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Sculpting of a Fractal River Basin

Jayanth R. BanavarFrancesca ColaiofiAllesandro Flammint, Achille Giacometti?
Amos Maritan>* and Andrea Rinaldb
'Department of Physics and Center for Materials Physics, The Pennsylvania State University,
104 Davey Laboratory, University Park, Pennsylvania 16802
2|stituto Nazionale di Fisica della Materia, International School for Advanced Studies,
I-34014 Grignano di Trieste and sezione INFN di Trieste, Italy
3Dipartimento di Scienze Ambientali, Universita di Venezia, 1-30124 Venezia, ltaly
“Istituto Nazionale di Fisica Nucleare, sezione di Trieste, Italy
Slstituto di Idraulica “G. Poleni,” Universita di Padova, 1-35131 Padova, Italy
(Received 9 October 1996

The principle of reparametrization invariance is used to derive a dynamical equation for the erosion
of the landscape of the drainage basin of river networks. The stationary solutions of the equation
are found to have scaling behavior that is consistent with observational data. Our analytic prediction
of the main stream profile is confirmed by numerical results and is amenable to direct observational
verification. [S0031-9007(97)03339-5]

PACS numbers: 92.40.Fb, 64.60.Ak

Drainage basins of rivers evolve into striking fractal quantitative explanation of the observed facts. We also
forms as a result of erosional processes [1]. Soil heighpredict the scaling of the main stream profile that may be
maps [2] of such self-organized landscapes have beeateduced from observational data and would provide a test
used to study scale-free (algebraic) distributions of severaif our theory.
attributes of the rugged landscape. On a lattice, the The evolution of the surface of a landscape under the
transportation network in a river basin is a spanning treeffect of erosion [6,7] can be generally described by
that provides a uniqug route for water flow from each 8.7 (p,1) = —A(p, ) FF(p,0,J(F(p, ). 8], (4)
site (representing a unit area of the drainage basin) to the . . . . .
outlet. From each site, the local flow is downhill to the Wherer(p. ) is a three dimensional vector spanning the
neighboring site with the lowest height. The landscape isurface,p = (pi, p2) describes the parametrization of the
characterized by variables, a;, ;, andr; at theith site, surface,ﬁ(ﬁ, t) is the vector normal to the surface at
representing the soil height, the accumulated area or the(p. 1), J(r(p.1) is a measure of the water flow and
number of sites upstream ofthat eventually drain into Simply proportional to the drained aregJ can be treated
i, the upstream length or the distance measured along ti#§ & scalar because its direction is determined by steepest
stream to the farthest upstream site that drainsinand ~ descent along the landscape), ands the acceleration
the mean precipitation per unit time at sitaespectively. due to gravity. The time derivative of must be parallel

Observations reveal a consistent correlation betweefp 7 since a tangential component would merely lead

the local gradient of the soil height and the accumulated® @ change in the parametrization. Because no erosion
area at that site [3] takes place whedd = 0 or when one has a completely

<|§ ) o g 1/2 (1) flat landscaped and g are antiparallel then) and because
¢ ’ the equation must be invariant under reparametrization [8]

where the average is over all sites draining an area and thence involve only intrinsic quantities, one obtains to
Equation (1) is known as the slope-discharge relationygyest order

The distributions ofz; and/; are characterized by power 5

laws with exponents andvy, respectively. Alsa; and/; F = =Ballgl + 7 - g]. (5)

are found to be correlated through the relationship a” i

(h is called the Hack exponent). River basins around thdhe constant coefficieng can be set equal to 1 on

world are found to have values of, y, andk in the defining the time units appropriately. In the Monge

range 1.41-1.45, 1.67-1.85, and 0.54—0.60, respectivelparametrization, in whick is a two dimensional vector in

These exponents are not independent but they are relatéfte “substrate plane” andx) is the height of the surface

by [4,5] in the z direction perpendicular to the plane, the equation
Fr=2—h, ) becomes

1 N R N R

[ - . . S
In this Letter, we derive an evolution equation from Which in a small height gradient approximation yields

general considerations, the solution of which provides a z(x,1) = —al(x, t)ﬁz(&, N>+ c. @)
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The constant terre we have added to Eq. (7) [and not whereu(y, t) is given implicitly by
present in Eq. (6)] physically represents the uplift of R h
the landscape [9].c can be simply eliminated by the u(y, 1) = do(y — ztuly,1), (11)
transformationz — z + ct. The stationary solution of
(7) is obtained on setting the right-hand side equal to zero
and leads to Eq. (1) [10]. . ) 2y[0:200)]l=y2 ¥y €[0,VL),
Before discussing the physical+ 1 dimensional case, fo(y) = —-2./¢ y = /L.
it is instructive to solve thd + 1 dimensional problem
and understand the role of boundary conditions. Ignoringhe solutionz(x, 7, L) assumes the scaling form
the uplift term, the erosion equation is
2, t) = —x[o, 2,0, x€[0,L], (8) z(x,1,L) = ﬁf(i ! > (13)

with boundary conditions L Le

(12)

2(x,0) = zo(x), (9) with{ = 2in 1 + 1 dimensions. f is a scaling function
z2(L,1) = —c. given by

The outlet is assumed to beat= L, z; is monotonically :

decreasing, and since the basin is between 0 And _ ds _ _

a(x) = x. The second equation in (9) balances the uplift. flw.k) = [w 2./s u(/s.k) = ck, (14)

The solution of (8) can be obtained generally for any
initial profile zo(x) [9xzo(x) < 0] and is given by wherew(\/x/L,t/JL) = u(J/x,t;L).

L ax! For example, wheny(x) = m(L — x) (m > 0 repre-

z(x,1) = _fx 2x u(Val,1) = e, (10) | sents the slope of the initial landscape), the solution is
I == + mL, (x,7) suchthat r € [0,7(x)],

2. 1) [2\/2(\/_ — Jx) —ct, (x,t) suchthat r = 7(x), (15)

where the functiorr(x) is determined by imposing contil scales associated with the dynamics. The first of these

nuity of the solution and exists for afy< m = +/c/L. is the time taken to determine the connectivity of the

The solution (15) reaches the stationary state in a fispanning tree and is relatively fast, an observation made

nite time t = t¢ = \/L/c(2 — n) ~ LY? where n =

m+/L/c, 0 =n =1. Fort = tc, the scaling function

fw, k) =2c(1 = Jw) — ck. 15 T
In two dimensions, the mainstream is topologically one T

dimensional with the key difference thatis no longer

proportional tox but on the average ta'/" where h

is the Hack exponent and is the upstream mainstream

length. An effective one dimensional equation for this

case becomes

20, 0) = —x"o,z(x, )P, x€[0,L£], (16)
where L ~ L% is the mainstream length ant} is the
fractal dimension of a stream. The stationary solution
is reached after a timg- ~ L¢ with ¢ = d;(1 — 1/2h)
and has the scaling form, apart from the drift term

O L L ' t | — - 4
Z(x):Lgf<x ) (17) 0 50 100 150 200 250 300

Lér X

with  f(z) = %(1 — z!71/2) for h #1/2 and FIG. 1. Profiles along the mainstream (the soil height plotted

- — e ; against the length measured from the source along the main
f(Z)I. \]{Eln Zf for_ h bl/.z' fOur tr])_rePSI(::tl(())n54()_l‘0 '[6P2)IS stream) obtained in stationary solutions of the two dimensional
scaling form for river basins 1or whic i erosion equation on &28 X 128 square lattice and averaged
ought to be amenable to observational verification. Weyer 100 samples starting from different randomly chosen
have confirmed that the scaling form holds extremely welinitial conditions are plotted together with the analytical result
in stationary solutions of the two dimensional erosion[EQ. (17)] with & = 0.55, df = 1.1, and ¢ = 1, as in the
equation obtained with simulations onZax L square simulation. The value of (0.55 = 0.02) was deduced from

. . _ the slope of the log-log plot of the upstream lengths along the
lattice (see Figs. 1 and 2) fdr = 32, 64, and 128. mainstream versus the corresponding areas shown in the inset.

A direct integration of the two dimensional equation ds (1.1 = 0.04) was determined by a collapse (not shown) of
proves to be slow but shows that there are two timehe distributions of upstream lengths for various system sizes.
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FIG. 2. Collapse of profiles along the mainstream correspondFlG 4. Distribution of upstream lengths with the same lattice
ing 10 32 X 32, 64 X 64, and 128 X 128 square lattices ob- j,05 and statistics as inp Fig. 3. Tk?e slope- 1 = 0.82 *

tained with¢ = d,(1 — 1/2h). The exponent values are the , o> 'is in excellent accord with the scaling prediction (3).
same as in the caption for Fig. 1.

earlier by Sinclair and Ball [7]. The second involves The optimal channel network (OCN) [11] is a selec-
further erosion (without changing the spanning tree) untifion procedure which postulates that nature selects the
the soil height acquires a stable profile that satisfie§Panning tree that minimizes the total energy dissipated
Eq. (1). This may account for the robustness of theEp = 2.i/a;. Studies of the statistics of optimal trees
scaling statistics associated with the spanning tree, d& seeking alocal minimum afp (a local minimum cor-
the imprinting of the tree occurs relatively early in the 'esponds to an “optimal” tree such that any attempt at flip-
evolution process. Most of the computational runs in twoPing one of the local outlet bonds to a new configuration
dimensions were carried out not by dynamical integrationvhile preserving the spanning tree geometry would lead
but by an iterative procedure. Specifically one begind© an increase itk'p) have yielded consistent scaling rela-
with an arbitrary spanning tree, determinesand uses tionships and excellent quantitative accord with the mea-
Eq. (1) to construct a landscape. Steepest descent is théHred exponents, y, andh [1,12]. It can be proved (the
employed to obtain a new spanning tree. This proceduréetails will be presented elsewhere) that the OCN is a sta-
is iterated to self-consistency. The exponents and theffonary solution of the erosion equation. The basic idea
scaling relationship are found to be in excellent accordS to Start with an optimal tree, determine thg and use
with observational data (Figs. 3 and 4). A picture of aEd. (1) to construct the landscape. The condition for the
typical landscape is shown in Fig. 5.
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n FIG. 5. A typical landscape obtained by the iterative proce-

dure described in the text for 28 X 128 square lattice. The
FIG. 3. Distribution of accumulated areas averaged ovedifferent shades correspond to different heights according to the
100 samples 0A2 X 32, 64 X 64, 128 X 128, and256 X 256 bar on the right-hand side of the figure. Periodic boundary con-
square lattices. The slope— 1 = 0.45 = 0.02 is in excellent  ditions have been chosen in thedirection. Outlets lie on the
accord with the scaling prediction af — 4. y = 0line. z(x,y) represents the soil height.
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