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Phase Separation at all Interaction Strengths in thet-J Model
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We investigate the phase diagram of the two-dimensionalt-J model using a recently develope
Green’s function Monte Carlo method for lattice fermions. We use the technique to calculate
ground-state energies of the model on large lattices. In contrast to many previous studies, w
the model phase separates for all values ofJyt. In particular, it is unstable at the hole doping
and interaction strengths at which the model was thought to describe the cuprate supercond
[S0031-9007(97)03408-X]
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Models idealizing the environment of interacting co
stituents are often used to understand collective behav
In many cases the problem of providing a solution to
model, even though in the model one has abstracted
minimal complexity only, is overwhelmingly difficult. For
example, the antiferromagnetic Heisenberg model,

HHeis ­ J
X
kijl

Si ? Sj , (1)

on an infinite square lattice, where theSi are spin-12
operators, was thought to describe the undoped pa
compounds of the superconducting cuprates. Despite
simplicity of the model, it has no exact solution. Howeve
since the model has only spin degrees of freedom, num
cal solution to the model with satisfactory accuracy h
become possible. The physical picture emerging from
Heisenberg model and from extensions obtained by add
small correction terms to it (which can be understo
perturbatively) is in good agreement with the experimen
results of the undoped cuprates [1].

The next step is to examine the effect of introduci
holes in a minimal way into a Heisenberg antiferroma
net. Thet-J model is perhaps the simplest abstraction
describe the environment experienced by holes in the li
of strong on-site Coulomb repulsion. Thet-J Hamilton-
ian, on a square lattice, is written in the subspace with
doubly occupied sites as

H ­ 2 t
X

kijls
scy

iscjs 1 H.c.d

1 J
X
kijl

µ
Si ? Sj 2

ninj

4

∂
, (2)

wherec
y
is creates an electron of spins on sitei, andni ­P

s c
y
iscis. One can hope, by adding correction terms

such a model, some day to understand the doped mate
It is clear, however, that no progress can be made with
the capacity to understand the simple first.

Even though there are numerous previous studies [2
the t-J model, its phase diagram is unclear. More impo
tantly, because of the inherent problem in drawing uniq
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conclusions from small size numerical calculations, t
ambiguity and the confusion of the community due to su
studies grow. One of the main discrepancies concerns
phase-separation boundary of the model. Emery, Kiv
son, and Lin (EKL) [3] used a combination of analytic an
numerical calculations to argue for the existence of ph
separation at all interaction strengths. Subsequently m
other groups [4–8] examined larger systems numerica
and found the model phase separates only forJ * t, i.e.,
outside the physical region of the model, and the resu
of EKL were strongly questioned. Most of these studi
used a vanishing inverse compressibility as the criterion
the onset of phase separation [4–6]. The compressibi
however, is not the proper observable to find the pha
separation boundary in the two-dimensionalt-J model,
where the transition is first order. It is true that the com
pressibility diverges in the region of phase separation,
it jumps discontinuously at the boundary with the unifor
phase. Numerically, this discontinuity is difficult to se
in even large finite systems due to the surface energy
the two coexisting phases. The surface raises the ene
of a phase-separated system, and we find the inverse c
pressibility remains positive even where the system ph
separates.

In this paper we calculate the phase-separation bou
ary of thet-J model using the Maxwell construction which
suffers very little from finite-size effects. We present r
sults on the ground states of significantly larger size s
tems than could be studied previously by using a n
powerful numerical technique. We find a phase diagra
for the t-J model exhibiting phase separation at all in
teraction strengths and, in particular, in the physical
gion of the model. This result confirms the conjecture
EKL and contradicts the more accepted phase-separa
boundary. We propose a phase diagram of the mo
consistent with all the available reliable results and d
cuss the consequences of this phase diagram for impro
models of the copper oxides.

For sufficiently largeJ, the t-J model phase separate
completely due to the attractive nature of the interacti
term in (2). The two phases have electron densities
© 1997 The American Physical Society 4609
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site of one and zero, respectively. The energy per site
the electron region iseH . 21.169 34J as determined by
calculations on the Heisenberg model [1,9].

As Jyt is reduced,s-wave electron pairs evaporate from
the high-electron density region forJ , Jc . 3.4367t
[3,10,11]. Isolated larger clusters are never stabilize
In this range, the two phase-separated regions contain
electrons (no holes) and some electrons (some holes).

To determine the phase-separation boundary forJ , Jc,
we use a recently developed Green’s function Monte Ca
method to calculate the ground-state energy of the mo
on large finite lattices [10–15]. Prior to this work, the
ground states of correlated fermions on large lattices h
been calculated exactly only in one dimension [12] or in th
limits of small numbers of holes [13,14] or electrons [10
Starting from an initial trial state, this method project
the state iteratively onto its lowest energy eigenstate.
principle, this technique could be used to project any tr
state that overlaps the ground state, but trial states w
larger overlaps yield smaller statistical errors and requ
less computer time. We use generalized singlet Jastro
Slater and Jastrow-paired wave functions as initial tri
states and have verified convergence to the ground s
by comparing with exact results on small systems and
checking that different trial states converge to the sam
state [10]. Trial states with exotic pairing states or broke
time-reversal symmetry were never needed to converge
the ground state. The method suffers from the negativ
sign problem, which causes the statistical fluctuations
diverge exponentially with increasing system size at a fix
density. Fortunately, with carefully chosen initial trial an
guiding functions, we are able to calculate the ground-st
energies of significantly larger systems than are possi
with exact diagonalization.

To calculate the phase-separation boundary, we ne
the behavior of the ground-state energy as a function
density. For a given finite system size, the shape of t
Fermi surface changes dramatically as the electron nu
ber is changed, resulting in seemingly random oscillatio
in the energy. To avoid these shell effects, we vary t
density by changing the system size, keeping the elect
number and shape of the Fermi surface constant.

The ground-state energy atJ ­ 2.5t for 32 electrons
on a variety of system sizes is shown in Fig. 1. The
finite systems necessarily constrain the electron density
be uniform on the length scales of the system size. W
fit the discrete data to a polynomial,esned, shown as the
solid curve, in order to treat the energy as a continuo
function of density. The dashed line,epssned, is a linear
function that intersects the Heisenberg energy,eH at
electron densityne ­ 1 and intersectsesned tangentially
at a density labelednps.

It is straightforward to show that the ground state of th
infinite system at a densityne . nps cannot be a uniform
phase, because the energy of the uniform phase,esned,
is higher thanepssned at the same density. This latte
4610
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FIG. 1. The ground-state energy per site atJ ­ 2.5t for
32 electrons. For clarity, the energies are shifted by a lin
factor, 2eH ne. The circles with error bars show the energie
calculated on lattices of dimensions6 3 6, 7 3 6, . . . , 28 3 28.
A sixth-order polynomial fit to the data is shown as the so
line, which is extended to the Heisenberg energy, the squ
at energy zero in this shifted plot. The dashed line shows
ground-state energy of the infinite system in the phase-separ
region. We find the onset of phase separation occurs atnps ­
0.296 6 0.004, while the inverse compressibility vanishes
ncomp ­ 0.52 6 0.10.

energy corresponds to the energy of a mixture of tw
phases, one at electron densitynA ­ 1 and the other at
electron densitynB ­ nps. Therefore the infinite system
phase separates into two regions with densitiesnA andnB,
and its ground-state energy is given byepssned, the value
of the dashed line at the average density of the syst
This is known as the Maxwell construction [3].

The energy of the infinite system is given by the so
line in Fig. 1 for ne , nps and by the dashed line for
ne . nps. This Maxwell construction differs from tha
commonly used since the density of one of the constitu
phases lies at an extreme limit of the allowed dens
range. It is not possible to add electrons to the Heisenb
solid, which has one electron on every site, so the das
line is not tangent to the fitting curve atne ­ 1. If the
t-J model did allow electron densitiesne . 1, then the
intersection point of the solid and dashed lines would
shifted to higher densities where the curves could inters
tangentially.

In order to be stable, the energy of the infinite syste
must be concave everywhere. Given the solid line in Fig
and the allowed density range of thet-J model, the dashed
line drawn in the figure is the only line possible to mak
the energy of the infinite system globally concave.

We never examined systems with densitiesne * 0.94,
so we cannot exclude the reentrance of a homogene
phase in this region. For such a phase to be stabiliz
the solid curve in Fig. 1 would have to drop back belo
the dashed line in this density range. The new Maxw
line would lie slightly below the one drawn and woul
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be tangent to the solid curve at both intersections,
the phase-separated region would persist at densitiesne &

0.94. We never saw any indication of this possibility
any interaction strength.

In the one-dimensionalt-J model, the compressibility
diverges continuously at the transition point in contra
to the discontinuous transition in two dimensions [4,1
We have verified that in one dimension, the Maxw
construction yields the same phase-separation boun
as that calculated using the inverse compressibility.

Figure 2 shows the phase-separation boundary ca
lated at many interaction strengths. Each point is cal
lated from a Maxwell construction using a fixed number
electrons, either 60, 52, 50, 42, or 32, on at least four diff
ent lattices of sizeL 3 L or L 3 L 1 1 where7 # L #

28. At many interaction strengths, we duplicated the calc
lation for different electron numbers, and always found t
discrepancy in the critical density to be comparable to
statistical errors. We have no reliable results forJ & 0.1t,
where the phase-separation boundary extends beyond
maximum electron density ofne ø 0.94, calculated using
60 electrons on an8 3 8 lattice.

At small electron density the phase-separation bound
is given byJcsne ! 0d ­ Jcsne ­ 0d 1

pJ
eH

tne, which is
plotted as the dotted line in Fig. 2. This expression
obtained by assuming that the kinetic energy of pair
electrons varies with density while the binding energy
invariant. The calculated boundary approaches this sl
at low-electron density.

The dashed line in Fig. 2 shows the phase-separa
boundary calculated using the Maxwell construction w
8 electrons on4 3 3, 4 3 4, and 5 3 4 lattices. The
energies of these small systems may be calculated w

FIG. 2. The phase-separation boundary. The solid line i
cubic fit to the phase boundary calculated from systems w
32 to 60 electrons as described in the text. Plotted are th
sample errors, which increase with decreasingJyt. The dashed
line shows the boundary calculated using just 8 electrons.
dotted line is a calculation of the limiting behavior of th
boundary at small electron density.
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Green’s function Monte Carlo or exact diagonalizatio
The discrepancy between these results and those usin
or more electrons is apparent, but both boundaries ext
to very smallJyt.

The numerical calculation of EKL varied the electro
density of a 16-site lattice, resulting in both finite-size an
shell effects absent in the present work [3]. Howeve
they also found phase separation at allJyt.

We now use our knowledge about the various regions
the phase diagram to derive a proposal for the full pha
diagram of the model, shown in Fig. 3. We know wit
a high degree of confidence the phase-separation line
tained in this work, shown by the solid line. We also kno
what happens (almost rigorously) at low-electron dens
[10,11,17,18]. In the limit of zero density, electrons form
s-wave pairs forJ . 2t, and these pairs phase separate
J . Jc . 3.4367t. For infinitesimal densities, the elec
trons are unstable to higher-angular-momentum pairin
due to the Kohn-Luttinger effect [18]. The strongest inst
bility, as determined byT-matrix calculations, isp wave
at smallJyt and dx22y2 wave at intermediate interaction
strengths [11,17]. We have drawn the boundaries betw
these phases as solid lines at small densities where the
culations are valid. We believe these phases continue
higher densities but cannot trust the precise location of
lines obtained by the low density expansion, so we e
tend the boundaries as dashed lines. We believe the lo
boundary of thed-wave phase meets the phase-separat
boundary atJp . 0.27t, the minimum interaction strength
for which a two-holed-wave bound state is stabilized [14]
With the present work’s evidence of phase separation,

FIG. 3. Our proposed phase diagram. The boundaries dra
as solid lines are accurate, while the others are more spe
lative. The phase-separation curve is the fit to the results sho
in Fig. 2. The boundaries between phases of different pair
symmetry are calculated from expressions in Ref. [17]. Th
are accurate at low-electron density, where they are drawn
solid lines, and are extended as dashed lines to the ph
separation boundary. There is a ferromagnetic phase at v
small Jyt and small hole dopings.
4611



VOLUME 78, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 16 JUNE 1997

t

9

n

p
t

i

r

l

n

t
a

o

s

e

t

.

,

v.

,

;

s.

.

)

-

interpret the two hole binding as indicating phase sep
ration into a state ofd-wave symmetry. Therefore, we
extend the lower boundary of thed-wave phase using the
expressions from Ref. [17] shifted linearly to extrapola
to Jp.

For J & 0.1 the model has a ferromagnetic instability
which is sketched schematically as the dotted line [1
At low hole dopings, this boundary obeyseH ­ 2ps1 2

nd2t, soJferro . 5.37s1 2 nd2t [3]. Series expansions in-
dicate this phase does not extend beyondne & 0.7 [20].
In the unpolarized region, a continuation of the low de
sity p-wave pairing phase is compatible with ferromag
netic correlations near the ferromagnetic instability.

This phase diagram will be sensitive to other term
that one may add to thet-J Hamiltonian. In particular, a
long-range Coulomb repulsion will suppress macrosco
phase separation. The local tendency for phase separa
however, could have consequences for the dynamics
the more complete Hamiltonian. The competition of th
tendency with the Coulomb forces might create stab
clusters with definite sizes, as in nuclear droplets (nucle
or it might give rise to either the “local” collective modes
such as those considered by Emery and Kivelson [21], o
some superlattice structure, such as those seen in neu
diffraction experiments [22].

In conclusion, we have shown the two-dimensionalt-
J model phase separates at some range of densities
J * 0.1t, and we believe the instability extends to a
positive interaction strengths. The only assumption ma
is that the uniform phase is unpolarized in this regio
In particular, phase separation occurs in the region of p
rameter space where the model is thought to apply to
cuprate superconductors. We verified that phase sep
tion extends to electron densities of at leastne ø 0.94
at all interaction strengths, and we believe it extends
ne ­ 1, the undoped antiferromagnet. The main reas
for the discrepancy of these results with previous work
that the phase-separation boundary is determined far m
accurately using the Maxwell construction than the inver
compressibility. Finally, we have proposed a comple
phase diagram of the model including pairing symmetri
based on all accurate calculations presently known to u
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