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Self-Similar Spatial Ordering of Clusters on Surfaces during Ostwald Ripening
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The concept of self-similarity during late stage phase separation on surfaces will be investigated.
We present the self-similar evolution of spatial ordering as a novel feature, supplementing previous
discussions in the literature on scaling power laws of cluster growth and self-similar evolution of the
cluster size distribution. Based on experimental data on the ripening of three-dimensional Sn clusters
on Si(111) surfaces a mechanism for the observed dynamics will be discussed which is consistent with
the observation of the ordering at areal cluster coverages as low as 0.1%. [S0031-9007(97)03310-3]

PACS numbers: 68.35.Fx, 68.35.Rh, 81.15.—z, 82.20.Mj

The observation of statistical self-similarity during the introduced by Hirth [8] for the early stages of phase
evolution of late stage clustering is conceptually the mosseparation when the nucleation stage is terminated.
intriguing feature of nonequilibrium phase separation pro- The experimental system for this study is Sn cluster-
cesses. The concept is based on a comparison of disting on clean Si(111) surfaces under ultrahigh vacuum con-
butions representing the cluster morphology at differentditions since the ripening properties of this system have
times during the evolution process. The growth procesfeen characterized extensively [7,9]. Si(111) substrates
is called self-similar if all distributions become indistin- were inserted into a molecular beam epitaxy facility after
guishable upon rescaling each distribution using a singlegx situoxide growth by the Shiraki method [10]. The ox-
time-dependent length scale factor. Initially a by-productde was removedn situ at elevated temperature and the
of the mean-field analytical theory by Lifshitz and Slyozov substrates were cooled to room temperature prior to Sn
(LS) for late stage Ostwald ripening [1], it has been postudeposition from a standard effusion cell. The base pres-
lated to apply to clustesizedistributions for a wide range sure in the growth system was less tifax 107!° Torr.
of dynamical processes, most clearly outlined in the semiAll samples werén situ postdeposit annealed under con-
nal work by Mullins [2]. ditions that resulted in cluster growth that is consistent

Despite (i) the increasing number of systems whichwith the previously observed Ostwald ripening dynamics.
seem to behave self-similarly, even including systems foAfter cluster growth, the substrates were cooled to room
which self-similar evolution is challenged, e.g., those withtemperature and removed from the growth system. The
concurring processes such as cluster-substrate etchimgjuivalent coverage of Sn on the surface in monolayers
[3], and (i) the improved theoretical models which take[ML, where 1 ML = 7.8 X 10'* atomg/cn? for Si(111)]
cluster-cluster interactions into account and obtain a bettewas measured bgx situRutherford backscattering spec-
match with experimentally measured size distributionstroscopy techniques. The surfaces were imagedsitu
we are still lacking a fundamental physical explanation ofwith an Hitachi S-4500 field emission scanning electron
why nature chooses to proceed along self-similar paths imicroscope (SEM). The morphological parameters and
the evolution toward spatially separated phases. With thigrowth conditions for each of the eight samples discussed
Letter we suggest that this is due to the fact that importann this Letter G1—S8) are listed in Table | (equivalent Sn
features of that evolution have not been identified so farcoverage, annealing time and temperature, and the mean
We base this argument on a detailed study of recent datduster size, average nearest neighbor distance, and areal
on late stage cluster ripening on surfaces where partialoverage after ripening).
ordering of the nearest neighbor distance distribution has A typical plane-view SEM micrograph is shown in
been observed [4], showing here for the first time thatrig. 1(a) (sampleSl). Sn clusters in the size range
the evolution of these clustapatial distributions is self- of about 1um appear as white spots on the dark
similar. All ripening theories in the literature, mean-field Si background, with a typical 3 to gm intercluster
models as well as those with interactions included, assumdistance. The relatively narrow dispersion of cluster
that the relative spatial location of the clusters plays naizes is a characteristic of ripening-dominated growth.
role in the evolution of the system [5-7]. Therefore, The spatial distribution of clusters in this micrograph
random spatial distributions are an inherent part of theses not random, but a partial ordering exists. This is
theories, and no discussion of potential spatial orderingseen by comparison to Fig. 1(b), which shows a random
or the evolution of the spatial distribution, has beenspatial configuration of clusters generated by a computer
introduced. With the experimental finding of spatial simulation using the same areal cluster density, the
ordering established, we will propose a model to explairsame average cluster size, and the same field of view
this finding using the concept of local ripening as initially as in Fig. 1(a). Note, in particular, that small nearest
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TABLE I. Summary of the experimental data. All samples ar¢8¢L11). Shown for each samplgl-S8, are the equivalent

Sn coverage in monolayers, the postdeposit annealing temperature, the postdeposit annealing time, the mean cluster size (the base
diameter), the average nearest neighbor spacing, the estimated areal coverage, and the scaled standard deviation of both the firs
and second nearest neighbor distributions.

Equivalent Anneal Anneal Areal
coverage temperature time Mean cluster Average coverager,, /{du.) Oonn /{donn)
Sample (ML) (C) (min) size um) dpn (um) (%) +0.02 +0.02

S1 50 400 10 1.0 3.8 2.4 0.24 0.18
v 50 400 120 1.7 7.5 1.8 0.21 0.17
3 50 300 20 0.7 4.3 1.2 0.21 0.19
A 50 300 40 0.9 6.5 11 0.21 0.17
S5 25 400 240 2.1 20.5 0.41 0.22 0.18
6 5 300 20 0.8 12.2 0.17 0.22 0.19
S/ 5 400 10 0.7 155 0.16 0.21 0.18
3 5 400 40 0.9 18.3 0.12 0.25 0.17

neighbor distances are present in the computer simulatidfig. 2(a), i.e., using the average first nearest neighbor dis-
that do not exist in the experimental data. tances. The data for all samples overlap again on a single
To quantify this apparent spatial ordering we present theurve which follows again roughly a Gaussian distribution
first and second nearest neighbor distance distributiongentered at a distance 28% larger than the nearest neigh-
Figure 2(a) is a plot of the first nearest neighbor distri-bor distribution. The standard deviations of the first and
bution for all samples, along with a distribution obtainedsecond nearest neighbor distributions for all samples are
for a random placement of clusters. For each distributionlisted in Table I.
the average nearest neighbor distafit,g) is rescaled to Note that for both distance distributions the same curve
1 and the distributions are given as probability distribu-is reproduced after rescaling of all eight experimental
tions to correct for varying cluster numbers per data setdata sets despite significant differences in growth condi-
Note that the experimental data are not consistent with theons and final morphologies when the observations are
random distribution nor are distances completely orderedecorded. As shown in Table |, this includes a variation
which would lead to a delta distribution, but instead areof an order of magnitude in average cluster-cluster dis-
fit well by a simple Gaussian curve. Figure 2(b) showstances and more than one magnitude in areal coverage
a plot of the second nearest neighbor distribution for al[11]. Variations in equivalent deposited coverage (factor
of the samples. For each distribution, the second neaorf 10), annealing temperature and annealing time (vary-
est neighbor distances,, are scaled in the same way asing by more than a factor of 10 at 400) were required
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FIG. 1. (a) SEM micrograph of Sn clusters on Si(111): sanglldsee Table I) and (b) image of a computer-generated random
spatial configuration of clusters that has the same cluster density and average cluster size as the image in (a). The clusters in (a)
are not randomly distributed and a partial ordering is evident.
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FIG. 2. Nearest neighbor distributions (a) and second nearest neighbor distributions (b) for sa&tw#eqSl (¢), 2 (H),

B (V), SA (@), S5 (0), B (A), S7 ([O), B (*)]. All distances for each sample are measured relative to their average nearest
neighbor distances. In this representation, all of the data coincide on the same curves (solid lines). A nearest neighbor distribution
for a random spatial arrangement of clusters is shown as the dotted line in (a).

to achieve these variations. We use Mullin’s definition ofas the solid line in Fig. 3. Note that this distribution is
self-similarity, f (r, 1) = f{{r*(Ar)/r*(¢t)]r, At} [2], where  not consistent with the experimental distribution $,
f(r, 1) is the distribution function depending on a lengthalso shown in that figure. Therefore, the dissolution of
scale parameter and the timer, and wherer® is an  clusters betweerSl and &2 is not random and instead
average value of this parameter at timesnd Ar. From  selective dissolution of smaller clusters occurs such that
this we conclude that the entire evolution of clusters in thahe spatial distribution evolves in a self-similar fashion.
late stage develops with a self-similar spatial distribution As self-similarity for both the cluster size distribution
of clusters and that one distribution differs from another{9] and cluster spatial distribution occurs at the same
by a simple scaling factor—the average nearest neighbdime, we need just one mechanism responsible for both
distance. the global ripening and the ordering processes. Since it
Note further that the mechanism of partial spatialhas been well established that diffusion driven ripening
ordering cannot be confined to the very early stageslescribes the ripening of the BZi(111) system under the
of growth, but must instead persist throughout the lateconditions presented in this study (Table 1), a diffusion
stages. This is illustrated for sampl&% and 2 whose limited mechanism should also hold for the spatial order-
scaled nearest neighbor distributions are shown agaimg. Further, the mechanism has to be consistent with
in Fig. 3. Note from Table | that these samples onlythe observation that theth nearest neighbor distribution
differ with respect to annealing time, thus statisticallycan be expressed as,(d,t) = g,{[d](At)/d\(t)]d, At},
representing two subsequent snapsh8tsat 10 min and whered; (¢) is the average first nearest neighbor spacing
2 at 120 min) in the evolution of a ripening system.at time z, and d*(r) = r*/%, for all n based on ripening
If the ordering mechanism would be a memory effectdynamics for the mixed geometry [12]. Specifically, for
from the early stages of clustering (as, e.g., discussed aralr experiments, the function must be consistent with a
defined in Ref. [7]), then the evolution between snapshotsimple Gaussian distribution centered at 1 with a standard
Sl andS2 would have to develop in a way that randomly deviation ofo,, = 0.23.
selects clusters that survive the ripening process. We A mechanism which may be compatible with all these
have taken the spatial distribution fro8l and randomly requirements is local ripening. This effect is very similar
eliminated the proper number of clusters to obtain theo the Ostwald ripening mechanism, as it also is based
areal cluster number distribution of samp8. This on three effects, the mass conservation condition, surface
process was repeated until a consistent prediction of thdiffusion as the mass transport mechanism, and the Gibbs-
next nearest cluster size distribution was obtained, showlhomson effect [13] favoring larger clusters over smaller
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' ' ! ' In summary, we have observed that during ripening
e si dominated cluster growth on surfaces the spatial arrange-

20F " S2 T ment of clusters exhibits partial ordering and that the clus-

I """" Gaussian it ter spatial distribution evolves in a self-similar fashion
E fo data over a wide range of areal coverages and average cluster-

Y ——S1 evolved . . .

E randomly to S2 cluster distances. The ordering is observed at _area_l cov-
15 H 4 erages as low as 0.1%. We suggested local ripening as

the mechanism responsible for the spatial ordering which
therefore becomes a process which has to be included
more consistently also in late stage cluster growth simu-
lations and modeling.
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