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in Perturbative QCD
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A simple solution to the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation is obtained as a series in
the number of real gluons emitted with transverse momentum greater than some smaljcufbfiis
solution reveals physics inside the BFKL ladder which is hidden in the standard inclusive solution,
and lends itself to a straightforward Monte Carlo implementation. With this approach one can explore
new useful physical observables, which are shown to be independent of the gutolii addition,
this approach allows the imposition of kinematic constraints (such as energy conservation) which are
important at finite energies. The distribution BE of particles in a central rapidity bin between two
widely spaced jets is presented as an example. [S0031-9007(97)03319-X]

PACS numbers: 12.38.Cy, 13.85.Hd, 13.87.Ce

The BFKL (Balitsky-Fadin-Kuraev-Lipatov) equation  With the advent of BFKL phenomenology, it has
[1], which systematically resums powersaftimes larger become a necessity to understand the range of validity
rapidity intervals or logarithms of Feynmanin perturba- and the errors inherent in the BFKL approximations.
tive QCD, has recently moved from the purely theoreticalThe calculation of the next-to-leading logarithmic (NLL)
realm to the phenomenological arena. The classic prezorrections to the BFKL matrix elements is currently
diction of the BFKL resummation is the rise #h(x) at under way [11]. Short of these full NLL corrections,
smallx in deep inelastic scattering. Unfortunately, due toit has been shown in [12] that some of the largest
the resiliency of the parton density functions and DGLAPcorrections to the asymptotic theory are purely kinematic
(Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) [2] evolution in origin. In the standard solution to the BFKL equation
equations, this observation [3,4] is still open to interpre-the transverse momenta of the ladder gluons are integrated
tation [5]. Alternatively, by tagging jets on both ends from zero to infinity. However, at physical energies the
of a large rapidity interval, as suggested by Mueller andnclusion of kinematic constraints on these integrals can
Navalet [6], it is possible to unambiguously isolate the ef-significantly modify the predictions of the theory, even
fects of the BFKL ladder from the parton density functions.if the difference is formally subleading in the asymptotic
Predictions of this kind include the rise in the cross secexpansion. In Ref. [12] an effective rapidity interval was
tion as a function of the rapidity interval, both in hadron- defined as an attempt to include some of these kinematic
hadron [6] and lepton-hadron colliders [7]. In particular, effects in the BFKL calculation.
recent preliminary results from H1 [3] on deep inelastic In this Letter we present a new solution to the BFKL
scattering with a tagged jet at fixed show an intrigu- equation in a form naturally suited for physical inter-
ing rise in the cross section with decreasing that is pretation and Monte Carlo implementation [13,14]. This
not well explained either by a fixed-order matrix elementapproach also offers a natural way to impose kinematic
calculation [8] or by parton shower Monte Carlo simula-constraints and to assess the uncertainties due to the
tions. The BFKL prediction [9], however, seems to be inasymptotic nature of the equation. The key ingredient to
good agreement. Other observables related to the kinghis solution is the introduction of a lower cutgif on the
matics of the tagging jets, such as the decorrelation in aziransverse momentum of the real gluons that are produced.
muthal angle [10], have also been considered. However, the cutoff is introduced in such a way that, for
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sufficiently small u, any infrared safe observable is in- Yb Ya
dependent of the cutoff. In the inclusive case the Monte
Carlo method generates an exact answer, identical to the
known solution in the literature, with no arbitrary param-
eters. In addition, new experimental observables which
depend on the internal structure of the BFKL ladder can
be obtained [15].

Let us begin with a general description of a semihard
process, where the parton-parton center-of-momentum
energy+/§ is much larger than the typical momentum
transfer scale. In this limit the partonic cross section
factorizes into the form

do
d’pa.d’pp

FIG. 1. A schematic picture of the cross section for producing
particles at large rapidity separation.

= Va(p2 ) f Yabs Pais o)V (Ph ). function f( yap. Pa 1. P»1), Which connects the two scat-
(1) terings, is essentially a propagator which allopys, to
flow to p,, by emitting gluons over a rapidity interval
A physical interpretation of this form of the cross sec-y., = y. — y» ~ In(8/pa1py.). This function is uni-
tion is represented in Fig. 1. The process consists of tw@ersal, and it is our object of interest.
distinct scatterings, which occur at widely separated ra- The form of the cross section given in (1) is valid
pidities, y, andy,, and small transverse momenia, = in the limit of largey,,. In that limit the perturbative
|pail ~ po. = |ppi| ~ Q. Each scattering form fac- contributions to f(yas, pai,p».) that are leading in
tor, V,(p..) and V,(p,.), depends only on the trans- a,y,, can be resummed systematically with the aid
verse momentum which flows into its particular vertex.of the BFKL equation. We now present the equation
The precise form of the form factors, however, dependsind describe the physics that it encodes. It can be
on the specific partons involved in the scatterings. T|hewritten

Pzzu
ki + (paL + ki)Z

a abs PFal»s ) ES d2k
f(y ba?) L Pb. = ? ] _L[f(yab’pai + klspbl) -

ab s als ” 2
. [ pasops) | @

wherea; = a,N./7. The boundary condition for the Feynman diagram in Fig. 2. The second term on the

equation is right-hand side of (2) gives the virtual corrections which
1 “reggeize” ther-channel gluon propagators, represented by
= — 5@
fO.par,por) = 5 87 (par + Py1), (3 the heavy solid lines in Fig. 2.

which corresponds to no gluon emissions and enforces con- An important point here is that the singularities in
servation of transverse momentum. The first term on théhe real and virtual terms of the integrand cancekas
right-hand side of the BFKL equation (2), upon iteratingbecomes small. Thus, we can cut off the integrdl at=
from the boundary conditiom times, gives the squared w for both the real and virtual gluons, and the neglected
amplitude for producing: real gluons, in the approxima- contribution will vanish asu — 0. With this cutoff we
tion that the gluons are well separated in rapidity. Thecan explicitly do the integration over the virtual gluon
amplitude with three gluon emissions is represented by |theorrections, obtaining

a ( ao» als ) ES d2k J—
Sy baf} LPel) P k_zlf(yabspai +ki,pp) + @ In(w?/pE)f(Yabs Parspri) + OW?/pi)), (4)
a 1

where the integral over real gluons is restrictedcto> ! In (5) we see that the dependence of the virtual cor-
w. From here on we neglect the terms ©f(w?/p2.).  rections onu simply exponentiates into an overall factor.
Then we can simplify this equation further by making the

substitution
2 \@war Vo < Y1 < Y2 < yg <Y
f())alnpaJ_’PbJ_) = <pMT> f(yab»paj_’pbj_)’ (5) @
al
which leaves the following equation [16]: 3 k11 ka) ksl
a.f(yab,pal,pbl) _ o [ dzki( ng >alry”b PbL T T T _>pal
- 2 2
9Ya m ki \(par + k1)
X f(yapsPar T ki.poi),  (6)  FiG. 2. The amplitude for three gluon emissions in the BFKL
with the same boundary condition (3). approximation.
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Starting with the boundary condition, we can iterate Eq. (6)istribution in the number of ladder gluons will differ
to obtain a series solutiofi = >_, /", where thenth  somewhat, but the qualitative features of this discussion
term is the contribution from the emission efreal glu-  still apply.

ons havingk, > w. This contribution can be written as  We now present in Fig. 3 a plot of the Monte Carlo
a product of integrals over the phase space of each glusolution compared to the standard BFKL solution [1],

in the ladder: i £ = 1 C  indm)
f"(Yab> Par> Pb1) = f ﬁ[asd}’idkkzu_ % Yab Dot Po (ZW)iPaLPbL n=7oce
. MZL%%HJ u? V10 x /;mdyewwwhw(pgl/ngyh
8 <Z> M%T) (10)
X %5@)(,;“ + gul) (7)  Wwith o = b — b, and
with o) = 2@ () - rey(MLEL )],
qgiL = pr1 + i ki, (8)  wherey is the logarithmic derivative of the gamma func-
i=1 tion. In this Fig. 3 we fixp;,, = 50 GeV andy,, = 4,

andgo. = p».. The integrals in rapidity are ordered with and we plot [ f d¢ as a function ofp,.. The Monte
Vo =yo < y; < -+ < yu < yns1 = va. Written in this ~ Carlo solution agrees with the standard solution (10) for
manner, the solution recovers the simple interpretation adliS curve as long ag is smaller than the bin size used
the emission of real gluons by the exchange of reggeizefi€ar the peak. o
gluons in ther channel as in Fig. 2, withe the infrared Next, we con5|der the application to observables that
cutoff to the gluon Regge trajectory. For clarity, we depend on the internal structure of the BFKL ladder. As
emphasize that only the gluons exchanged irvttleannel discussed earlier we are interested in observables that are
are reggeized, while the emitted partons are standareditably infrared finite, so that there is no dependence on
gluons. the cutoff scalew. More exclusive observables, such as
Each term in the series is positive definite. ThereforeParton or jet multiplicity distributions, would require the
it is straightforward to implement this solution as a MonteMore sophisticated treatment of infrared singularities at
Carlo simulation. Givenp,, and the rapidity interval Smallx given by Catani, Ciafoloni, Fiorani, and March-
ya — yp, We first sample the distribution in the number €SiNi (CCFM) [17,18], as well as timelike shovyermg off'
n of gluons in the ladder. Next, we produce the fourthe ladder gluons [19]. For the present analysis we avoid
momenta of then gluons successively as given by the the clustering of partons into jets and concentrate on vari-
distribution (7). Finally, we fixp,, by conservation gbles such as transverse energy flow within the rapidity
of transverse momentum. In practice the events arihterval. As an example, we calculate such an observable

produced using approximate distributions and are thefPr the tevatron as/s = 1800 GeV. We tag on the two
reweighted. jetsa and b with the largest and smallest rapidities with
To understand more clearly the cutoff depen-Pal.Ps. > 20 GeV. Thenwe sum th&, of all the par-
dence of this solution, let us calculate the quantity“C|eS within a bin in rapidity and plot the distribution in
F = [fdpl d¢,, where the integral just fixep,, via
the 6 function in (7). For simplicity of the discussion 0.0010 T ————————
here, it is convenient to consider a modified equation, ]
obtained by replacingg;, — p,.1 everywhere in (7)
and by setting the upper limit on the integrations to
k3 = p%.. Now the nested integrals can be done ana-_
Iytically, the series can be summed, and the dependencueo 0.0006
on w vanishes identically. In fact we obtain = 1, and
the distribution in the number of ladder gluons is just a
Poisson distribution with mean

(n) = @y IN(pl, /1. 9)

The physical significance of the cutoff is now apparent.
As we lower w, the number of gluons emitted in the
rapidity interval grows logarithmically. However, the 0 60 80 100
averagek, of each gluon is reduced in such a way that, Pas (GeV)

for suitable infrared-finite observables, the dependence|G. 3. Comparison of the Monte Carlo solution (histogram)
on the cutoff vanishes. In the exact solution (7) thewith the standard solution to BFKL (solid).
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