case of a o
dimensional array of coupled oscillators, destabilization
a synchronous state due to an increase in axonal delays
0031-9007y97y78(24)y4665(4)$10.00
-

o
x,
.,
t
l

e
t
e
on

ic

e

t
s
ly
n

i)

-
.
ys
–

-
s

ic
n-
e-
f
an

lead to traveling waves [8]. It has been suggested that
could account for the fact that oscillatory behavior in th
visual cortex tends towards synchrony, whereas the olf
tory cortex tends to produce traveling oscillatory wave
the latter has long-range excitatory connections and he
longer axonal delays. In this Letter, we shall show that t
location of synaptic inputs on the dendritic tree also si
nificantly affects the stability of synchronous oscillator
states and, hence, provides an alternative mechanism
the onset of traveling waves and other related phenome

For concreteness, consider a one-dimensional array
integrate-and-fire neurons distributed along thex axis.
Let Usx, td denote the somatic membrane potential of t
neuron located at positionx [ R at timet. Suppose that
U satisfies the equation

≠Usx, td
≠t

­ fsssUsx, tdddd 1 Isx, td , (1)

whereIsx, td is the net input into the soma due to synapt
connections with other neurons in the array. Whe
Usxd ­ 1 the neuron atx fires and is reset toUsxd ­ 0.
In the absence of any synaptic inputI, each neuron
fires with a periodT ­

R1
0 dUfsUd21. The dendritic

tree of a neuron is idealized as a uniform infinite on
dimensional cable. Denote the membrane potential at
point j [ R on the cable of the neuron atx by V sj, x, td.
Let W sj, jx 2 x0jd be the connection from a neuron atx0

impinging on a synapse located atj on the dendritic cable
of a neuron atx. We shall assume for simplicity that ther
are no direct connections to the soma. Using stand
cable theory [9], one can write the following equation fo
the dendritic potentialV :

≠V
≠t

­ D
≠2V
≠j2 2

V
t

1 I sj, x, td

1
Z `

2`

W sj, jx 2 x0jdEsx0, tddx0, (2)

whereEsx0, td represents the postsynaptic potential due
an input spike train from the neuron atx0, I sj, x, td ­
rsjdfUsx, td 2 V sj, x, tdg is the current density flowing
© 1997 The American Physical Society 4665
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from the soma to the cable atj, and rsjd is a conduc-
tance. We assume that the functionrsjd has compact
support, i.e., it is localized to the contact region betwe
the soma and the dendritic cable. By current conser
tion at the soma,Isx, td ­ 2

R`

2` I sj, x, tddj. In order
to simplify our analysis, we shall assume that the curre
I sj, x, td in Eq. (2) is negligible compared to the synap
tic current, and takersjd ­ r0dsjd, whered is the Dirac
delta function. ThenIsx, td ­ r0V s0, x, td [after a term
2r0U has been absorbed into the definition of the fun
tion f in Eq. (1)]. We now solve Eq. (2) forV sj, x, td in
terms of the synaptic inputs [4] and setj ­ 0 to give

Isx, td ­ r0

Z t

2`
dt0

Z `

2`
dj0Gsj0, t 2 t0d

3
Z `

2`

dx0W sj0, jx 2 x0jdEsx0, t0d , (3)

whereGsj, td ­ e2e0t2j2y4Dty
p

4pDt is the fundamental
solution of the cable equation ande0 ­ t21. In the
following analysis we fix length and time scales by settin
D ­ 1 and e0 ­ 1. (Thus j is measured in terms of
electronic distance, which has typical values in the ran
1–10 cm. Typical values for the membrane time consta
t are 5–20 msec.)

In order to solve Eqs. (1) and (3) we shall assume th
the coupling between neurons is weak so that, to a fi
approximation, each neuron still oscillates with periodT .
The relevant dynamical variable is then the phasefsxd of
each oscillator, and we can use a standard phase-reduc
technique [6,10,11]. In particular, following Ref. [6], we
introduce the nonlinear weak-coupling transform

f 1 tyT ; CsUd ­ T 21
Z U

0

dU 0

fsU 0d
. (4)

The phase variablef satisfies the equation

≠fsx, td
≠t

­ Isx, tdFssstyT 1 fsx, tdddd , (5)

where Fszd ­ T21yff ± C21szdg, and Fsz 1 nd ­
Fszd, n [ Z . The neuron atx fires when t ­ fn 2

fsx, tdgT for integern. A synaptic input spike train then
takes the form

Esx, td ­
0X

n­2`

Esssst 1 ffsx, td 2 ngT ddd (6)

for 0 , t 1 Tfsx, td , T , whereEs represents the post-
synaptic potential. For simplicity, we shall takeEsstd ­
dstd, that is, we neglect the shape of the postsynap
potential and the additional delays associated with t
opening and closing of ionic channels; the latter could
incorporated using ana functionEsstd ­ a2te2at [6].

Now assume thattyT varies much more quickly than
fsxd. This is valid if the system is weakly coupled
Substituting Eqs. (6) and (3) into Eq. (5) and averagi
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over a single periodT , one finds that

≠fsx, td
≠t

­ r0

Z `

2`
dj 0

Z `

2`
dyW sj0, jyjd

3 Hsssj0, fsx 1 y, td 2 fsx, tdddd , (7)
where

Hsj, fd ­
Z `

0
duGsj, uT dFsu 2 fd . (8)

Equation (7) gives the general phase equation
a network of weakly coupled oscillators with den-
dritic structure. As discussed in [6], the functio
F is the phase interaction function of the mod
in the case of an instantaneous synapse. For s
plicity, we shall take Fsud ­ 2 sin2pu, which is
known to be a good approximation whenf of Eq. (1)
has an experimentally determined form [12]. Th
function Hsj, fd involves the convolution of the
instantaneous interaction functionF with the synap-
tic response functionGsj, td which depends on the
location j of the synapse on the dendritic cable. Equ
tion (8) may be evaluated using the following Fourie
representation of the fundamental solution:Gsj, td ­
s2pd21

R`

2` dkeikj2eskdt , where eskd ­ k2 1 1. The
result is

Hsj, fd ­
Z `

2`

dk
2p

eikjfAskd sin2pf

2 Bskd cos2pfg , (9)
wherev ­ 2pyT ,

Askd ­
eskd

eskd2 1 v2
, Bskd ­

v

eskd2 1 v2
. (10)

Following Crooket al. [8], we shall consider traveling
wave solutions of equation Eq. (7) of the formfsx, td ­
bx 1 Vbt, with the frequencyVb satisfying the disper-
sion relation

Vb ­ r0

Z `

2`
dj0

Z `

2`
dyW sj0, jyjdHsj0, byd . (11)

It is clear that whenb ­ 0 the solution is synchronous
We wish to explore the stability of the traveling wav
solutionsf. Linearizing Eq. (7) aboutf gives

≠csx, td
≠t

­ r0

Z `

2`

dj0
Z `

2`

dyW sj0, jyjdH 0sj0, byd

3 fcsx 1 y, td 2 csx, tdg (12)

which has solutions of the formcsx, td ­ elpt1ipx with

lp ­ r0

Z `

2`

dj0
Z `

2`

dyW sj0, jyjdH 0sj0, byd

3 feipy 2 1g . (13)

Note thatH 0sj, fd indicates differentiation with respec
to f. The traveling wave solution will be stable provide
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that Relp , 0 for all p fi 0. (The neutrally stable mode
l0 ­ 0 represents constant phase shiftsf̄ ! f̄ 1 d.)

We shall now study the stability of the synchrono
state b ­ 0 using Eqs. (9) and (13) for two gener
choices of the axodendritic weight distributionWsj, xd.

(I) Uncorrelated weight distribution.—Suppose that the
weight distribution has the product form

W sj, xd ­ PsjdW sxd , Psjd $ 0 , (14)

In other words, the distribution of axon collaterals acro
the dendritic tree of a postsynaptic neuron is independ
of the separation between the neuron and the correspon
presynaptic neuron. The distributionPsjd determines the
probability density of these axon collaterals. Substitut
Eq. (14) into (7) generates the standard phase equa
describing weakly coupled oscillator systems [10]. T
resulting phase interaction function is given byHsfd ­R`

2` PsjdHsj, fddj. From equations Eqs. (9), (13), an
(14), the real part of the eigenvaluelp can be written as

Relp ­
1
2

r0

Z `

2`
dkP̃skdAskdfW̃ sp 1 2pbd

1 W̃ sp 2 2pbd 2 2W̃s2pbdg , (15)

where P̃skd and W̃spd denote the Fourier transforms o
Psjd and W syd. Following Ref. [8], suppose that th
weight distributionW sxd is excitatory and an exponentiall
decaying function ofy, Wsyd ­ e2gjyjy2. The interac-
tions are short range (long range) for large (small)g. Then
W̃ spd ­ gysg2 1 p2d, and one can show that the ter
in square brackets of Eq. (15) is negative (positive) wh
p2 . 12p2b2 2 g2 sp2 , 12p2b2 2 g2d. This means
that the synchronous stateb ­ 0 will be stable (with
g . 0) if and only if Ā ;

R`
2` dkP̃skdAskd is positive.

To investigate the latter condition, setPsjd ­ dsj 2 j0d
so that the location of each synaptic input on the d
dritic tree is uniformly fixed atj0. Then P̃skd ­ eikj0

and the integral̄A can be evaluated by closing the conto
in the upper-half complexk plane. One finds that̄A is
positive if cosfrjj0j sinsuy2d 1 uy2g . 0 and is negative
otherwise. Herer2 ­

p
1 1 v2 andu ­ tan21svd with

0 # u # py2.
We deduce from the above analysis that, as the dista

jj0j of the synapse from the soma increases from ze
it reaches a critical valuej0c ­ 6sp 2 udy2r sinsuy2d.
Increasingj0 further produces alternating bands of s
bility and instability of the synchronous state as sho
in Fig. 1. (These regions of stability/ instability woul
be reversed in the case of inhibitory weights.) Herej0

plays an analogous role to that of an axonal time de
since it characterizes the effective delay due to diffus
along the dendrites [13]. It should be noted that, wh
the synchronous state is unstable, the solutionsf̄ for all
b fi 0 are also unstable. Hence, destabilization of
synchronous state does not lead to the formation of tr
eling oscillatory waves. It is also clear that for this exa
ple the range of the couplingg21 does not influence the
stability of the synchronous state. A model of two co
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FIG. 1. Stability diagram for the uncorrelated weight distribu
tion, jj0j vs v. White (black) regions correspond to instability
(stability) for the synchronous solution.

pled somatic oscillators including passive dendritic stru
ture has been independently explored by Crook [14] th
captures the essential features of the uncorrelated wei
distribution considered here.

(II) Correlated weight distribution.—When one consid-
ers the synaptic organization of the brain [15] one find
that the decoupling of network and dendritic coordinate
is an over simplification. For example, recurrent colla
erals of pyramidal cells in the olfactory cortex feed bac
onto basal dendrites of nearby cells and onto apical de
drites of distant pyramidal cells [15,16]. Thus a synaps
tends to be located farther away from the soma as t
separation between cortical neurons increases. This res
in a reduction in the effectiveness of the synaptic conne
tion due to diffusion along the dendritic tree. Motivated
by this observation concerning the synaptic organizatio
of cortical tissue, we make the following assumption abo
the distributionW sj, xd: The average distance of a synaps
from the somajjj increases with the separationjx 2 x0j
between neurons. This property can be realized by a d
tribution of the form [2]

W sj, xd ­
1
2

W sxd fdsx 2 jd 1 dsx 1 jdg . (16)

For the weight distribution (16), our model has certai
formal similarities to the model considered by Crooket
al. [8]. Long-range interactions are delayed by the effec
of diffusion in the former case [13] and by the effects o
axonal transmission times in the latter case. Indeed,
one tookGsj, td ­ dst 2 jjjynd then Eqs. (7), (8), and
(16) would formally reduce to the model of Ref. [8] with
n interpreted as an axonal transmission speed.

Substituting Eq. (16) into Eq. (13) gives

Relp ­
1
2

r0

Z `

2`
dkAskd fW̃sp 1 k 1 2pbd

1 W̃sp 1 k 2 2pbd 2 2W̃ sk 1 2pbdg .

(17)
4667
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In order to simplify the analysis, we shall takeW sxd ­
W0QsL 2 jxjd, where Q is a step function. HereL
determines the range of the interactions rather thang21

as in case I. TheñW spd ­ 2W0p21 sinpL and

Relp ­
1
2

r0W0fBsp 1 2pbd

1 Bsp 2 2pbd 2 2Bs2pbdg , (18)

whereBspd ­ 2pfAspd 1 Cspd 1 Cs2pdg,

Cspd ­
e2rL cosuy2fp sinū 2 r cossū 1 uy2dg

2rfp2 1 r2 1 2pr sinsuy2dg
, (19)

andū ­ rL sinsuy2d 1 uy2 1 pL with r , u defined as in
example I.

In the limit L ! ` (all-to-all coupling),Cspd ! 0 and
one finds from Eq. (18) withBspd replaced byAspd that
the synchronous state is unstable ifv . 1 and stable if
v , 1, wherev is the natural frequency of the integrate
and-fire neurons. We also expect the synchronous stat
be stable for sufficiently small values ofL for all v, since
this corresponds to the limit of short-range interactions a
hence small delays. We now use Eqs. (18) and (19)
determine the stability of traveling wave solutions wit
wave numberb as a function of the range of coupling
L. We find that ifv , 1 then the synchronous state i
stable for allL. On the other hand, ifv . 1 then the
synchronous state is unstable for largeL and stable for
smallL. Whenever the synchronous state is unstable, th
exist stable traveling wave solutions over a finite range
nonzero values of the wave numberb. The stability region
in the sb, Ld plane forv ­ 2 is shown in Fig. 2. Note
the nontrivial dependence of the dynamical behavior
the natural frequencyv of the oscillators. This should be
contrasted with the analysis of Crooket al. who use a form
for the phase interaction functionH that does not depend
explicitly on either the properties of the dendrites or th
natural frequency.

FIG. 2. Stability diagram for the correlated weight distribu
tion, L vs b with v ­ 2. White (black) regions correspond to
unstable (stable) traveling wave solutions.
4668
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We conclude from our results that, for a correlate
weight distribution, increasing the range of excitator
interactions can destabilize the synchronous state lead
to the onset of stable traveling oscillatory waves whe
v . 1. This can be confirmed numerically as will be
shown in a more detailed analysis elsewhere. Th
dendritic structure provides an alternative to axonal dela
[8] as a possible mechanism underlying the differenc
between oscillations in the visual and olfactory corte
The fact that bifurcations occur whenv ­ Os1d andL ­
Os1d is particularly suggestive since these correspond
the typical frequencies (10–100 Hz) and length scales (
10 cm) relevant to cortical oscillations [17,18].
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