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The principle of reparametrization invariance is used to derive a dynamical equation for the eros
of the landscape of the drainage basin of river networks. The stationary solutions of the equat
are found to have scaling behavior that is consistent with observational data. Our analytic predict
of the main stream profile is confirmed by numerical results and is amenable to direct observatio
verification. [S0031-9007(97)03339-5]
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Drainage basins of rivers evolve into striking fracta
forms as a result of erosional processes [1]. Soil heig
maps [2] of such self-organized landscapes have be
used to study scale-free (algebraic) distributions of seve
attributes of the rugged landscape. On a lattice, t
transportation network in a river basin is a spanning tr
that provides a unique route for water flow from eac
site (representing a unit area of the drainage basin) to
outlet. From each site, the local flow is downhill to th
neighboring site with the lowest height. The landscape
characterized by variableszi , ai, li, andri at theith site,
representing the soil height, the accumulated area or
number of sites upstream ofi that eventually drain into
i, the upstream length or the distance measured along
stream to the farthest upstream site that drains intoi, and
the mean precipitation per unit time at sitei, respectively.

Observations reveal a consistent correlation betwe
the local gradient of the soil height and the accumulat
area at that site [3]

kj $=zjl ~ a21y2, (1)

where the average is over all sites draining an areaa.
Equation (1) is known as the slope-discharge relatio
The distributions ofai and li are characterized by power
laws with exponentst andg, respectively. Alsoai andli

are found to be correlated through the relationshipl , ah

(h is called the Hack exponent). River basins around t
world are found to have values oft, g, and h in the
range 1.41–1.45, 1.67–1.85, and 0.54–0.60, respectiv
These exponents are not independent but they are rela
by [4,5]

t ­ 2 2 h , (2)

g ­
1
h

. (3)

In this Letter, we derive an evolution equation from
general considerations, the solution of which provides
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quantitative explanation of the observed facts. We als
predict the scaling of the main stream profile that may b
deduced from observational data and would provide a te
of our theory.

The evolution of the surface of a landscape under th
effect of erosion [6,7] can be generally described by

≠t $rsp, td ­ 2n̂sp, tdF f$rsp, td, Jsss$rsp, tdddd, $gg , (4)

where $rsp, td is a three dimensional vector spanning the
surface,p ­ sp1, p2d describes the parametrization of the
surface, n̂sp, td is the vector normal to the surface at
$rsp, td, Jsss$rsp, tdddd is a measure of the water flow and
simply proportional to the drained areaa (J can be treated
as a scalar because its direction is determined by steep
descent along the landscape), and$g is the acceleration
due to gravity. The time derivative of$r must be parallel
to n̂ since a tangential component would merely lead
to a change in the parametrization. Because no erosio
takes place whenJ ­ 0 or when one has a completely
flat landscape (̂n and $g are antiparallel then) and because
the equation must be invariant under reparametrization [8
and thence involve only intrinsic quantities, one obtains t
lowest order

F ­
2

j $gj
bafj $gj 1 n̂ ? $gg . (5)

The constant coefficientb can be set equal to 1 on
defining the time units appropriately. In the Monge
parametrization, in whichx is a two dimensional vector in
the “substrate plane” andzsxd is the height of the surface
in the z direction perpendicular to the plane, the equation
becomes

Ùz ­ 22a

∑q
1 1 j $=zj2 2 1

∏
, (6)

which in a small height gradient approximation yields

Ùzsx, td ­ 2asx, tdj $=zsx, tdj2 1 c . (7)
© 1997 The American Physical Society
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The constant termc we have added to Eq. (7) [and no
present in Eq. (6)] physically represents the uplift o
the landscape [9].c can be simply eliminated by the
transformationz ! z 1 ct. The stationary solution of
(7) is obtained on setting the right-hand side equal to ze
and leads to Eq. (1) [10].

Before discussing the physical2 1 1 dimensional case,
it is instructive to solve the1 1 1 dimensional problem
and understand the role of boundary conditions. Ignori
the uplift term, the erosion equation is

Ùzsx, td ­ 2xf≠xzsx, tdg2, x [ f0, Lg , (8)
with boundary conditionsΩ

zsx, 0d ­ z0sxd ,
ÙzsL, td ­ 2c . (9)

The outlet is assumed to be atx ­ L, z0 is monotonically
decreasing, and since the basin is between 0 andL,
asxd ­ x. The second equation in (9) balances the upli
The solution of (8) can be obtained generally for an
initial profile z0sxd f≠xz0sxd , 0g and is given by

zsx, td ­ 2
Z L

x

dx0

2
p

x0
us

p
x0, td 2 ct , (10)
t
f

ro

g

t.
y

whereus y, td is given implicitly by

us y, td ­ û0sss y 2
1
2 tus y, tdddd , (11)

with

û0s yd ­

(
2yf≠xz0sxdgjx­y2 y [ f0,

p
L d ,

22
p

c y $
p

L .
(12)

The solutionzsx, t, Ld assumes the scaling form

zsx, t, Ld ­
p

L f

µ
x
L

,
t

Lz

∂
, (13)

with z ­
1
2 in 1 1 1 dimensions. f is a scaling function

given by

fsw, kd ­ 2
Z 1

w

ds
2
p

s
us

p
s, kd 2 ck , (14)

whereus
p

xyL, ty
p

L d ­ us
p

x, t; Ld.
For example, whenz0sxd ­ msL 2 xd (m . 0 repre-

sents the slope of the initial landscape), the solution is
zsx, td ­

(
2

mx
12mt 1 mL, sx, td such that t [ f0, tsxdg ,

2
p

c s
p

L 2
p

x d 2 ct, sx, td such that t $ tsxd ,
(15)
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where the functiontsxd is determined by imposing conti-
nuity of the solution and exists for any0 , m #

p
cyL.

The solution (15) reaches the stationary state in a
nite time t ­ tC ­

p
Lycs2 2 hd , L1y2 where h ­

m
p

Lyc, 0 # h # 1. For t $ tC, the scaling function
fsw, kd ­ 2

p
c s1 2

p
w d 2 ck.

In two dimensions, the mainstream is topologically on
dimensional with the key difference thata is no longer
proportional tox but on the average tox1yh where h
is the Hack exponent andx is the upstream mainstream
length. An effective one dimensional equation for th
case becomes

Ùzsx, td ­ 2x1yhf≠xzsx, tdg2, x [ f0, L g , (16)
whereL , Ldf is the mainstream length anddf is the
fractal dimension of a stream. The stationary solutio
is reached after a timetC , Lz with z ­ dfs1 2 1y2hd
and has the scaling form, apart from the drift term

zsxd ­ Lz f

µ
x

Ldf

∂
, (17)

with fszd ­
p

c
121y2h s1 2 z121y2hd for h fi 1y2 and

fszd ­
p

c ln z for h ­ 1y2. Our prediction of this
scaling form for river basins for whichh ­ 0.54 0.60
ought to be amenable to observational verification. W
have confirmed that the scaling form holds extremely w
in stationary solutions of the two dimensional erosio
equation obtained with simulations on aL 3 L square
lattice (see Figs. 1 and 2) forL ­ 32, 64, and 128.

A direct integration of the two dimensional equatio
proves to be slow but shows that there are two tim
fi-
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scales associated with the dynamics. The first of the
is the time taken to determine the connectivity of th
spanning tree and is relatively fast, an observation ma

FIG. 1. Profiles along the mainstream (the soil height plotte
against the length measured from the source along the m
stream) obtained in stationary solutions of the two dimension
erosion equation on a128 3 128 square lattice and averaged
over 100 samples starting from different randomly chos
initial conditions are plotted together with the analytical resu
[Eq. (17)] with h ­ 0.55, df ­ 1.1, and c ­ 1, as in the
simulation. The value ofh s0.55 6 0.02d was deduced from
the slope of the log-log plot of the upstream lengths along t
mainstream versus the corresponding areas shown in the in
df s1.1 6 0.04d was determined by a collapse (not shown) o
the distributions of upstream lengths for various system sizes
4523
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FIG. 2. Collapse of profiles along the mainstream correspon
ing to 32 3 32, 64 3 64, and 128 3 128 square lattices ob-
tained with z ­ df s1 2 1y2hd. The exponent values are the
same as in the caption for Fig. 1.

earlier by Sinclair and Ball [7]. The second involve
further erosion (without changing the spanning tree) un
the soil height acquires a stable profile that satisfi
Eq. (1). This may account for the robustness of th
scaling statistics associated with the spanning tree,
the imprinting of the tree occurs relatively early in the
evolution process. Most of the computational runs in tw
dimensions were carried out not by dynamical integratio
but by an iterative procedure. Specifically one begin
with an arbitrary spanning tree, determinesai and uses
Eq. (1) to construct a landscape. Steepest descent is t
employed to obtain a new spanning tree. This procedu
is iterated to self-consistency. The exponents and th
scaling relationship are found to be in excellent acco
with observational data (Figs. 3 and 4). A picture of
typical landscape is shown in Fig. 5.

FIG. 3. Distribution of accumulated areas averaged ov
100 samples on32 3 32, 64 3 64, 128 3 128, and256 3 256
square lattices. The slopet 2 1 ­ 0.45 6 0.02 is in excellent
accord with the scaling prediction of1 2 h.
4524
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FIG. 4. Distribution of upstream lengths with the same lattic
sizes and statistics as in Fig. 3. The slopeg 2 1 ­ 0.82 6
0.02 is in excellent accord with the scaling prediction (3).

The optimal channel network (OCN) [11] is a selec
tion procedure which postulates that nature selects
spanning tree that minimizes the total energy dissipat
ED ­

P
i
p

ai . Studies of the statistics of optimal tree
by seeking a local minimum ofED (a local minimum cor-
responds to an “optimal” tree such that any attempt at fli
ping one of the local outlet bonds to a new configuratio
while preserving the spanning tree geometry would le
to an increase inED) have yielded consistent scaling rela
tionships and excellent quantitative accord with the me
sured exponentst, g, andh [1,12]. It can be proved (the
details will be presented elsewhere) that the OCN is a s
tionary solution of the erosion equation. The basic id
is to start with an optimal tree, determine theai, and use
Eq. (1) to construct the landscape. The condition for t

FIG. 5. A typical landscape obtained by the iterative proc
dure described in the text for a128 3 128 square lattice. The
different shades correspond to different heights according to
bar on the right-hand side of the figure. Periodic boundary co
ditions have been chosen in thex direction. Outlets lie on the
y ­ 0 line. zsx, yd represents the soil height.
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local minima ofED can then be used to show that if one
uses steepest descent, one recovers the original tree,
self-consistency is attained.

An analytical study [5] of the statistics associated wit
the spanning tree corresponding to the global minimu
of ED has lead to values of the exponents that a
inconsistent with observations. This reinforces the ide
of feasible optimality [13] which in the context of the
new results obtained herein states that when the landsc
of the dissipated energy is riddled with local minima, th
global minimum (or minima) forms a set of negligible
measure (possibly zero) and the stationary solutions
the erosion equation would correspond to local minim
What is remarkable is that these accessible stationa
states show consistent scaling statistics over a few ord
of magnitude and exponents that are in perfect agreem
with observations.

This work was supported by grants from NASA
NATO, NSF, The Petroleum Research Fund administer
by the American Chemical Society, and The Center f
Academic Computing at Penn State.

Note added.—After this work was submitted for publi-
cation, we became aware of a closely related preprint
Somfai and Sander [14] in which a Landau theory for ero
sion was presented that leads to a universal form for t
large scale behavior of river networks.
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