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Using molecular dynamics simulations we study the out of equilibrium dynamic correlations in
a model glass-forming liquid. The system is quenched from a high temperature to a temperature
below its glass transition temperature and the decay of the two-time intermediate scattering function
Cstw , t 1 twd is monitored for several values of the waiting timetw after the quench. We find that
Cstw , t 1 twd shows a strong dependence on the waiting time, i.e., aging, depends on the temperature
before the quench, and, similar to the case of spin glasses, can be scaled onto a master curve
[S0031-9007(97)03374-7]
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Thanks to a remarkable combination of experimen
theoretical, and numerical work, in the last few years co
siderable progress has been made in the understandin
the dynamical properties of disordered systems such
spin glasses [1,2]. In particular, the importance of the
called aging phenomenon, i.e., the out of equilibrium ev
lution of a system quenched into a glassy state, has b
realized. This phenomenon, which is well known expe
mentally in structural (e.g., polymer) glasses, was sho
to display some universal scaling features, common to s
and structural glasses. Subsequently, several theore
interpretations of the phenomenon were put forward
volving either phenomenological “trap” [3] or “coarsen
ing” [4] models, or the solution of dynamical equation
for disordered systems in the mean-field limit [5]. Inte
estingly, the dynamical equations describing these mod
turn out to have a structure which is very similar to th
structure of the so called mode-coupling equations, t
were developed by Götze, Sjögren, and coworkers in
der to describe the glass transition singularity instructural
glass formers [6]. Again, this similarity at the formal lev
points towards a possible connection between the slow
namics in structural and spin glasses, a possibility that
recently attracted much interest [7,8]. In this work, we i
vestigate the nonequilibrium dynamics of a simple stru
tural glass former, seeking evidence of an “aging” behav
similar to what is observed in spin glasses. Although
method we use [molecular dynamics (MD) simulation
is limited to relatively short time scales, typically1028 s,
and high quenching rates, it has proven to be very us
in assessing the applicability of mode-coupling theory
structural glass formers [9]. Hence we believe that the u
versal features of nonequilibrium slow dynamics, if th
exist, should already appear at such short time scales.

The model glass former we study in this work is
binary mixture of particles interacting through Lennar
Jones potentials. This system has been studied extens
by one of us [10], and we refer to these papers for a deta
0031-9007y97y78(24)y4581(4)$10.00
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description of the model and of its equilibrium propertie
For the present purpose, it will be sufficient to say that t
equilibrium dynamics of the model has been shown to b
well described—on the time scale of MD simulations—
by the “ideal” mode coupling theory (MCT) [6], with
a critical temperature (in reduced Lennard-Jones uni
Tc . 0.435 [10].

Our aim here is to study the nonequilibrium propertie
of this well characterized model. Our strategy is the fo
lowing: Starting from anequilibriumsystem at some ini-
tial temperatureTi . Tc, we instantaneously “quench” the
system by rescaling particles velocities to a final tempe
tureTf . The system is subsequently allowed to evolveat
constant temperaturefor 5 3 106 time steps, which corre-
sponds to105 reduced Lennard-Jones time units (typicall
1028 s for a real system). This procedure is then repea
for several independent starting configurations (typica
ten) in order to improve the statistics of the results. Th
number of particles was 1000 and the temperature of
system was controlled by coupling it every 50 time ste
to a stochastic heat bath.

The evolution of the system towards equilibrium can
principle be monitored by using “one-time” observable
such as the energy or the pressure. Unfortunately, th
observables are rather insensitive to the very slow evo
tion of the system that takes place after the quench. A
ter a fast “equilibration” period of several thousand L
time units, they essentially level off, as can be seen in t
time dependence of the potential energyepot (see inset of
Fig. 1). (Note that in all figures the quantities are given
reduced Lennard-Jones units.) A naive conclusion wou
be that the system is at equilibrium. This is, however, n
correct, since a careful examination of the data shows th
for Ti ­ 5.0 and 0.8,epot shows a power-law dependenc
on time (Fig. 1), with an exponent around 0.144, and th
such a functional form is also compatible with the data
Ti ­ 0.466 at long times. Since the exponent is small, th
data are also compatible with a logarithmic dependence
© 1997 The American Physical Society 4581
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FIG. 1. Potential energy of the system as a function of ti
for different values ofTi (inset) andTf ­ 0.4. Main figure:
epot 1 7.17 versust, demonstrating that the time dependen
of epot is compatible with a power law.

time. However, since recently it was demonstrated t
for a soft sphere systemepotstd shows a power-law depen
dence [8], this functional form seems to be more appeal
Thus we find that this one-time quantity shows indeed o
a small sensitivity on the nonequilibrium evolution of th
system, which is in agreement with the theoretical pred
tion [5] and was also found, e.g., in Ref. [11].

We also note that the exponent found in Ref. [8]
significantly larger (0.7) than the one found here (0.14
Since a soft sphere system and a Lennard-Jones sy
have very similar potentials it is somewhat improbable t
this difference in the exponent is just due to the differe
potential. A more likely cause is the fact that in Ref. [
a Monte Carlo dynamics was used as opposed to the
used here. Thus this might indicate that the microsco
dynamics has a significant influence on the aging proc

The nonequilibrium dynamics is much better characte
zed by the study of two-time correlations functions of t
form CAstw , t 1 twd ­ kApstwdAstw 1 tdl, whereA is a
microscopic observable, andtw is the “waiting time,” i.e.,
the time elapsed after the quench, which takes plac
t ­ 0. The brackets refer here to an equilibrium avera
over the initial configurations, at temperatureTi . In this
work, we focus on the case whereA ­ expfiq ? ristdg,
whereri is the position of atomi, andq is a wave vector.
Hence the correlation function we compute is simp
the nonequilibrium generalization of the usual incoher
scattering function

Cqstw, tw1td­
1
N

ø NX
i­1

exphiq ? fristw1td2ristwdgj
¿

. (1)

Figure 2 displays such correlations functions forTi ­
5.0 and Tf ­ 0.4. The evolution of the curves astw

increases clearly shows that the system does not re
equilibrium within the time window explored in th
simulation. Qualitatively similar results were also foun
by Parisi [8]. A striking fact is that if one attempts t
4582
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FIG. 2. Cqstw , t 1 twd versus t for tw ­ 0, 10, 100, 1000,
10 000, and 39 810 (from left to right);Ti ­ 5.0, Tf ­ 0.4,
andq ­ 7.2.

extract a “relaxation time”tr from Cqstw , tw 1 td, this
relaxation time will be a rapidly increasing function o
tw . The larger the waiting time, the longer it takes th
system to forget the initial configuration. This behavio
is quite typical of aging phenomena [5]. Although th
time scale explored here is quite atypical in the study
such phenomena, the basic observation is similar to w
can be seen experimentally on much longer time scales

In this figure we also observe that att ø 1 the corre-
lation functions show a quite strong (damped) oscillatio
It is very unlikely that the cause for this feature is the fi
nite size effect that has been observed in this [10] an
more pronounced, in other systems (see, e.g., Ref. [1
since for this system this finite size effect should occ
at aroundt ø 15 [10] (and are not observed here be
cause the effect is so small). It is also implausible th
the oscillation is due to the dynamical feature called t
boson peak, since no hint for such a peak was found
this system [10]. The most probable reason is that t
oscillations are due to an effect called “quench echoe
which is a dynamical feature that occurs in systems th
are quenched periodically (as is the case in the pres
simulation), and which was described nicely in a paper
Nagelet al. [13]. We will elaborate more on this point in
Ref. [14].

Correlation functions such as those displayed in Fig
depend on a number of parameters that can be va
independently. q, tw , and t are explicit arguments in
Eq. (1), but the initial and final temperature are als
implicitly present. Ti determines the ensemble averag
andTf the dynamics after the quench. In the following
we concentrate on the results obtained for a value
q that corresponds to the main peak in the structu
factor of the fluid, q ­ 7.2 (in Lennard-Jones units)
[10]. We also focus on quenches to a final temperatu
Tf ­ 0.4. At this temperature, the relaxation time of th
system, estimated by extrapolating equilibrium data fro
higher temperatures using a Vogel-Fulcher law, will be
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ordertesT ­ 0.4d , 107 time units, much larger than our
simulation times [10]. We have also performed simila
calculations for other wave vectors and other values
Tf , but the results do not differ in any essential way fro
those presented here [14].

In order to rationalize the results obtained for var
ous values of the remaining parameters (Ti, t, and tw),
we use the popular and intuitive picture [15] that d
scribes the whole system as a point evolving within
complex multidimensional (free) energy landscape. T
system starts with a high average kinetic energy c
responding to the temperatureTi. It is subsequently
quenched instantaneously, so that it will be “trapped” (b
entropic or energetic barriers) in a configuration typical
temperatureTi. The following nonequilibrium evolution
will bring the system closer to configurations characte
istic of Tf , which might or might not be reached on th
time scale of the simulation.

Based on this type of picture, we can attempt to g
some insight into the nonequilibrium dynamics for system
quenched to the sameTf , starting from different values
of Ti . For clarity, let us consider the case where w
have two initial temperatures,Ti1 ­ 5.0 and Ti2 ­ 0.8,
and Tf ­ 0.4. If the evolution of the system is seen
as a slow evolution of the system towards parts of t
configuration space that correspond to lower free energ
(deeper valleys in a “rugged energy landscape” pictu
or larger domain size in a “domain growth” picture), w
can reasonably expect that the system on its way fr
Ti1 to Tf will visit valleys typical for Ti2. Hence, we
expect that the relaxation curves corresponding toTi1
will, after some waiting timets1,2d, essentially coincide
with those obtained with a starting temperatureTi2. A
reasonable assumption is that the time lagts1,2d will be
roughly of the order of magnitude of the relaxation tim
tesTi2d for an equilibrated system at temperatureTi2. In
terms of the two time correlations, this suggests a relat
of the formC

s2d
q stw , t 1 twd . C

s1d
q ftw 1 ts1,2d, t 1 tw 1

ts1,2dg. (Here the superscript corresponds to the value
the starting temperature.) This conjecture is tested
Fig. 3, and is seen to be reasonably well borne out by
numerical data in that the curve forTi ­ 0.8 (te ø 100
[10]) for tw ­ 10 is very similar to the curve forTi ­ 5.0,
tw ­ 160. The natural consequence of this behavior
that for a given starting temperatureTi, we expect aging
phenomena to take place only for waiting times that exce
the equilibrium relaxation timetesTid, whereas fortw ,

tesTid the relaxation behavior is almost independent oftw .
In other words, it takes the system a time of ordertesTid
to realize that the quench has created a nonequilibri
situation. In fact, we have observed that for an initi
temperatureTi ­ 0.466, for whichte , 105, aging effects
such as those depicted by Fig. 2 are very weak on the ti
scale of the simulation [14].

This situation could seem somewhat discouraging in t
sense that it implies that the observation of interesting
fects will require either large values of the temperatu
r
of
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FIG. 3. Cqstw , t 1 twd for Tf ­ 0.4 and two different values
of Ti . Thin lines:Ti ­ 0.8, tes0.8d ø 100 time units,tw ­ 0,
10, 100, 1000, 10 000, and 39 810 (from left to right). Bol
dotted line:Ti ­ 5.0, tw ­ 160.

jumpsTi 2 Tf , or simulations on time scales much large
than105 time units. The question that immediately arise
if we consider large temperature jumps is to what exte
the aging effects will display the universal behavior ob
served in real experiments, where the typical paramet
of the quench are very different. Experimentally, the mo
striking observation, which is also predicted by sever
theoretical models (see, e.g., Refs. [1,5] and referen
therein) and was also found in simulations of spin glass
[2], is that the curves corresponding to different values
the waiting time can be rescaled in the form

Cqstw , t 1 twd ­ Cst
q std 1 Cag

q

∑
hst 1 twd

hstwd

∏
. (2)

Here the first term corresponds to a short time dynam
that does not depend ontw , while the second term, or
aging part, depends only on the ratiohst 1 twdyhstwd,
were h is an increasing function oft. In many cases,
hstd . t (the so called “simple aging” case), orhstd .
ta , so that the aging part is simply a function oftytw .
The existence of thetw independent, short time par
is evident from the data shown in Fig. 2. The scalin
assumption for long times is tested in Fig. 4, for a
initial temperatureTi ­ 5.0. Except for the data that
correspond to small values oftw (tw , 10), which—
not surprisingly—do not fit the scaling picture, the lon
time decay of the different curves can be superimpos
indicating the validity of the scaling ansatz. In Fig. 5
the relaxation timetr of Cqstw , t 1 twd is displayed as a
function of the waiting time. This relaxation time wa
defined, somewhat arbitrarily, as the time it takes to rea
the valueCq ­ 0.45, which is the lowest value ofCq

for tw ­ 39 810. For Ti ­ 5.0 the two times turn out to
be roughly proportional,tr , ta

w , a ø 0.88 (see Fig. 5),
which indicates that the system quenched from thisTi

approximately follows the simple aging scaling over th
time scales we are able to investigate.
4583
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FIG. 4. The data of Fig. 2, rescaled in such a way that
curves coincide forCq ­ 0.45.

A similar analysis can be carried out for system
quenched from lower temperatures,Ti ­ 0.8 and Ti ­
0.466. As we mentioned earlier, aging effects in thes
systems start being appreciable only fortw . tesTid and
thustr is essentially constant fortw , tesTid (see Fig. 5).
For tw . tesTid, however,tw and tr are again roughly
proportional to each other [14], as can be inferred fro
the corresponding curves in Fig. 5.

A number of interesting conclusions and perspectiv
can be drawn from these MD results on the nonequilibriu
dynamics of a glass forming liquid. The similarity with
comparable studies on spin glasses, in particular the e
tence of a “universal”tytw scaling in the aging behavior, is
striking. This can be seen as an indication that, in spite
very different forms of the Hamiltonians and of the micro
scopic dynamics, the geometry of phase space, which u
mately determines the long time behavior, is not dissimi
in spin and structural glasses. Because of the short ti

FIG. 5. Relaxation timetr of Cqstw , t 1 twd versus tw for
Tf ­ 0.4 and three values of the initial temperatureTi . The
dashed line is a power law with an exponent 0.882.
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scales that are investigated in this work, we have carefu
examined the role of initial conditions. Their influence ca
be rationalized by introducing an effective waiting tim
tw 1 tesTid, for a system quenched instantaneously fro
a temperature at which the equilibrium relaxation time
tesTid. This notion might be useful in understanding an
nealing experiments. Finally, the obvious extension of th
work will be to investigate the behavior of the one-partic
response functions under the same conditions and on
same time scales as was done in this work. This wou
allow one to investigate possible violations of the fluctu
tion dissipation theorem during the aging process, and w
be the subject of future work [14].
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