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Using molecular dynamics simulations we study the out of equilibrium dynamic correlations in
a model glass-forming liquid. The system is quenched from a high temperature to a temperature
below its glass transition temperature and the decay of the two-time intermediate scattering function
C(t,,t + t,) is monitored for several values of the waiting timg after the quench. We find that
C(t,,t + t,) shows a strong dependence on the waiting time, i.e., aging, depends on the temperature
before the quench, and, similar to the case of spin glasses, can be scaled onto a master curve.
[S0031-9007(97)03374-7]
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Thanks to a remarkable combination of experimentaldescription of the model and of its equilibrium properties.
theoretical, and numerical work, in the last few years confor the present purpose, it will be sufficient to say that the
siderable progress has been made in the understanding edjuilibrium dynamics of the model has been shown to be
the dynamical properties of disordered systems such asell described—on the time scale of MD simulations—
spin glasses [1,2]. In particular, the importance of the sdy the “ideal” mode coupling theory (MCT) [6], with
called aging phenomenon, i.e., the out of equilibrium evoa critical temperature (in reduced Lennard-Jones units)
lution of a system quenched into a glassy state, has bedn = 0.435 [10].
realized. This phenomenon, which is well known experi- Our aim here is to study the nonequilibrium properties
mentally in structural (e.g., polymer) glasses, was showrof this well characterized model. Our strategy is the fol-
to display some universal scaling features, common to spitowing: Starting from arequilibrium system at some ini-
and structural glasses. Subsequently, several theoretididl temperaturd; > T,., we instantaneously “quench” the
interpretations of the phenomenon were put forward insystem by rescaling particles velocities to a final tempera-
volving either phenomenological “trap” [3] or “coarsen- tureT;. The system is subsequently allowed to evaive
ing” [4] models, or the solution of dynamical equations constant temperatur®r 5 X 10° time steps, which corre-
for disordered systems in the mean-field limit [5]. Inter- sponds tal0’ reduced Lennard-Jones time units (typically
estingly, the dynamical equations describing these modelsd~# s for a real system). This procedure is then repeated
turn out to have a structure which is very similar to thefor several independent starting configurations (typically
structure of the so called mode-coupling equations, thaken) in order to improve the statistics of the results. The
were developed by Gotze, Sjogren, and coworkers in oraumber of particles was 1000 and the temperature of the
der to describe the glass transition singularitgtiructural ~ system was controlled by coupling it every 50 time steps
glass formers [6]. Again, this similarity at the formal level to a stochastic heat bath.
points towards a possible connection between the slow dy- The evolution of the system towards equilibrium can in
namics in structural and spin glasses, a possibility that hgsrinciple be monitored by using “one-time” observables,
recently attracted much interest [7,8]. In this work, we in-such as the energy or the pressure. Unfortunately, these
vestigate the nonequilibrium dynamics of a simple struc-observables are rather insensitive to the very slow evolu-
tural glass former, seeking evidence of an “aging” behaviotion of the system that takes place after the quench. Af-
similar to what is observed in spin glasses. Although theer a fast “equilibration” period of several thousand LJ
method we use [molecular dynamics (MD) simulations]time units, they essentially level off, as can be seen in the
is limited to relatively short time scales, typicallp—® s,  time dependence of the potential eneegy; (see inset of
and high quenching rates, it has proven to be very usefuifig. 1). (Note that in all figures the quantities are given in
in assessing the applicability of mode-coupling theory tareduced Lennard-Jones units.) A naive conclusion would
structural glass formers [9]. Hence we believe that the unibe that the system is at equilibrium. This is, however, not
versal features of nonequilibrium slow dynamics, if theycorrect, since a careful examination of the data shows that,
exist, should already appear at such short time scales. for 7; = 5.0 and 0.8,¢,,, shows a power-law dependence

The model glass former we study in this work is aon time (Fig. 1), with an exponent around 0.144, and that
binary mixture of particles interacting through Lennard-such a functional form is also compatible with the data of
Jones potentials. This system has been studied extensively = 0.466 at long times. Since the exponent is small, the
by one of us [10], and we refer to these papers for a detailedata are also compatible with a logarithmic dependence on
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FIG. 1. Potential energy of the system as a function of timeFIG. 2. C,(¢,,t + 1,) versust for ¢, = 0, 10, 100, 1000,
for different values of7; (inset) and7; = 0.4. Main figure: 10000, and 39810 (from left to right)l; = 5.0, T, = 0.4,
epor T 7.17 versust, demonstrating that the time dependenceandq = 7.2.

of e, is compatible with a power law.

extract a “relaxation time’t, from C,(t,,t, + t), this
time. However, since recently it was demonstrated thagelaxation time will be a rapidly increasing function of
for a soft sphere system(r) shows a power-law depen- ¢,. The larger the waiting time, the longer it takes the
dence [8], this functional form seems to be more appealingsystem to forget the initial configuration. This behavior
Thus we find that this one-time quantity shows indeed onlyis quite typical of aging phenomena [5]. Although the
a small sensitivity on the nonequilibrium evolution of the time scale explored here is quite atypical in the study of
system, which is in agreement with the theoretical predicsuch phenomena, the basic observation is similar to what
tion [5] and was also found, e.g., in Ref. [11]. can be seen experimentally on much longer time scales.
We also note that the exponent found in Ref. [8] is In this figure we also observe that at= 1 the corre-
significantly larger (0.7) than the one found here (0.144)lation functions show a quite strong (damped) oscillation.
Since a soft sphere system and a Lennard-Jones systéts very unlikely that the cause for this feature is the fi-
have very similar potentials it is somewhat improbable thahite size effect that has been observed in this [10] and,
this difference in the exponent is just due to the differentmore pronounced, in other systems (see, e.g., Ref. [12])
potential. A more likely cause is the fact that in Ref. [8] since for this system this finite size effect should occur
a Monte Carlo dynamics was used as opposed to the M@t aroundr =~ 15 [10] (and are not observed here be-
used here. Thus this might indicate that the microscopi¢ause the effect is so small). It is also implausible that
dynamics has a significant influence on the aging processhe oscillation is due to the dynamical feature called the
The nonequilibrium dynamics is much better characteriboson peak, since no hint for such a peak was found in
zed by the study of two-time correlations functions of thethis system [10]. The most probable reason is that the
form Ca(t,,t + 1,) = (A*(t,,)A(t,, + 1)), whereA is a  oscillations are due to an effect called “quench echoes,”
microscopic observable, ang is the “waiting time,” i.e.,  which is a dynamical feature that occurs in systems that
the time elapsed after the quench, which takes place afre quenched periodically (as is the case in the present
t = 0. The brackets refer here to an equilibrium averagesimulation), and which was described nicely in a paper by
over the initial configurations, at temperatufe In this  Nagelet al. [13]. We will elaborate more on this point in
work, we focus on the case where= exdiq - r;(¢)], Ref. [14].
wherer; is the position of atoni, andq is a wave vector.  Correlation functions such as those displayed in Fig. 2
Hence the correlation function we compute is simplydepend on a number of parameters that can be varied
the nonequilibrium generalization of the usual incoherentndependently. ¢, 1, and ¢ are explicit arguments in
scattering function Eqg. (1), but the initial and final temperature are also
1 /& implicitly present. T; determines the ensemble average,
C,y(ty, tw+t)=N <Z expliq [r,-(tw+t)—r,-(tw)]}>. (1)  andT, the dynamics after the quench. In the following,
i=1 we concentrate on the results obtained for a value of
Figure 2 displays such correlations functions for= ¢ that corresponds to the main peak in the structure
5.0 and Ty = 0.4. The evolution of the curves as, ~ factor of the fluid, g = 7.2 (in Lennard-Jones units)
increases clearly shows that the system does not rea¢h0]. We also focus on quenches to a final temperature
equilibrium within the time window explored in the Ty = 0.4. At this temperature, the relaxation time of the
simulation. Qualitatively similar results were also foundsystem, estimated by extrapolating equilibrium data from
by Parisi [8]. A striking fact is that if one attempts to higher temperatures using a Vogel-Fulcher law, will be of
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orderr, (T = 0.4) ~ 107 time units, much larger than our 1.0 1 — il = L
simulation times [10]. We have also performed similar —
calculations for other wave vectors and other values of X
Ty, but the results do not differ in any essential way from < 0.8 1
those presented here [14]. &)
In order to rationalize the results obtained for vari- 0.6 -
ous values of the remaining parameters, (¢, andt,,),
we use the popular and intuitive picture [15] that de-
scribes the whole system as a point evolving within a
complex multidimensional (free) energy landscape. The
system starts with a high average kinetic energy cor- 0.2 -
responding to the temperaturE. It is subsequently
quenched instantaneously, so that it will be “trapped” (by 0 ‘ .
entropic or energetic barriers) in a configuration typical of 107 10" 10°
temperaturel;. The following nonequilibrium evolution t
will bring the system closer to configurations character+|g. 3. C,(ty.t + 1) for T, = 0.4 and two different values
istic of Ty, which might or might not be reached on the of 7;. Thin lines:7; = 0.8, 7.(0.8) = 100 time units,z, = 0,
time scale of the simulation. 10, 100, 1000, 10000, and 39810 (from left to right). Bold
Based on this type of picture, we can attempt to geflotted line:7; = 5.0, ,, = 160.
some insight into the nonequilibrium dynamics for systems
quenched to the sanig,, starting from different values jumpsZ; — T, or simulations on time scales much larger
of T;. For clarity, let us consider the case where wethan 103 time units. The question that immediately arises
have two initial temperatureg);; = 5.0 and T;» = 0.8, if we consider large temperature jumps is to what extent
and Ty = 0.4. If the evolution of the system is seen the aging effects will display the universal behavior ob-
as a slow evolution of the system towards parts of theserved in real experiments, where the typical parameters
configuration space that correspond to lower free energie®f the quench are very different. Experimentally, the most
(deeper valleys in a “rugged energy landscape” pictureﬁ»triking observation, which is also predicted by several
or larger domain size in a “domain growth” picture), we theoretical models (see, e.g., Refs. [1,5] and references
can reasonably expect that the system on its way frortherein) and was also found in simulations of spin glasses
T;; to Ty will visit valleys typical for T;,. Hence, we [2], is that the curves corresponding to different values of
expect that the relaxation curves correspondingltp  the waiting time can be rescaled in the form
will, after some waiting timer(; »), essentially coincide h(t + 1)
with those obtained with a starting temperatdig. A Cylty,t +1,) = CJ/(1) + Cg® [—W} 2
reasonable assumption is that the time tag) will be h(t)
roughly of the order of magnitude of the relaxation timeHere the first term corresponds to a short time dynamics
7.(Ti2) for an equilibrated system at temperatdie. In  that does not depend om,, while the second term, or
terms of the two time correlations, this suggests a relatioRging part, depends only on the ratidr + 1,,)/h(,),
of the formcéz)(tw,t +t,) = Cf,l)[tw + tap),t + 1, + wereh is an increasing function of. In many cases,
ta2]. (Here the superscript corresponds to the value ofi(r) = r (the so called “simple aging” case), éfr) =
the starting temperature.) This conjecture is tested in“, so that the aging part is simply a function of,,.
Fig. 3, and is seen to be reasonably well borne out by th&he existence of the, independent, short time part
numerical data in that the curve f@; = 0.8 (1. = 100  is evident from the data shown in Fig. 2. The scaling
[10]) for #,, = 10 is very similar to the curve fof; = 5.0, assumption for long times is tested in Fig. 4, for an
t, = 160. The natural consequence of this behavior isinitial temperature7; = 5.0. Except for the data that
that for a given starting temperatufe, we expect aging correspond to small values af, (7, < 10), which—
phenomena to take place only for waiting times that exceedot surprisingly—do not fit the scaling picture, the long
the equilibrium relaxation time.(T;), whereas for,, < time decay of the different curves can be superimposed,
7.(T;) the relaxation behavior is almost independent,of indicating the validity of the scaling ansatz. In Fig. 5,
In other words, it takes the system a time of ordg(T;)  the relaxation time, of C,(t,,t + t,) is displayed as a
to realize that the quench has created a nonequilibriurfunction of the waiting time. This relaxation time was
situation. In fact, we have observed that for an initialdefined, somewhat arbitrarily, as the time it takes to reach
temperaturd; = 0.466, forwhichr, ~ 10°, aging effects the valueC, = 0.45, which is the lowest value o€,
such as those depicted by Fig. 2 are very weak on the tinter ¢, = 39810. ForT; = 5.0 the two times turn out to
scale of the simulation [14]. be roughly proportionals, ~ r$, a = 0.88 (see Fig. 5),
This situation could seem somewhat discouraging in thevhich indicates that the system quenched from fhis
sense that it implies that the observation of interesting efapproximately follows the simple aging scaling over the
fects will require either large values of the temperaturgime scales we are able to investigate.

0.4 -

4583



VOLUME 78, NUMBER 24 PHYSICAL REVIEW LETTERS 16UNE 1997

1.0 | : : : : scales that are investigated in this work, we have carefully
' examined the role of initial conditions. Their influence can
be rationalized by introducing an effective waiting time
I t, + 7.(T;), for a system quenched instantaneously from
» a temperature at which the equilibrium relaxation time is
0.6 - \ L 7.(T;). This notion might be useful in understanding an-

\ nealing experiments. Finally, the obvious extension of this
work will be to investigate the behavior of the one-particle
response functions under the same conditions and on the
same time scales as was done in this work. This would
0.2 1 \ " allow one to investigate possible violations of the fluctua-
) tion dissipation theorem during the aging process, and will
be the subject of future work [14].
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