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From High Dimensional Chaos to Stable Periodic Orbits: The Structure of Parameter Space
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Regions in the parameter space of chaotic systems that correspond to stable behavior are often
referred to as windows. In this Letter, we elucidate the occurrence of such regions in higher dimensional
chaotic systems. We describe the fundamental structure of these windows, and also indicate under
what circumstances one can expect to find them. These results are applicable to systems that exhibit
several positive Lyapunov exponents, and are of importance to both the theoretical and the experimental
understanding of dynamical systems. [S0031-9007(97)03367-X]
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A characteristic feature of one dimensional chao
dynamical systems is the appearance of stable behavio
system parameters traverse chaotic regions. For exam
in the bifurcation diagram of the quadratic mapx ! x2 2

a, large areas of chaotic behavior are visible, but a
punctuated by parameter intervals in which stable perio
behavior is observed. These intervals, commonly cal
windows,have long been believed to be present arbitrar
close to every parameter value that leads to chaos. O
recently has this been proven to be true [1].

In this Letter, we address the fundamental problem
the occurrence of stable periodic behavior amid high
mensional chaos. We propose a conjecture that descr
the nature of parameter space for chaotic maps, and,
thermore, indicates under what circumstances one may
sonably expect to have numerous parameter space reg
that lead to stable periodic behavior (i.e., windows). Th
conjecture can be of considerable practical importance
experimentalists, since it is often desirable to establish n
chaotic behavior in the vicinity of parameter values th
give rise to chaos.

We begin by describing the content of our conjectu
in practical terms. We then motivate the work, an
conclude with a precise mathematical statement of
result. Most chaotic systems discussed in the scien
literature are almost certainly “fragile” in the sense tha
slight alteration of a large numberN of parameters will
destroy the chaos and replace it by a stable periodic o
Let k be the number of positive Lyapunov exponents o
chaotic attractor, but suppose that onlyn , N parameters
can be varied in an experiment. We conjecture tha
n $ k, then typically a slight change applied to thesen
parameters can destroy the chaos. If, however,n , k,
then the chaos typically cannot be so destroyed. In
case, we expect that for an experimentally significa
parameter space region near the original setting,
chaotic attractor will persist.

For example, ifk ­ 1, then as one parameter is slight
varied, numerous stable regions will be observed. Ifk ­
2, then slight changes to a single parameter will typica
not destroy the chaos. However, if two parameters
0031-9007y97y78(24)y4561(4)$10.00
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available, then the parameter space can be systematic
searched in two dimensions, and many windows can
located.

Knowledge of these windows may be helpful i
controlling the system, even in the presence of noi
Alternatively, if the location of a desired window is to b
calculated, our conjecture indicates that one must typica
solve for at leastn ­ k parameters.

We now motivate the work. Our conjecture is bas
on the idea that a window is constructed around aspine
locus. For simplicity, we consider maps that conta
critical points [2]. For one dimensional maps, the spi
locus corresponds to parameter values that give rise
superstable orbits. To illustrate, consider a mapx !
Fsx; ad, where a is a scalar parameter. The stabilit
of a period p orbit is governed bym ­

d
dx Fpsxd ­

d
dx Fsxpd d

dx Fsxp21d · · · d
dx Fsx1d, where the derivatives

are evaluated at each point in the orbit. The or
is asymptotically stable ifjmj , 1, and an orbit that
contains a critical point ofF, where dFydx ­ 0, has
m ­ 0 and is called a superstable orbit. As the parame
varies in the vicinity of the spine,m sweeps through the
interval s21, 1d. In this way, the extent of the window
is delineated. For the quadratic familyx ! x2 2 a, the
windows are intervals in the (one dimensional) parame
space built around isolated spine points.

For maps with more parameters, bifurcation diagra
are usually drawn entirely in parameter space, with poi
shaded differently to represent the type of dynam
generated. In the case of the two parameter quadr
family x ! sx2 2 ad2 2 b, the spine locus consists o
two parabolas; see Fig. 1. The black curves, defined
the conditionm ­ 0, are the spine locus; these clear
determine the shape of the window.

Of importance for our purposes is the dimension
the spine locus. In particular, we note that the conditi
m ­ 0 is a single constraint, and hence the spine locus
of codimension one in the parameter space (i.e., one
than the parameter space dimension).

The dimension of the spine determines the geome
of the window in the following sense. If the spine is
© 1997 The American Physical Society 4561
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FIG. 1. The bifurcation diagram forx ! sx2 2 ad2 2 b.
The axes representa, b [ f22, 3g. White areas lead to stable
periodic orbits, while light grey points lead to divergen
trajectories. Dark grey points give rise to chaos with on
positive Lyapunov exponent. Superimposed in black is t
spine locus, which delineates the shape of the window.

point, then the window will typically have limited extent
We call such windowslimited. This is to be contrasted
with windows that have spines of higher dimension.
this case, the window extends along the entire length
the spine, as in Fig. 1. We call such windowsextended.
(These notions are made more precise below.)

For two dimensional maps, the identification of th
spine locus is more involved. Letx ! Fsx; ad, where
x is a two dimensional state vector, and assume t
there aren parameters so thata [ Rn. A period p
orbit is asymptotically stable ifjlij , 1, i ­ 1, 2 where
the l’s are the eigenvalues ofM, the Jacobian matrix
of the p-times iterated map:M ­ DFpsxd ­ DFsxpd ?

DFsxp21d ? · · · ? DFsx1d.
First, consider a region of parameter space that exhib

only one positive Lyapunov exponenth1 . 0, such that
h1 1 h2 , 0. Here, the map is asymptotically are
contracting, and on average,jdetsDFdj , 1 over the
course of a trajectory. For a periodic orbit, we hav
D ­ detfMsxdg ­ l1l2 ø 0 for sufficiently highp, and
thus at least one eigenvalue is close to zero. T
stability requirements therefore reduce to one conditi
for stability, and the spine loci in this region are o
codimension one.

Now consider parameter regions that correspond
two positive Lyapunov exponents. For this case, it
advantageous to recast the stability conditions in ter
of the traceT ­ l1 1 l2 and determinantD ­ l1l2 of
M. Stability implies that these numbers must fall withi
a triangular region inD versusT space, shown in Fig. 2.
We refer to this region as the stability triangle. Ever
4562
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FIG. 2(color). The stability triangle. The traceT [ f22, 2g
is graphed horizontally, and the determinantD [ f21, 1g is
graphed vertically.

parameter space point that leads to a stable orbit map
a particular point within the stability triangle.

Of central importance is the point whereD ­ T ­ 0.
We refer to this point and the corresponding parame
space points asnilpotent points. The spine locus for
windows in this case consists of nilpotent parame
values. By coloring points within a window accordin
to their corresponding location in the stability triangle a
in Fig. 2, the above construction makes nilpotent poin
in parameter space easily discernible as points where
colors come together. Note that the restriction ofD and
T to the stability triangle represents two constraints, a
therefore the spine locus is of codimension two.

We illustrate these ideas with a two dimensiona
two parameter map (see also [3]):sx, yd ! sssaxs1 2

xd 1 s1 2
a

4 dy, bys1 2 yd 1 s1 2
b

4 dxddd. A physically
motivated map, the kicked double rotor [4], has be
observed to have a similar parameter space structure.

Figure 3(a) shows a region of parameter space do
inated by area-contracting chaos with one positi
Lyapunov exponent. The spines in this region are o
dimensional, and we find very many extended windows

Figure 3(b) shows a region of area-expanding cha
with one positive Lyapunov exponent. The spines a
again one dimensional, and we see many extended w
dows. We note that in this region, the windows are qua
tatively different than those in 3(a) [5]. Nevertheless, th
windows are consistent with our conjecture.

Of primary interest for this Letter are regions wher
two positive Lyapunov exponents are found. Here t
spines consist of isolated nilpotent points, and we find
large number of limited windows in the two dimensiona
parameter space. Figure 4(a) shows a section of t
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FIG. 3. (a) A region in parameter spacesa, bd [
f3.4722, 3.4857g 3 f1.078, 1.316g dominated by area-
contracting chaos with one positive Lyapunov expone
(light grey). White areas lead to asymptotically stable orbi
As predicted by our conjecture, a dense set of extended w
dows is seen. In (b)sa, bd [ f2.876, 3.288g 3 f1.932, 2.46g,
and dark grey areas indicate area-expanding chaos with
positive Lyapunov exponent. Again, a dense set of extend
windows is seen, as predicted.

region, and the windows indeed appear to be dense
limited. (The long, thin windows at the top and right o
the figure are limited in extent, and qualitatively simila
to other windows in the region.) Figure 4(b) shows
blowup of a period five window with the interior colored
according to Fig. 2. It is immediately apparent that th
window is constructed around the two isolated nilpote
points at the top and bottom of the central blue regio
Other windows from this region are similarly constructe
some contain only one nilpotent point.

The identification of the spine locus can be expand
to d dimensional maps. In this case the matrixM is
d 3 d, and hence has a characteristic polynomial
degreed in l. The coefficientsci can be written as

FIG. 4(color). (a) A parameter space regionsa, bd [
f3, 4g 3 f3, 4g dominated by chaos with two positive Lyapuno
exponents (black). The shading is otherwise as in Fig. 3.
dense set of limited windows is seen, as predicted by o
conjecture. In (b) a window from within (a) is magnified
sa, bd [ f3.375, 3.42g 3 f2.87, 2.9825g, and the interior of
the period five region is colored according to Fig. 2. Tw
nilpotent points, forming the spine, are evident at the top a
bottom of the central blue region.
t
s.
in-

ne
ed

nd
f
r
a

e
t

n.
;

d

f

A
ur

d

the sum of all possible distinct product combinations
the eigenvalues takeni at a time, for i ­ 1, 2, . . . , d.
The stability requirementsjli j , 1, i ­ 1, 2, . . . , d then
determine a volume in the coefficient space, and stabi
occurs if the numbersc1, c2, . . . , cd lie within this volume.
The spines of windows are given by points in parame
space that correspond to the center of this volum
wherec1 ­ c2 ­ · · · ­ cd ­ 0. These equations may b
solved numerically to locate particular windows.

As described above for the two dimensional case, so
of the conditions restricting the parameter space may
automatically satisfied by the dynamics being consider
In an attractor on which all invariant measures yieldk posi-
tive Lyapunov exponents, unstable periodic orbits have
mostk expanding directions. Therefore, the transition
stability involves satisfying at mostk requirements, and
hence the spines of windows are of codimensionk in the
parameter space.

Knowledge of the dimension of the spine locus giv
information about when one may expect to find window
Assume that one has availablen parameters. Varying
these parameters defines ann dimensional accessible
parameter manifold within the full parameter space.
order to observe windows, this accessible parame
manifold must intersect (or come close to) a spine loc
for some periodp. (For maps without critical points,
e.g., the Hénon map, the determinant is bounded aw
from zero, but can nevertheless come very close to z
for high p.) If the codimension of the spine locus i
k, then typically the accessible parameter manifold m
be of dimension at leastn ­ k for point intersections to
generically occur. In this case the windows, as view
in the accessible parameter space, are constructed ar
isolated spine points, and therefore are limited. If t
accessible parameter manifold is of a higher dimensi
typical intersections occur in higher dimensional sets, a
therefore we expect extended windows in the access
parameter space. Finally, because unstable periodic o
are dense in a chaotic attractor, we expect that arbitra
small perturbations tok parameters can stabilize one o
these orbits (as occurs in the one dimensional case). T
we expect windows to be dense whenn $ k.

We now state our conjecture more precisely, beginn
by introducing a few definitions that facilitate the prese
tation. Let f be a smooth map from a regionS , Rd

to itself that exhibits a chaotic attractorL with k positive
Lyapunov exponents (we assume for simplicity that all i
variant measures supported onL yield the samek). Let g
be a map close tof (by which we mean thatfsxd andgsxd
are close and that all first partial derivatives ofg are close
to those off). We say thatL is dispelledfor g if almost all
points in a neighborhood ofL belong to basins of attracting
periodic orbits ofg. The situation is illustrated in Fig. 5
using the Hénon mapsx, yd ! sssr 2 x2 1 s0.3dy, xddd. If
there exist (possibly rare) functions arbitrarily close tof
for which the attractorL is dispelled, we say thatL is
fragile [6]. Finally, consider ann-parameter family of
4563
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FIG. 5. Illustration of a dispelled chaotic attractor, using
the Hénon map as in the text. The figures showsx, yd [
f22.5, 2.5g 3 f22.5, 2.5g. In (a) r ­ 1.22 and the white
region is the basin of the chaotic attractor shown in blac
The grey region is the basin of infinity. In (b)r ­ 1.23 and
trajectories originating in the vicinity of the attractor in (a) now
converge to the attracting period seven orbit shown (crosse
We say that the chaotic attractor in (a) is dispelled for the m
with r ­ 1.23.

functionsfa, wherea [ Rn, such thatf0 ­ f andfa de-
pends smoothly ona. We define thewindow setW to be
the set ofa values such thatL is dispelled forfa.

Windows conjecture.—Let f be a smooth map from
a regionS , Rd to itself that exhibits a fragile chaotic
attractor L with k $ 1 positive Lyapunov exponents,
where all invariant measures supported onL yield the
same k. Let W be the window set corresponding to
a typical family fa, wherea [ Rn and f0 ­ f. (1) If
n , k, there exists a neighborhood ofa ­ 0 entirely
outside ofW . (2) If n ­ k, W is dense in a neighborhood
of a ­ 0 and the components ofW are limited. (3) If
n . k, W is dense in a neighborhood ofa ­ 0 and the
components ofW are extended.

The numberd represents the dimension of the sta
vector, andn is the number of accessible parameters. W
expect that in cases (2) and (3),W consists of a union of
connected subsetswi ; these are the individual windows.
By limited in case (2) we mean intuitively that the subse
wi get smaller and smaller as they converge to0. That
is, as we look in successively smaller neighborhoods of0,
the diameters of thewi decrease to zero [7]. In case (3)
we expect that this property does not hold, and we c
the componentswi extended. In this case, thewi may be
quite long in the vicinity of0 (as in Fig. 1).

Our conjecture describes the local structure of param
ter space in the vicinity of a pointa ­ 0 that gives rise
to chaos. We believe, however, that it has important im
plications for the global structure as well. For the on
dimensional quadratic family, it is known that the set o
parameter values that give rise to chaos has a nonz
4564
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Lebesgue measure [8]. In this sense, chaos is comm
We expect that in more general higher dimensional sit
tions, chaos with several positive Lyapunov exponents
similarly common. If this is so, then by applying our con
jecture at every such point, we can infer global propert
of the parameter space. We leave a rigorous treatmen
our results to future efforts in light of the extreme diffi
culty of the proof in Ref. [1].
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