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Phase Separation at all Interaction Strengths in thé-J Model
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We investigate the phase diagram of the two-dimensidriimodel using a recently developed
Green’s function Monte Carlo method for lattice fermions. We use the technique to calculate exact
ground-state energies of the model on large lattices. In contrast to many previous studies, we find
the model phase separates for all valuesJg@f. In particular, it is unstable at the hole dopings
and interaction strengths at which the model was thought to describe the cuprate superconductors.
[S0031-9007(97)03408-X]
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Models idealizing the environment of interacting con-conclusions from small size numerical calculations, the
stituents are often used to understand collective behavioambiguity and the confusion of the community due to such
In many cases the problem of providing a solution to astudies grow. One of the main discrepancies concerns the
model, even though in the model one has abstracted thghase-separation boundary of the model. Emery, Kivel-
minimal complexity only, is overwhelmingly difficult. For son, and Lin (EKL) [3] used a combination of analytic and

example, the antiferromagnetic Heisenberg model, numerical calculations to argue for the existence of phase
separation at all interaction strengths. Subsequently many
Hyeis = J ) Si - S, (1) other groups [4—8] examined larger systems numerically

Gj and found the model phase separates only/fer ¢, i.e.,

on an infinite square lattice, where ti$; are spin% outside the physical region of the model, and the results
operators, was thought to describe the undoped pareot EKL were strongly questioned. Most of these studies
compounds of the superconducting cuprates. Despite thesed a vanishing inverse compressibility as the criterion for
simplicity of the model, it has no exact solution. However,the onset of phase separation [4—6]. The compressibility,
since the model has only spin degrees of freedom, numerikowever, is not the proper observable to find the phase-
cal solution to the model with satisfactory accuracy haseparation boundary in the two-dimensiorial model,
become possible. The physical picture emerging from thevhere the transition is first order. It is true that the com-
Heisenberg model and from extensions obtained by addingressibility diverges in the region of phase separation, but
small correction terms to it (which can be understoodit jumps discontinuously at the boundary with the uniform
perturbatively) is in good agreement with the experimentaphase. Numerically, this discontinuity is difficult to see
results of the undoped cuprates [1]. in even large finite systems due to the surface energy of

The next step is to examine the effect of introducingthe two coexisting phases. The surface raises the energy
holes in a minimal way into a Heisenberg antiferromag-of a phase-separated system, and we find the inverse com-
net. Thet-J model is perhaps the simplest abstraction topressibility remains positive even where the system phase
describe the environment experienced by holes in the limiseparates.

of strong on-site Coulomb repulsion. Tk& Hamilton- In this paper we calculate the phase-separation bound-
ian, on a square lattice, is written in the subspace with nary of thet-J model using the Maxwell construction which
doubly occupied sites as suffers very little from finite-size effects. We present re-

sults on the ground states of significantly larger size sys-

H=—1¢ Z (cja_cjg + H.c) tems than could be studied previously by using a new

(ijyo powerful numerical technique. We find a phase diagram
nin; for the t-J model exhibiting phase separation at all in-

+ JZ<Si “Sj - ) (@) teraction strengths and, in particular, in the physical re-

" n ) o gion of the model. This result confirms the conjecture of
wher;ec,-g creates an electron of spinon site/, andn; =  EKL and contradicts the more accepted phase-separation
>» CisCio- One can hope, by adding correction terms toboundary. We propose a phase diagram of the model
such a model, some day to understand the doped materiatnsistent with all the available reliable results and dis-
It is clear, however, that no progress can be made withowuss the consequences of this phase diagram for improved
the capacity to understand the simple first. models of the copper oxides.

Even though there are numerous previous studies [2] of For sufficiently large/, the t-J model phase separates
thet-J model, its phase diagram is unclear. More impor-completely due to the attractive nature of the interaction
tantly, because of the inherent problem in drawing uniquéerm in (2). The two phases have electron densities per
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site of one and zero, respectively. The energy per site in 0.1 , . . .
the electron region isy = —1.169 34J as determined by
calculations on the Heisenberg model [1,9].

As J/t is reduceds-wave electron pairs evaporate from
the high-electron density region fof < J. = 3.4367¢
[3,10,11]. Isolated larger clusters are never stabilized.
In this range, the two phase-separated regions contain all
electrons (no holes) and some electrons (some holes).

To determine the phase-separation boundary fer J,.,
we use a recently developed Green'’s function Monte Carlo
method to calculate the ground-state energy of the model
on large finite lattices [10—15]. Prior to this work, the
ground states of correlated fermions on large lattices had

(e-en,)/t

1

been calculated exactly only in one dimension [12] or in the 0.0 02 04 06 08 1.0

limits of small numbers of holes [13,14] or electrons [10]. Electron Density ,

Starting from an initial tr_iaI state, this method projectSrig. 1. The ground-state energy per site &at= 2.5¢ for

the state iteratively onto its lowest energy eigenstate. 132 electrons. For clarity, the energies are shifted by a linear
principle, this technique could be used to project any triafactor, —eyn.. The circles with error bars show the energies
state that overlaps the ground state, but trial states witpalculated on lattices of dimensiofis< 6,7 X 6,...,28 X 28.

: ot - A sixth-order polynomial fit to the data is shown as the solid
larger overlaps yield smaller statistical errors and requir ine, which is extended to the Heisenberg energy, the square

less computer time. We use generalized singlet Jastrowg energy zero in this shifted plot. The dashed line shows the

Slater and Jastrow-paired wave functions as initial triajround-state energy of the infinite system in the phase-separated
states and have verified convergence to the ground stategion. We find the onset of phase separation occursat

by comparing with exact results on small systems and b{-296 * 0.004, while the inverse compressibility vanishes at
checking that different trial states converge to the sam&comr = 0.52 £ 0.10.
state [10]. Trial states with exotic pairing states or broken
time-reversal symmetry were never needed to converge tenergy corresponds to the energy of a mixture of two
the ground state. The method suffers from the negativephases, one at electron density = 1 and the other at
sign problem, which causes the statistical fluctuations t@lectron density:z = n,,. Therefore the infinite system
diverge exponentially with increasing system size at a fixegphase separates into two regions with densiiieandng,
density. Fortunately, with carefully chosen initial trial and and its ground-state energy is given &y (. ), the value
guiding functions, we are able to calculate the ground-statef the dashed line at the average density of the system.
energies of significantly larger systems than are possibl€his is known as the Maxwell construction [3].
with exact diagonalization. The energy of the infinite system is given by the solid
To calculate the phase-separation boundary, we nedihe in Fig. 1 for n, < nps and by the dashed line for
the behavior of the ground-state energy as a function o, > n,,. This Maxwell construction differs from that
density. For a given finite system size, the shape of theommonly used since the density of one of the constituent
Fermi surface changes dramatically as the electron nunphases lies at an extreme limit of the allowed density
ber is changed, resulting in seemingly random oscillationgsange. It is not possible to add electrons to the Heisenberg
in the energy. To avoid these shell effects, we vary thesolid, which has one electron on every site, so the dashed
density by changing the system size, keeping the electraine is not tangent to the fitting curve at = 1. If the
number and shape of the Fermi surface constant. t-J model did allow electron densities, > 1, then the
The ground-state energy dt= 2.5t for 32 electrons intersection point of the solid and dashed lines would be
on a variety of system sizes is shown in Fig. 1. Theseshifted to higher densities where the curves could intersect
finite systems necessarily constrain the electron density ttangentially.
be uniform on the length scales of the system size. We In order to be stable, the energy of the infinite system
fit the discrete data to a polynomial(n.), shown as the mustbe concave everywhere. Given the solid line in Fig. 1
solid curve, in order to treat the energy as a continuousand the allowed density range of thd model, the dashed
function of density. The dashed lineys(n,), is a linear  line drawn in the figure is the only line possible to make
function that intersects the Heisenberg energy, at the energy of the infinite system globally concave.
electron density:, = 1 and intersectg(n.) tangentially We never examined systems with densitigs= 0.94,
at a density labeled,,. so we cannot exclude the reentrance of a homogeneous
It is straightforward to show that the ground state of thephase in this region. For such a phase to be stabilized,
infinite system at a density, > n,, cannot be a uniform the solid curve in Fig. 1 would have to drop back below
phase, because the energy of the uniform phaég,), the dashed line in this density range. The new Maxwell
is higher thaney(n.) at the same density. This latter line would lie slightly below the one drawn and would
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be tangent to the solid curve at both intersections, buGreen’s function Monte Carlo or exact diagonalization.
the phase-separated region would persist at dengities  The discrepancy between these results and those using 32
0.94. We never saw any indication of this possibility at or more electrons is apparent, but both boundaries extend
any interaction strength. to very small//z.

In the one-dimensionatJ model, the compressibility The numerical calculation of EKL varied the electron
diverges continuously at the transition point in contrastdensity of a 16-site lattice, resulting in both finite-size and
to the discontinuous transition in two dimensions [4,16].shell effects absent in the present work [3]. However,
We have verified that in one dimension, the Maxwellthey also found phase separation at/ali.
construction yields the same phase-separation boundary We now use our knowledge about the various regions of
as that calculated using the inverse compressibility. the phase diagram to derive a proposal for the full phase

Figure 2 shows the phase-separation boundary calcaiagram of the model, shown in Fig. 3. We know with
lated at many interaction strengths. Each point is calcua high degree of confidence the phase-separation line ob-
lated from a Maxwell construction using a fixed number oftained in this work, shown by the solid line. We also know
electrons, either 60, 52, 50, 42, or 32, on at least four differwhat happens (almost rigorously) at low-electron density
ent lattices of sizd. X LorL X L + 1 where7 =L =  [10,11,17,18]. In the limit of zero density, electrons form
28. Atmany interaction strengths, we duplicated the calcus-wave pairs for/ > 2¢, and these pairs phase separate at
lation for different electron numbers, and always found the/ > J. = 3.4367¢. For infinitesimal densities, the elec-
discrepancy in the critical density to be comparable to thérons are unstable to higher-angular-momentum pairings
statistical errors. We have no reliable resultsfoe 0.1/,  due to the Kohn-Luttinger effect [18]. The strongest insta-
where the phase-separation boundary extends beyond duility, as determined by'-matrix calculations, i wave
maximum electron density of, = 0.94, calculated using at smallJ/r andd,»—,» wave at intermediate interaction
60 electrons on aB X 8 lattice. strengths [11,17]. We have drawn the boundaries between

At small electron density the phase-separation boundarthese phases as solid lines at small densities where the cal-
is given byJ.(n, — 0) = J.(n, = 0) + Z—H’me, which is  culations are valid. We believe these phases continue to
plotted as the dotted line in Fig. 2. This expression ighigher densities but cannot trust the precise location of the
obtained by assuming that the kinetic energy of pairedines obtained by the low density expansion, so we ex-
electrons varies with density while the binding energy istend the boundaries as dashed lines. We believe the lower
invariant. The calculated boundary approaches this slopeoundary of the/-wave phase meets the phase-separation
at low-electron density. boundary av* = 0.27¢, the minimum interaction strength

The dashed line in Fig. 2 shows the phase-separatiof®r which a two-hole/-wave bound state is stabilized [14].
boundary calculated using the Maxwell construction withWith the present work’s evidence of phase separation, we
8 electrons ond X 3, 4 X 4, and5 X 4 lattices. The
energies of these small systems may be calculated with
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I/t FIG. 3. Our proposed phase diagram. The boundaries drawn

as solid lines are accurate, while the others are more specu-
FIG. 2. The phase-separation boundary. The solid line is dative. The phase-separation curve is the fit to the results shown
cubic fit to the phase boundary calculated from systems withn Fig. 2. The boundaries between phases of different pairing
32 to 60 electrons as described in the text. Plotted are threeymmetry are calculated from expressions in Ref. [17]. They
sample errors, which increase with decreasirig The dashed are accurate at low-electron density, where they are drawn as
line shows the boundary calculated using just 8 electrons. Theolid lines, and are extended as dashed lines to the phase-
dotted line is a calculation of the limiting behavior of the separation boundary. There is a ferromagnetic phase at very
boundary at small electron density. smallJ/¢ and small hole dopings.
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