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Damping of the Transverse Head-Tail Instability by Periodic Modulation of the Chromaticity
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An analytical and numerical study of the suppression of the transverse head-tail instability by
modulating the chromaticity over a synchrotron period is presented. We find that a threshold can be
developed, and it can be increased to a value larger than the strong head-tail instability threshold. The
stability criterion derived agrees very well with the simulations. The underlying physical mechanisms
of the damping scheme are rotation of the head-tail phase such that the instability does not occur,
and Landau damping due to the incoherent betatron tune spread generated by the varying chromaticity.
[S0031-9007(97)03326-7]
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A bunched beam traveling in a particle accelera
creates forces through interactions of the beam partic
with the electromagnetic environment. These forces,
so-called wakefields, react and perturb the beam, o
causing collective instabilities. These instabilities limit th
peak current in the bunch. In this Letter, we analyze a n
method for controlling such instabilities, namely, throug
a temporal variation of the ring parameters. We illustra
this method with a practical example, the suppress
of the transverse head-tail (HT) instability by means
variation of the chromaticity.

In a storage ring, particles with a different momentu
have a different focusing strength in the quadrupoles,
thus have a different betatron frequency. The ratio
the relative frequency difference to the relative mome
tum difference is the chromaticity. The betatron ang
lar frequency of an off-momentum particle is given b
vbsdd ­ vb0s1 1 jdd, wherej is the chromaticity,vb0
is the betatron angular frequency of the on-moment
particle, andd ­ npyp is the relative momentum dif-
ference. The bunch is maintained by rf fields, and t
particle energy oscillates with the synchrotron perio
When j ­ 0, and a threshold depends on bunch c
rent and wake force is exceeded, the strong head
(SHT) instability occurs. Whenj fi 0, there are both
the SHT instability with a threshold and the HT instab
ity. The HT instability, driven by the chromaticity, ha
no stability threshold. It was observed in experiments [
has been well analyzed [2], and has been confirmed
simulations [3].

The HT instability is a concern for many circula
accelerators; for example, we may note the observati
and simulations of single-bunch transverse excitation
the beam in the proton ring of the HERA collider at DES
[4], the observation of higher-order HT instability in th
PS Booster of the LHC at CERN [5], and the investigati
of the possible HT oscillation due to a transverse feedb
kicker at KEK’s B-Factory (KEKB) [6].

For most accelerators,j must be sufficiently small so
as to avoid single particle orbital resonances. Analy
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[7] shows that, under this circumstance, the growth ra
of the HT instability is smaller (approximately by a
factor of 3 for a typical case) whenjyh . 0 than when
jyh , 0, whereh ­ pdCyCdp 2 1yg2 is the slippage
factor,C ­ 2pR ­ cT0 is the circumference of the ring,
g ­ s1 2 b2d21y2, and we takeb ­ yyc ø 1. The
growth rate of the instbility depends on the magnitud
of jyh and how the beam spectrum overlaps with th
impedance (Fourier transform of the wakefield) spectru
Damping mechanisms, such as radiation damping a
Landau damping [7,8], are often used to stabilize the f
growing mode associated with the HT instability. The
effectiveness depends on the damping time and the wi
of the incoherent tune spread.

A moment expansion of the linearized Vlasov equatio
describing the coupled longitudinal and dipole transver
motion results in a lowest order mode with a large grow
rate for jyh , 0, and strong damping whenjyh .

0. Higher order modes grow, with substantially small
growth rates than the lowest order mode, whenjyh . 0.
They are damped forjyh , 0.

This leads us to consider variation ofj over the syn-
chrotron period as a mechanism to suppress the HT in
bility. Two effects can be anticipated, first an enhanc
Landau damping from the incoherent tune spread induc
by the chromaticity variation, and, second, a strong focu
inglike effect (on collective modes, instead of on sing
particle orbits) if the sign ofjyh is changed.

We choose to varyj rather thanh, since varyingh

means transition crossing, and thus involves many co
plicated phenomena, such as vanishing Landau damp
large momentum spread, bunch-shape mismatch, and n
linear effects [9].

While drafting this Letter, we were advised of the exis
tence of the paper written by Nakamura of SPring-8 [10
Nakamura suggested, as we have also (independently)
concept of chromaticity modulation. In this Letter, goin
considerably beyond what Nakamura has done, we p
vide analysis, simulation results, and a stability criterio
for the head-tail instability.
© 1997 The American Physical Society 4565
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The chromaticity is assumed to vary as

jssd ­ j0 1 j1 sinf , (1)

which is a function of “time” s, where s measures
the distance around the ring,f ­ vssyc, vs is the
synchrotron angular frequency, andj0 is the constant (dc)
chromaticity. The constant part of chromaticity caus
the HT instability. The dc incoherent tune spread is n
effective in stabilizing the HT instability. As will be
shown, the varying component of the chromaticity do
not cause instability, but rather provides an incohere
tune spread that suppresses the coherent instability. T
incoherent chromatic tune spread can be estimated as

sn ­ nb0j1

q
kd2 sin2 fl ­

q
3y8 nb0j1sd , (2)

for a Gaussian beam, wherenb0 ­ vb0yv0, v0 ­ cyR,
sd ­ svsychdsz , sz is the rms bunch length,

z ­ rz cosf, d ­ svsychdrz sinf , (3)

srz , fd are the action-angle variables in the longitudin
phase space, and the bracketk l means a longitudinal
phase-space average. The ac incoherent chromatic
spread contributes to Landau damping and decoheren
Decoherence is an effect that causes decay of cent
oscillation of an off-centered beam with frequency sprea
and is an excitation response to a nonzero initial conditi
[7,8]. The decoherence rate per turn can be estimated
t

21
dec ø 2psn.
The longitudinal motion is prescribed by Eq. (3). Th

transverse equation of motion is

d2

ds2 ysz, sd 1
v

2
bsdd
c2 ysz, sd

­ 2
r0

gC

Z `

z
dz0 rsz0dW sz 2 z0dysz0, sd ,

(4)

whereyszd is the transverse (longitudinal) oscillation co
ordinate with respect to the bunch center,N ­

R
dz0 rsz0d

is the number of particles in a bunch,rszd is the beam
density distribution,r0 ­ e2ym0c2, and W is the trans-
verse wake function. We have neglected longitudin
wake force, nonlinear slippage factor, and synchrobe
tron coupling. There are three parameters essential to
dynamics given by Eqs. (3) and (4):

x0 ­ vb0j0szych, x1 ­ vb0j1szych , (5)

Y ; pNr0kW lc2y8gCvb0vs , (6)

wherex0 sx1d is the dc (ac) phase shift between the he
and tail of a bunch, andkW l ­

R`

2` dz0 rsz0dW sz 2 z0d.
The parameterY is about the ratio of betatron tune shift t
the synchrotron tune. Whenx1 ­ 0, the SHT instability
occurs whenY $ 1 [7,11].

The nonlinear part of the chromaticity (as contrast
with the varying chromaticity), characterized byj01, also
4566
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generates an incoherent tune spread, wherejdc ­ j0 1

j01d. This tune spread is smaller by a factor ofsd than
the tune spread from the varying chromaticity, and is n
significant in most instances.

To develop an analytic criterion for the stability thresh
old, we have derived a dispersion relation based on a li
earized Vlasov analysis for a many-particle system. As
starting point of the analysis, we calculate the HT growt
rate for arbitraryj0 andj1, neglecting any damping from
tune spread. We write the perturbed longitudinal pha
space distribution function in action-angle variables an
then Fourier expand in modes that vary ase2ilf, wheref

is the angle variable andl is the mode index. The result
[12] is a complex mode frequency,Vsld, approximately
given by

Vsld ­ vb0 1 lvs 1 v0Dn . (7)

We assume the beam distribution is Gaussian, and ta
a model-impedance function asZ̃svd ­ 1yv 2 ipdsvd,
corresponding to a uniform wake function. The cohere
tune shift is

2pRsDnd ø 2s4Yyl! 2ldnsx2l
0 e2x

2
0 J2

0 sx1y4d ,

(8)

where ns ­ vsyv0 and J0sxd is the Bessel func-
tion. The growth rates per synchrotron period
1yt

sld
s ­ 2pIsDndyns, of the two lowest order modes

are

1yts0d
s ø 24YErfi sx0de2x

2
0 J2

0 sx1y4d , (9)

1yts1d
s ø

p
p Yx0L

s21y2d
1y2 sx2

0 de2x
2
0 J2

0 sx1y4d , (10)

where Erfisxd ­ 2iErf sixd, Erf sxd is the error function,
andL

sld
k sxd is the Laguerre polynomial. One can see tha

when x0 ­ 0, the growth rate of the HT instability is
zero, even whenx1 fi 0. As mentioned, the ac part of the
incoherent tune spread contributes to a Landau damp
without driving the HT instability.

We can estimate the stability criterion by requiring tha
the incoherent tune spread exceeds the absolute value
the coherent tune shift. That is,sn . fDng, wheresn is
given by Eq. (2), or

x1 . s8ypd
q

2y3 NlYjZ̃
sld
effsx0dj , (11)

whereNl ­
R

dvpjglj
2, gl is the frequency spectrum of

the lth mode of the perturbed beam density, the tran
verse impedance isZsvqd ­ 2WZ̃svqd, the effective
impedance is

Z̃
sld
eff ­

P
q Z̃svqd jglsx1, xq 2 x0dj2P

q jglsx1, xq 2 x0dj2
, (12)

xq ­ vqszyc, and vq ­ qv0 1 vb0 1 lvs. Ex-
pressed in terms of the accelerator parameters, we hav

j1 . cl
eI0jZ

'sld
1 sj0djeff

E

µ
R
sz

∂2µ hR

nsn
2
b0

∂
, (13)
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2y3 Gsl 1 1y2dypl! 2l11, E ­ gm0c2,
and I0 ­ NecyC which is the averaged current. When
0 , x0 , 1, the l ­ 1 mode is usually the dominant
unstable mode, andc1 ­ 0.058; when 21 , x0 , 0,
the l ­ 0 mode is the dominant unstable mode, an
c0 ­ 0.23.

Equation (11) is usually sufficient for estimating the
threshold for bunch centroid motions. An improved sta
bility criterion, useful for estimating the threshold for a
growth of the emittance, can be derived by incorporatin
the incoherent tune spread in the Vlasov analysis. F
lowing the well-known techniques [13], one can find th
dispersion relation,

V 1 iU ­
8Y

2p
NlhRfZ̃sld

effg 1 iIfZ̃sld
effgj , (14)

where V 1 iU is the beam transfer function [7]. For
a Gaussian beam with the model impedance andn ­
Dnyns, we have, for thel ­ 0 mode,

V 1 iU

­
2ix2

1 y2
p

2p x1 2 2pne22n2yx
2
1 fErfis

p
2 n

x1
d 2 ig

, (15)

and for thel ­ 1 mode,

V 1 iU

­
2ix4

1
p

2p sx3
1 1 4n2x1d 2 8pn3e22n2yx

2
1 fErfis

p
2 n

x1
d 2 ig

.

(16)

Examination of the dispersion relation shows that the SH
threshold can be enlarged by increasingx1.

A simulation code has been developed, which follow
the motion of macroparticles that are initially loade
with a bi-Gaussian distribution in both longitudinal and
transverse phase spaces. The motion of each particle
determined by Eqs. (3) and (4). Results are numerica
converged when the number of macroparticles is larg
than 400. Sincex0 is usually chosen as a positive
parameter, we show figures only for numerical work fo
x0 . 0. Simulations, nevertheless, confirm the growt
rates and stability criterion for both signs ofx0. In
Fig. 1, we plot the rms displacement of the bunch centro
averaged over a synchrotron period. For a beam w
an initial centroid offset, the bunch centroid motion
is initially dominated by thel ­ 0 mode, which is a
damping mode whenx0 . 0; the higher order unstable
modes then cause the growth of averaged bunch cen
after the initial damping. The varying chromaticity
nonetheless, Landau damps all the higher order unsta
modes whenx1 is larger than that estimated in Eq. (11).

Multiparticle simulations show that the rms emit
tance of a Gaussian beam is stabilized when the va
of x1 approaches the stability threshold of Eq. (14
(cf. Fig. 2), wheré rms ­ sk y2l kP2

y l 2 k yPyl2d1y2 (cm),
Py ­ scyvb0ddyyds (cm), and the bracketk l means a
-
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FIG. 1. Multiparticle simulation results showing the stabiliza
tion of the HT motions of the centroid of a Gaussian bea
by x1, wherex0 ­ 0.2, Y ­ 0.22, ns ­ 0.0094, kyl s0d ­ 0.1
(cm), and´rmss0d ­ 0.01 (cm). The estimated stability thresh
old for thel ­ 1 mode, according to Eq. (11), isx1 $ 0.0127.

phase-space ensemble average. Note that the emitt
growth is much slower than the initial centroid dampin
[cf. Figs. 1 and 2]. This is a result of the growth rate
of the unstable higher order modes (l $ 1) being much
smaller than the damping rate of the (l ­ 0) mode, e.g.,
t21

s sl ­ 0d ø 24t21
s sl ­ 1d. Figure 3 shows that the

results of simulation of the bunch centroid motion agr
very well with the approximate stability limits, and th
results of emittance growth agree with the exact stabi
criterion. In Figs. 1, 2, and 3,Y ­ 0.22; for other values
of Y, simulations also agree with the theoretical stab
ity criterion (for Y , 0.2 such that the SHT effect is no
prominent). Figures 4(a) and 4(b) show the stabilizati
of the SHT instability by a large enoughx1. This im-
plies that the limitation of peak current in a storage rin
within the tolerance of dynamic aperture reduction, can
increased by varying the chromaticity.

In summary, the chromaticity of a storage ring, whic
causes the head-tail instability, usually needs to be c
trolled by sextupoles. We have shown that, by varyi
the chromaticity, the head-tail instability is suppresse
and, futhermore, a stability threshold is developed. W

FIG. 2. Multiparticle simulation result showing the stabiliza
tion of the HT motions of the rms emittance of a Gaus
ian beam whenx1 $ 0.026—the theoretical stability threshold
of the l ­ 1 mode [cf. Eq. (14)]. Herex0 ­ 0.2, Y ­ 0.22,
ns ­ 0.0094, kyl s0d ­ 0.1 (cm), and´rmss0d ­ 0.01 (cm).
4567
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FIG. 3. Stability limits of a Gaussian beam with the mode
impedance function, in thex1-x0 coordinate. HereY ­ 0.22,
k yl is the averaged centroid motion at 8000 turns,D´rms ­
´rmss8000dy´rmss0d, and the approximate and exact stable limi
are plotted according to the criteria shown in Eqs. (11) a
(14), respectively. The region above the solid (dashed) li
is stable for the bunch’s rms-emittance (centroid) motio
Here, ns ­ 0.0094, kyl s0d ­ 0.1 (cm), ´rmss0d ­ 0.01 (cm),
andD´rms is rounded to the closest integer.

a large enough allowable ac part of the chromaticity, o
may increase the threshold of the strong head-tail ins
bility. The underlying mechanisms are Landau dampi
and rotation of the head-tail phase. Studies of prac

FIG. 4. Multiparticle simulation results showing stabilizatio
of the SHT motions of (a) the centroid and (b) the rm
emittance of a Gaussian beam byx1. The SHT stability limit
is Y , 1, whenx1 ­ 0. In these figures,x0 ­ 0, Y ­ 1.65,
ns ­ 0.0094, k yl s0d ­ 0.1 (cm), and´rmss0d ­ 0.01 (cm).
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cal operation issues, such as rapidly modulated sextup
magnets, and theoretical issues, such as the reductio
dynamic aperture due to resonances, as well as exact
culations including the azimuthal mode coupling, are r
quired. Also, practical aspects of the varying chromatic
must be compared with the other schemes that also in
duce an incoherent tune spread, e.g., space charge,
trapping, rf nonlinearity, and octupole magnets. Temp
ral variation of accelerator parameters might be used
the control of other instabilities.
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