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The problems of (i) replacement free energy, {if)S, and (iii) internal consistency in the classical
theory of nucleation, based on the capillarity approximation, are resolved by the proper evaluation of
mixing entropy. [S0031-9007(97)03303-6]

PACS numbers: 82.60.Nh, 05.70.Ce, 82.20.Db, 82.20.Mj

In the semiclassical limit, the physical entropy of a sys-where Ny, Niiq, Mvap, and wjiq are the total number
tem is defined irphase space.The definition involves a of vapor molecules, the total number of molecules in
continuum of microstates represented by a continuous hydrops, and the chemical potentials in the vapor and the
pervolume consistent with the macrostate. The continuurbulk liquid, while o is the surface tension and is
is resolved into a discrete set of physical states through dthe aggregate surface area of the drops. If the drops
vision by Planck’s constant (essentially a length scale oare nonstationary their centers can adopt a continuum of
action) raised to an appropriate power, and the logarithnpositions, and there must be an additional entropy, the
of this set of distinct states, multiplied by Planck’'s con-mixing entropythat we denote bys.;x. Equation (1) is
stant, then represents the entropy. Frequently, because thien replaced by
the use of a coarse grained model, it becomes necessary
to evaluate, ircoordinate spacelone,only a partof the G = Nyapvap T Nigitiiq + 0A — TSnix . (2)
total entropy. o . .

For example, in nucleation theory, the translationallf the system is dilute in drops, of which there a¥g con-
entropy of clusters (mixing entropy), associated with thelaining » molecules and a total numbai, = >.,_, N,
continuum of positions available to mesoscopic dropghe pseudoconfiguration integrah, is V>, whereV is
(clusters), is such a partial entropy. In its evaluation, thdhe volume of the system arid = [],—, (V/v,)"/N,!,
number of distinct physical states corresponding to th&vherew, is the volume scale (cube of length scale) for
continuum of configurations is a continuous hypervolumedrops of sizen.

a pseudoconfiguratioi'ntegral tha‘L like the total entropy’ With Zp we encounter the first subtle feature generated
must be converted into a numbErof discrete microstates Py the model.  Ordinarily, in the evaluation of the
through division by a length scale raised to an appropriatéonfiguration integral of a system of molecul&sappears
power. The mixing entropy is then obtained a I, as the V(_)Iu_me over which the center of mass of_ a
wherek is the Boltzmann constant. The length scale willmolecule is integrated. But the drops of the capillarity
depend upon the model, and its rigorous choice require@PProximation are located by their spherical boundaries
the problem to be referred back to phase space, Whe@d not by the pOSitionS of their centers of mass, which
Planck’s constant serves as an unambiguous scale (6fn fluctuate with respect to those boundaries. Thus
action) [1]. V in Zp is the _volume of integration of the center

In this Letter we show that, at least for vapor phasedf @ sphere which, because of fluctuation, does not
nucleation, the first two of the three issues [2—9] referredoincide with the center of mass. Thus, we use the term
to in the title are simultaneously resolved by the correcPseudoconfiguratiomtegral.
choice of scale, while the third issuedbnostresolved. A In I, allowance is made for the volume scale to depend
less rigorous partial analysis has appeared elsewhere [1@ drop size. Smix = kInI'{v,}) can be inserted into

The problems arise only because of the use of a modétd- (2) which can be solved fdw,} in terms ofG. If
(in this case, th@apillanty approximation[3]), and they G were known exaCtIy this would establish the value of
would not arise in a truly molecular theory. Therefore our{va}. This step would then represent the (implicit) process
results are valid and consistent only within the confines oPf referring the problem back to phase space. There are
this important and much used model. very few examples in whicl& can be known exactly, but

Consider a vapor Containing Stationary drops (Clustersy'lere are many instances in Wthh it can be estimated with
of various sizes. Within the framework of the capillarity Some accuracy. We follow this procedure. _
approximation, the Gibbs free energy of this system can For discussing the issues in the title, the following

be expressed as expression forN,, the equilibrium number of drops or
clusters, is helpful (the classical theory of nucleation
G = Nyap tvap + Niquiiq + oA, Q) relies on the principle of detailed balance, so that the
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equilibrium distribution is of central importance), appearing inZp results from an integration of the center
of the containerover V.
Ny = (R/S) (Nyap €Xp{—[n(p1iq = pvap) + 0a,l/kT}). In the evaluation of the partition function of a system

3) of molecules, the integration in coordinate space involves
the coordinates of thmoleculesthe physical objects that
The quantity in the bold parentheses, in whigh is determine the relevant degrees of freedom. In contrast,

the surface area of a drop of molecules, is the the containers only represent constraints applied to the
expression obtained within the classical theory [1R. integration.
is a factor arising from the consideration of the so- Consider Fig. 1. Suppose the drop (or the center of
called replacement free energy [2—6] whose origin lies irthe container) is moved through a vector distanice
the consideration of the translational degrees of freedoruch that its new profile overlaps its original profile as
of the drop, while1/S [where S = pvap/p\(,fl;J is the in Fig. 1 and such that its nonoverlapped volume in the
supersaturation, not to be confused with the entropy, andew position indu. All of the molecular configurations
Pvap and p'©) are, respectively, the actual pressure inin the new position are not new. Those in which all
the vapor and the saturation (equilibrium) vapor pressuref the molecules lie in the region of overlap belong to
at the temperature in question] is tHgS factor, the the drop inboth its original and new positions. Thus,
necessity of which has been argued from a number ofh augmenting the partition function, they should not
standpoints [7-9], e.g., so that Eq. (3) satisfies the law dfe counted twice. The only contribution from the new
mass action with respect to the concentration of singlgosition comes from configurations in which at least one
(unclustered) molecules. Both factors have been thenolecule is outside the overlap region. This contribution
subject of controversy. is g, — ¢, where ¢!, is the partition function for the
The third issue is “internal consistency.” This is the case in which all of the molecules are in the region of
requirement that, upon settimgequal to unity in Eq. (3), overlap. But
Ny = Ny,p. Artificial devices for ensuring this result
have been introduced [12,13]. q,
We show below that, within the precision of our
estimateof the scale for the mixing entropy, the first two
problems are solved by the use of that scale while the ; . .
third is almost solved. Agairhoth the volume scale and and f, — fu is the reversible work that must be

the solution are indigenous to the model based on thgxpended in_compressing the fluid from its original

- LS . Spherical shape into the lens shaped region of overlap.
capillarity approximation. The problems would not arise ; . !
. In this compression the changes in volume and surface
in a fully molecular theory.

Since G in Eq. (2) cannot be known exactly, we areI:a Iar_edvdf(n?]= —du .?)rlld da”l’( _resrr)]_ectlvely. The
concentrate on arriving at a good estimate. Such afe Cléat:jonho t ed reversi fe WOT. in t |s|gr(_)cesls V|aha
estimate has already been made using a strong plausibili gﬁn ar i thermo ]}’”afg'k‘; . ormalsfm WO# |n\éo ve the
argument [10]. application of Gibbsian surface thermodynamics
Consider the partition function, of a stationarydrop .[15]’ including the speC|f|ca}t|on of an appropriate dlv'(.j'
of n molecules. In terms of the capillarity approximation ing surface and an unamb|_guous definition (.)f the ;adlus
We write g, — expl— f,/kT} — expl—[(1pin. + oa, —  Of the drop. But this would involve the quantities 7,
pva(n))/kT1}, wherepuyq is the chemical pcq)tential of the and " (yvherep” is the sun_‘a_lce density) appropriate to
d ’ lig the dividing surface, quantities that cannot be obtained

bulk liquid at the pressurg outside the drop and;(n) :
is the drop volume, whil¢g, is its Helmholtz free energy. without molecular theory. Thus we tum to another

Note that the form off,, appearing in the last equation

is only valid for a fully incompressible,macroscopic
drop [14]. This form appears in the unmodified classical
theory, although that theory does not insist that the drop
be incompressible. Since a typical liquid is only slightly
compressible, the form is a reasonable approximation.
However, the classical theory assumes a spherical drop to
which (based on the capillarity approximation) it assigns

exp{_fz/z/kT}

/ / (4)
and ¢, = gu.exp{—(f, — fu)/kT},

a radiusr determined by its volumev,(n) given by

nvjq, Wherewy, is the volume per molecule in the bulk \

liquid. Thus the drop consists of molecules located, overlapped

in effect, within a rigid spherical container of volume volume nonoverlapped
vy, Within which the actual volume, shape, and center volume

of mass of the liquid can fluctuate. The theory does nok|G. 1. Displacement of drop center throudh to generate a
concern itself with these details. Again, the quanfity nonoverlapped volumeu.
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method for the estimation of the volume scale. Weeven under the relatively small pressyrg,, so thatx is
expressf! — f, as P,du, whereP, is a positive quan- small and almost constant.

tity having the dimensions of pressure. Using Eq. (4), When the drop and, are large the second term on
we find that ¢/, = ¢, exp(—P,du/kT}, so that the the right of Eq. (6) may be neglected, leaving the result
partially augmented partition functiog, + (¢, — ¢,)  kT(dIng,/dva)r = pvp. Since, for a large system,
can be written asQ,(du) = ¢q, + (g, — q,,) = g, +  surface effects are negligible, the left side of this equation
(gn — gnexg{—P,du/kT}) = q,[1 + (P,du/kT)]. In s simply the pressure of the system. Thus we recover the
the evaluation ofZp, the center of the sphere must beresult that the pressuii@ the system equals that of the
moved over the entire volum®&. After the first move, barostat.

it has covered the volume,(n) of the drop plusdu. For a mesoscopic dropy is small andp.,,, in Eq. (6)
The shift of the drop can be repeated, and the furthecan be ignored, with the result

augmented partition function will contain an additional

term of the typeq,(P,du/kT). As the drop is moved (9Inga/dva)r = kTva(mx] > = ol (7)
over V, the differential terms can be summed to yield .
the augmented partition function For the problem at hand, Eq. (7) may written gs =

g expldvy/oy,} = q,ex{—du/o,,}. Comparison of
0, = q,[1 + (P, V/KkT)] = q,(P,V/kT) (5) this value forg!, with its use in defining®, shows that

since, in the thermodynamic limit, the unity is ignored P,/kT = 1/o,, O v, =kT/P,=0,,. (8)
in comparison taP,V /kT.

The partition function for a dilute system of dropé, = Thus we arrive at the result that the volume scale for
of them of sizen, immersed in an ideal vapor a¥y,, Smix IS identical with the variance of the fluctuating
molecules is thenQ = Qup [1,—2 (Q)+/N,!), where volume. The physical significance of Eq. (8) is evident;
Ovap is the partition function of the vapor. The Gibbs free the location of the drop cannot be specified more closely
energy is therG = —kT'InQ + pV and, after substitut- than the range of fluctuation. Thus,, plays a role
ing the capillarity version of, into Eq. (5) and evaluating in resolving states in coordinate space similar to that of
G in the prescribed manner, one finds= Ny,puvp +  Planck’s constant in phase space.

Nigpmiq + 0A — kT In[],-,[V/(&T/P,)]""/N,! Com- From Eg. (6), as the drop becomes lardg, con-
parison of this equation with Eq. (2) shows that the lasverges onp.,, so thatv, = kT /P, = kTpy,,, and the
term represents-TS,;,, and that the argument of the length scale becomes the volume per molecule in the
logarithm must be identical with thE. Thusv, must be surrounding vapor. We show below that, under this cir-
given bykT /P,, whereP, must still be identified. cumstance, the classical theory is recovered, a physically

The drop in Fig. 1 contains: molecules and is in reasonable result since the capillarity approximation really
contact with a uniform vapor of constant presspyg,. It ~ refers to a macroscopic drop. The volume scale given
is thus an example of the constant pressure ensemble [16ly Eq. (8) may be expressed ag = kT /P, = o, =
and, in the thermodynamic limit, its volume fluctuatesn'/%/kT kviiq, Wherev, = nvyq andvyg are the volume
with the variance [17]o,, = [kTvq(n)x]'/?, where x  per molecule in the liquid.
is the isothermal compressibility of the liquid. This The required referral to the phase space definition of
ensemble has enjoyed a less than fundamental physicahtropy occurred in the comparison of the last expression
foundation, but is known to yield correct results in thefor G with Eq. (2) and the subsequent use of Eq. (6),
thermodynamic limit [16], where its pressure is equal tosinceG in that expression was derived directly from the
the pressure of the barostat, in this casg,. Recently, partition function (or phase volume) of the system. The
it has been the subject of further analysis [18,19]. Inexpression foer,,, with kT'/P, replaced byr,, andV set
Egs. (6.2) and (6.3) of Ref. [19], it is shown (in the equal toNy,, kT /pyap, Can now be used in the derivation

notation of the present paper) that of the equilibrium distribution of drop (cluster) sizes. The
chemical potential,, of a drop ofn molecules is obtained
kT(0INq,/0vi)T = puap + [v()ax(@INg,/dva)r, )" from u, = (0G/IN,)N,.p Ny..T.p With the result
(6)

wn = (npiq + oa, + kTN pypoy,,) + kT INX,,

In this equationg, may depend on variables additional to (9)

n, vg, andT, e.g., it may also depend an,. However,

the derivative in Eq. (6) is based on the assumption thawhereX, = N,/N.,,, andp.,, is the vapor density. The
a, is a function ofv,, as would be the case if the system quantitity in parentheses is the chemical potential in the
were spherical. Thus, enters Eq. (6) implicitly. If the standard state. The reader can verify thakjfwere set
small system was a gag,would be a strong function of equal top,,, [as would be the case, according to Eq. (6),
vy. However, the drop of the capillarity approximation is if the drop were large] therny,, would be kT /pya, =
forced, by a hidden implicit constraint, to remain liquid, 1/p..p, i.e., the volume per molecule in the vapor, and
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o4, in Eq. (9) would be replaced by this quantity. The cell model. However, if we had used the compressibil-
logarithmic term would then disappear, and the quantityity of a typical real liquid, the result for the volume scale
in parentheses would be identical to the result of thevould not be much different. Thus, within the caveat of
classical theory. This shows that the classical theory halsaving arrived only at an estimate, internal consistency is
(implicitly and incorrectly) chosen the volume scale to bepreserved and the three issues mentioned in the title are
the volume per molecule in the vapor. resolved.

The equilibrium size distribution is now obtained by
substituting Eq. (9) into the law of mass action, =
Nivap- The resultis Eq. (3) with

R = 1/(Tut,95§)p ) S = pvap/p\(/g)p . (10)
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