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in Perturbative QCD
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A simple solution to the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation is obtained as a series in
the number of real gluons emitted with transverse momentum greater than some small cutoffm. This
solution reveals physics inside the BFKL ladder which is hidden in the standard inclusive solution,
and lends itself to a straightforward Monte Carlo implementation. With this approach one can explore
new useful physical observables, which are shown to be independent of the cutoffm. In addition,
this approach allows the imposition of kinematic constraints (such as energy conservation) which are
important at finite energies. The distribution ofSE' of particles in a central rapidity bin between two
widely spaced jets is presented as an example. [S0031-9007(97)03319-X]

PACS numbers: 12.38.Cy, 13.85.Hd, 13.87.Ce
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The BFKL (Balitsky-Fadin-Kuraev-Lipatov) equatio
[1], which systematically resums powers ofas times larger
rapidity intervals or logarithms of Feynmanx in perturba-
tive QCD, has recently moved from the purely theoreti
realm to the phenomenological arena. The classic p
diction of the BFKL resummation is the rise ofF2sxd at
smallx in deep inelastic scattering. Unfortunately, due
the resiliency of the parton density functions and DGLA
(Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) [2] evolution
equations, this observation [3,4] is still open to interp
tation [5]. Alternatively, by tagging jets on both end
of a large rapidity interval, as suggested by Mueller a
Navalet [6], it is possible to unambiguously isolate the
fects of the BFKL ladder from the parton density function
Predictions of this kind include the rise in the cross s
tion as a function of the rapidity interval, both in hadro
hadron [6] and lepton-hadron colliders [7]. In particula
recent preliminary results from H1 [3] on deep inelas
scattering with a tagged jet at fixedxj show an intrigu-
ing rise in the cross section with decreasingxBJ that is
not well explained either by a fixed-order matrix eleme
calculation [8] or by parton shower Monte Carlo simul
tions. The BFKL prediction [9], however, seems to be
good agreement. Other observables related to the k
matics of the tagging jets, such as the decorrelation in
muthal angle [10], have also been considered.
0031-9007y97y78(24)y4531(5)$10.00
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With the advent of BFKL phenomenology, it has
become a necessity to understand the range of valid
and the errors inherent in the BFKL approximations
The calculation of the next-to-leading logarithmic (NLL)
corrections to the BFKL matrix elements is currently
under way [11]. Short of these full NLL corrections,
it has been shown in [12] that some of the large
corrections to the asymptotic theory are purely kinemat
in origin. In the standard solution to the BFKL equation
the transverse momenta of the ladder gluons are integra
from zero to infinity. However, at physical energies th
inclusion of kinematic constraints on these integrals ca
significantly modify the predictions of the theory, even
if the difference is formally subleading in the asymptoti
expansion. In Ref. [12] an effective rapidity interval wa
defined as an attempt to include some of these kinema
effects in the BFKL calculation.

In this Letter we present a new solution to the BFKL
equation in a form naturally suited for physical inter
pretation and Monte Carlo implementation [13,14]. Thi
approach also offers a natural way to impose kinema
constraints and to assess the uncertainties due to
asymptotic nature of the equation. The key ingredient
this solution is the introduction of a lower cutoffm on the
transverse momentum of the real gluons that are produc
However, the cutoff is introduced in such a way that, fo
© 1997 The American Physical Society 4531
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sufficiently smallm, any infrared safe observable is in
dependent of the cutoff. In the inclusive case the Mon
Carlo method generates an exact answer, identical to
known solution in the literature, with no arbitrary param
eters. In addition, new experimental observables wh
depend on the internal structure of the BFKL ladder c
be obtained [15].

Let us begin with a general description of a semiha
process, where the parton-parton center-of-moment
energy

p
ŝ is much larger than the typical momentum

transfer scaleQ. In this limit the partonic cross section
factorizes into the form

dŝ

d2pa'd2pb'

­ Vasp2
a'dfs yab, pa', pb'dVbsp2

b'd .

(1)

A physical interpretation of this form of the cross se
tion is represented in Fig. 1. The process consists of t
distinct scatterings, which occur at widely separated
pidities,ya andyb, and small transverse momentapa' ­
jpa'j , pb' ­ jpb'j , Q. Each scattering form fac-
tor, Vaspa'd and Vbspb'd, depends only on the trans
verse momentum which flows into its particular verte
The precise form of the form factors, however, depen
on the specific partons involved in the scatterings. T
t
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FIG. 1. A schematic picture of the cross section for producin
particles at large rapidity separation.

function fs yab , pa', pb'd, which connects the two scat-
terings, is essentially a propagator which allowspb' to
flow to pa' by emitting gluons over a rapidity interval
yab ­ ya 2 yb , lnsŝypa'pb'd. This function is uni-
versal, and it is our object of interest.

The form of the cross section given in (1) is valid
in the limit of large yab . In that limit the perturbative
contributions to fs yab , pa', pb'd that are leading in
asyab can be resummed systematically with the a
of the BFKL equation. We now present the equatio
and describe the physics that it encodes. It can
written
≠fs yab , pa', pb'd
≠ya

­
as

p

Z d2k'

k2
'

∑
fs yab, pa' 1 k', pb'd 2

p2
a'

k2
' 1 spa' 1 k'd2

fs yab , pa', pb'd
∏

, (2)
he
h
by

in

ed

n

where as ­ asNcyp . The boundary condition for the
equation is

fs0, pa', pb'd ­
1
2

ds2dspa' 1 pb'd , (3)

which corresponds to no gluon emissions and enforces c
servation of transverse momentum. The first term on
right-hand side of the BFKL equation (2), upon iteratin
from the boundary conditionn times, gives the square
amplitude for producingn real gluons, in the approxima
tion that the gluons are well separated in rapidity. T
amplitude with three gluon emissions is represented by
on-
he
g

e
he

Feynman diagram in Fig. 2. The second term on t
right-hand side of (2) gives the virtual corrections whic
“reggeize” thet-channel gluon propagators, represented
the heavy solid lines in Fig. 2.

An important point here is that the singularities
the real and virtual terms of the integrand cancel ask'

becomes small. Thus, we can cut off the integral atk' ­
m for both the real and virtual gluons, and the neglect
contribution will vanish asm ! 0. With this cutoff we
can explicitly do the integration over the virtual gluo
corrections, obtaining
≠fs yab, pa', pb'd
≠ya

­
as

p

Z d2k'

k2
'

fs yab , pa' 1 k', pb'd 1 as lnsm2yp2
a'dfs yab , pa', pb'd 1 O sm2yp2

a'd , (4)
r-
.

L

where the integral over real gluons is restricted tok' .

m. From here on we neglect the terms ofO sm2yp2
a'd.

Then we can simplify this equation further by making t
substitution

fs yab , pa', pb'd ­

µ
m2

p2
a'

∂axyab

f̃s yab, pa', pb'd , (5)

which leaves the following equation [16]:
≠f̃s yab, pa', pb'd

≠ya
­

as

p

Z d2k'

k2
'

µ
p2

a'

s pa' 1 k'd2

∂asyab

3 f̃s yab, pa' 1 k', pb'd , (6)
with the same boundary condition (3).
e

In (5) we see that the dependence of the virtual co
rections onm simply exponentiates into an overall factor

FIG. 2. The amplitude for three gluon emissions in the BFK
approximation.
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Starting with the boundary condition, we can iterate Eq.
to obtain a series solutionf ­

P`
n­0 fn, where thenth

term is the contribution from the emission ofn real glu-
ons havingk' . m. This contribution can be written a
a product of integrals over the phase space of each g
in the ladder:

fns yab , pa', pb'd ­
Z nY

i­1

∑
asdyi

dk2
i'

k2
i'

dfi

2p

3

µ
m2

q2
i'

∂asyi11,i
∏ µ

m2

q2
0'

∂asy1,0

3
1
2

ds2dspa' 1 qn'd (7)

with

qj' ­ pb' 1

jX
i­1

ki' (8)

andq0' ­ pb'. The integrals in rapidity are ordered wi
yb ; y0 , y1 , · · · , yn , yn11 ; ya. Written in this
manner, the solution recovers the simple interpretatio
the emission of real gluons by the exchange of regge
gluons in thet channel as in Fig. 2, withm the infrared
cutoff to the gluon Regge trajectory. For clarity, w
emphasize that only the gluons exchanged in thet channel
are reggeized, while the emitted partons are stand
gluons.

Each term in the series is positive definite. Therefo
it is straightforward to implement this solution as a Mon
Carlo simulation. Givenpb' and the rapidity interva
ya 2 yb , we first sample the distribution in the numb
n of gluons in the ladder. Next, we produce the fo
momenta of then gluons successively as given by t
distribution (7). Finally, we fixpa' by conservation
of transverse momentum. In practice the events
produced using approximate distributions and are t
reweighted.

To understand more clearly the cutoff depe
dence of this solution, let us calculate the quan
F ­

R
f dp2

a'dfa, where the integral just fixespa' via
the d function in (7). For simplicity of the discussio
here, it is convenient to consider a modified equati
obtained by replacingqi' ! pb' everywhere in (7)
and by setting the upper limit on the integrations
k2

' ­ p2
b'. Now the nested integrals can be done a

lytically, the series can be summed, and the depend
on m vanishes identically. In fact we obtainF ­ 1, and
the distribution in the number of ladder gluons is jus
Poisson distribution with mean

knl ­ asyab lnsp2
b'ym2d . (9)

The physical significance of the cutoff is now appare
As we lower m, the number of gluons emitted in th
rapidity interval grows logarithmically. However, th
averagek' of each gluon is reduced in such a way th
for suitable infrared-finite observables, the depende
on the cutoff vanishes. In the exact solution (7) t
)

on

as
ed

rd

,

r

re
n

-
y

,

-
ce

a

t.

,
ce
e

distribution in the number of ladder gluons will diffe
somewhat, but the qualitative features of this discuss
still apply.

We now present in Fig. 3 a plot of the Monte Car
solution compared to the standard BFKL solution [1],

fs yab, pa', pb'd ­
1

s2pd2pa'pb'

X̀
n­2`

einsfab2pd

3
Z `

2`

dn evsn,ndyab sp2
a'yp2

b'din ,

(10)

with fab ­ fa 2 fb and

vsn, nd ­ 2as

∑
cs1d 2 Rec

µ
jnj 1 1

2
1 in

∂∏
, (11)

wherec is the logarithmic derivative of the gamma func
tion. In this Fig. 3 we fixpb' ­ 50 GeV andyab ­ 4,
and we plot

R
f df as a function ofpa'. The Monte

Carlo solution agrees with the standard solution (10)
this curve as long asm is smaller than the bin size use
near the peak.

Next, we consider the application to observables th
depend on the internal structure of the BFKL ladder. A
discussed earlier we are interested in observables tha
suitably infrared finite, so that there is no dependence
the cutoff scalem. More exclusive observables, such a
parton or jet multiplicity distributions, would require th
more sophisticated treatment of infrared singularities
small x given by Catani, Ciafoloni, Fiorani, and March
esini (CCFM) [17,18], as well as timelike showering o
the ladder gluons [19]. For the present analysis we av
the clustering of partons into jets and concentrate on v
ables such as transverse energy flow within the rapid
interval. As an example, we calculate such an observa
for the tevatron as

p
s ­ 1800 GeV. We tag on the two

jets a and b with the largest and smallest rapidities wit
pa', pb' . 20 GeV. Then we sum theE' of all the par-
ticles within a bin in rapidity and plot the distribution in

FIG. 3. Comparison of the Monte Carlo solution (histogram
with the standard solution to BFKL (solid).
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FIG. 4. The distribution ofS' as explained in the text.

S' ­
P

E'. In Fig. 4 we plot the distribution ofS'

summed in the binjyj , 0.5 for fixed values ofya ­ 2.5
andyb ­ 22.5 for the tagging jets. The distribution is in
dependent of the cutoffm as long as it is smaller than th
bin size. We have checked this by varyingm over many
orders of magnitude with no effect on the plot. In this ca
culation we have also made an improvement to the BF
prediction by including the kinematic contribution of a
of the physically produced particles to the Feynmanx
parameters in the parton density functions of the pro
and antiproton. In practice, this makes a large effect d
to the constraint of total energy conservation imposed
the parton density functions. More details of this kin
matic improvement and other phenomenological resu
will be reported in an expanded paper [20].

In conclusion, we have presented a solution to
BFKL equation for large rapidity intervals as a seri
in the number of real gluons emitted above a cutoffm.
We have incorporated this solution into a Monte Ca
simulation, and we have shown that it reproduces exa
the BFKL dynamics with no dependence on the cut
for small m. An advantage of a Monte Carlo solutio
to BFKL is that it allows one to study the effects of th
gluons emitted in the middle of the ladder and even
make experimental cuts on these ladder gluons. Fina
with the Monte Carlo simulation it is also possible
improve the convergence of the resummation by includ
kinematical effects exactly in the cross section.

The author thanks Mike Albrow, Vittorio Del Duca
Terry Heuring, Joey Huston, Harry Weerts, and C.
Yuan for useful conversations and Wu-Ki Tung for
critical reading of this manuscript.
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