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Resolution of the Problems of Replacement Free Energy,1yyyS, and Internal Consistency
in Nucleation Theory by Consideration of the Length Scale for Mixing Entropy
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The problems of (i) replacement free energy, (ii)1yS, and (iii) internal consistency in the classical
theory of nucleation, based on the capillarity approximation, are resolved by the proper evaluation of
mixing entropy. [S0031-9007(97)03303-6]
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In the semiclassical limit, the physical entropy of a sy
tem is defined inphase space.The definition involves a
continuum of microstates represented by a continuous
pervolume consistent with the macrostate. The continuu
is resolved into a discrete set of physical states through
vision by Planck’s constant (essentially a length scale
action) raised to an appropriate power, and the logarith
of this set of distinct states, multiplied by Planck’s con
stant, then represents the entropy. Frequently, becaus
the use of a coarse grained model, it becomes neces
to evaluate, incoordinate spacealone,only a partof the
total entropy.

For example, in nucleation theory, the translation
entropy of clusters (mixing entropy), associated with th
continuum of positions available to mesoscopic dro
(clusters), is such a partial entropy. In its evaluation, t
number of distinct physical states corresponding to t
continuum of configurations is a continuous hypervolum
a pseudoconfigurationintegral that, like the total entropy,
must be converted into a numberG of discrete microstates
through division by a length scale raised to an appropria
power. The mixing entropy is then obtained ask ln G,
wherek is the Boltzmann constant. The length scale w
depend upon the model, and its rigorous choice requi
the problem to be referred back to phase space, wh
Planck’s constant serves as an unambiguous scale
action) [1].

In this Letter we show that, at least for vapor phas
nucleation, the first two of the three issues [2–9] referr
to in the title are simultaneously resolved by the corre
choice of scale, while the third issue isalmostresolved. A
less rigorous partial analysis has appeared elsewhere [

The problems arise only because of the use of a mo
(in this case, thecapillarity approximation[3]), and they
would not arise in a truly molecular theory. Therefore ou
results are valid and consistent only within the confines
this important and much used model.

Consider a vapor containing stationary drops (cluste
of various sizes. Within the framework of the capillarit
approximation, the Gibbs free energy of this system c
be expressed as

G ­ Nvapmvap 1 Nliqmliq 1 sA , (1)
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where Nvap , Nliq, mvap, and mliq are the total number
of vapor molecules, the total number of molecules
drops, and the chemical potentials in the vapor and
bulk liquid, while s is the surface tension andA is
the aggregate surface area of the drops. If the dr
are nonstationary their centers can adopt a continuum
positions, and there must be an additional entropy,
mixing entropy,that we denote bySmix. Equation (1) is
then replaced by

G ­ Nvapmvap 1 Nliqmliq 1 sA 2 TSmix . (2)

If the system is dilute in drops, of which there areNn con-
taining n molecules and a total numberND ­

P
n­2 Nn,

the pseudoconfiguration integralZD is V ND , whereV is
the volume of the system andG ­

Q
n­2 sVyyndNn yNn!,

whereyn is the volume scale (cube of length scale) f
drops of sizen.

With ZD we encounter the first subtle feature genera
by the model. Ordinarily, in the evaluation of th
configuration integral of a system of molecules,V appears
as the volume over which the center of mass of
molecule is integrated. But the drops of the capillari
approximation are located by their spherical boundar
and not by the positions of their centers of mass, wh
can fluctuate with respect to those boundaries. Th
V in ZD is the volume of integration of the cente
of a sphere which, because of fluctuation, does
coincide with the center of mass. Thus, we use the te
pseudoconfigurationintegral.

In G, allowance is made for the volume scale to depe
on drop size. Smix ­ k ln Gshynjd can be inserted into
Eq. (2) which can be solved forhynj in terms ofG. If
G were known exactly this would establish the value
hynj. This step would then represent the (implicit) proce
of referring the problem back to phase space. There
very few examples in whichG can be known exactly, but
there are many instances in which it can be estimated w
some accuracy. We follow this procedure.

For discussing the issues in the title, the followin
expression forNn, the equilibrium number of drops o
clusters, is helpful (the classical theory of nucleatio
relies on the principle of detailed balance, so that t
© 1997 The American Physical Society
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equilibrium distribution is of central importance),

Nn ­ sRySd sssNvap exph2fnsmliq 2 mvapd 1 sangykTjddd .

(3)

The quantity in the bold parentheses, in whichan is
the surface area of a drop ofn molecules, is the
expression obtained within the classical theory [11].R
is a factor arising from the consideration of the so
called replacement free energy [2–6] whose origin lies
the consideration of the translational degrees of freedo
of the drop, while 1yS [where S ­ pvapypsed

vap is the
supersaturation, not to be confused with the entropy, a
pvap and psed

vap are, respectively, the actual pressure i
the vapor and the saturation (equilibrium) vapor pressu
at the temperature in question] is the1yS factor, the
necessity of which has been argued from a number
standpoints [7–9], e.g., so that Eq. (3) satisfies the law
mass action with respect to the concentration of sing
(unclustered) molecules. Both factors have been t
subject of controversy.

The third issue is “internal consistency.” This is th
requirement that, upon settingn equal to unity in Eq. (3),
N1 ­ Nvap . Artificial devices for ensuring this result
have been introduced [12,13].

We show below that, within the precision of ou
estimateof the scale for the mixing entropy, the first two
problems are solved by the use of that scale while t
third is almost solved. Again,both the volume scale and
the solution are indigenous to the model based on t
capillarity approximation. The problems would not arise
in a fully molecular theory.

Since G in Eq. (2) cannot be known exactly, we
concentrate on arriving at a good estimate. Such
estimate has already been made using a strong plausib
argument [10].

Consider the partition functionqn of a stationarydrop
of n molecules. In terms of the capillarity approximation
we writeqn ­ exph2fnykT j ­ exph2fsssnmliq 1 san 2

pydsnddddykT gj, wheremliq is the chemical potential of the
bulk liquid at the pressurep outside the drop andydsnd
is the drop volume, whilefn is its Helmholtz free energy.
Note that the form offn appearing in the last equation
is only valid for a fully incompressible,macroscopic
drop [14]. This form appears in the unmodified classic
theory, although that theory does not insist that the dr
be incompressible. Since a typical liquid is only slightl
compressible, the form is a reasonable approximatio
However, the classical theory assumes a spherical drop
which (based on the capillarity approximation) it assign
a radius r determined by its volumeydsnd given by
nyliq, whereyliq is the volume per molecule in the bulk
liquid. Thus the drop consists ofn molecules located,
in effect, within a rigid spherical container of volume
yd , within which the actual volume, shape, and cent
of mass of the liquid can fluctuate. The theory does n
concern itself with these details. Again, the quantityV
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appearing inZD results from an integration of the cente
of the containerover V .

In the evaluation of the partition function of a syste
of molecules, the integration in coordinate space involv
the coordinates of themolecules,the physical objects tha
determine the relevant degrees of freedom. In contr
the containers only represent constraints applied to
integration.

Consider Fig. 1. Suppose the drop (or the center
the container) is moved through a vector distancedl

such that its new profile overlaps its original profile
in Fig. 1 and such that its nonoverlapped volume in t
new position indu. All of the molecular configurations
in the new position are not new. Those in which a
of the molecules lie in the region of overlap belong
the drop inboth its original and new positions. Thus
in augmenting the partition function, they should n
be counted twice. The only contribution from the ne
position comes from configurations in which at least o
molecule is outside the overlap region. This contributi
is qn 2 q0

n, where q0
n is the partition function for the

case in which all of the molecules are in the region
overlap. But

q0
n ­ exph2f 0

nykT j

and q0
n ­ qn exph2s f 0

n 2 fndykTj ,
(4)

and f 0
n 2 fn is the reversible work that must b

expended in compressing the fluid from its origin
spherical shape into the lens shaped region of over
In this compression the changes in volume and surf
area aredydsnd ­ 2du and dan, respectively. The
calculation of the reversible work in this process via
standard thermodynamic formalism would involve th
full application of Gibbsian surface thermodynami
[15], including the specification of an appropriate divi
ing surface and an unambiguous definition of the rad
of the drop. But this would involve the quantitiess, rs ,
and r (where rs is the surface density) appropriate
the dividing surface, quantities that cannot be obtain
without molecular theory. Thus we turn to anoth

FIG. 1. Displacement of drop center throughdl to generate a
nonoverlapped volumedu.
4507
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method for the estimation of the volume scale. W
expressf 0

n 2 fn as Pndu, wherePn is a positive quan-
tity having the dimensions of pressure. Using Eq. (4
we find that q0

n ­ qn exph2PnduykTj, so that the
partially augmented partition functionqn 1 sqn 2 q0

nd
can be written asQnsdud ; qn 1 sqn 2 q0

nd ­ qn 1

sqn 2 qn exph2PnduykT jd ø qnf1 1 sPnduykT dg. In
the evaluation ofZD, the center of the sphere must b
moved over the entire volumeV . After the first move,
it has covered the volumeydsnd of the drop plusdu.
The shift of the drop can be repeated, and the furth
augmented partition function will contain an additiona
term of the typeqnsPnduykT d. As the drop is moved
over V , the differential terms can be summed to yiel
the augmented partition function

Qn ­ qnf1 1 sPnVykT dg ­ qnsPnVykT d (5)

since, in the thermodynamic limit, the unity is ignored
in comparison toPnVykT .

The partition function for a dilute system of drops,Nn

of them of sizen, immersed in an ideal vapor ofNvap

molecules is thenQ ­ Qvap
Q

n­2 sQNn
n yNn!d, where

Qvap is the partition function of the vapor. The Gibbs fre
energy is thenG ­ 2kT ln Q 1 pV and, after substitut-
ing the capillarity version ofqn into Eq. (5) and evaluating
G in the prescribed manner, one findsG ­ Nvapmvap 1

Nliqmliq 1 sA 2 kT ln
Q

n­2 fVyskTyPndgNn yNn! Com-
parison of this equation with Eq. (2) shows that the la
term represents2TSmix, and that the argument of the
logarithm must be identical with theG. Thusyn must be
given bykTyPn, wherePn must still be identified.

The drop in Fig. 1 containsn molecules and is in
contact with a uniform vapor of constant pressurepvap . It
is thus an example of the constant pressure ensemble [1
and, in the thermodynamic limit, its volume fluctuate
with the variance [17]syd ­ fkTydsndkg1y2, where k

is the isothermal compressibility of the liquid. This
ensemble has enjoyed a less than fundamental phys
foundation, but is known to yield correct results in th
thermodynamic limit [16], where its pressure is equal t
the pressure of the barostat, in this casepvap . Recently,
it has been the subject of further analysis [18,19]. I
Eqs. (6.2) and (6.3) of Ref. [19], it is shown (in the
notation of the present paper) that

kT s≠ ln qny≠yddT ­ pvap 1 fysnddks≠ ln qny≠yddT ,ng21.

(6)

In this equation,qn may depend on variables additional to
n, yd, andT , e.g., it may also depend onan. However,
the derivative in Eq. (6) is based on the assumption th
an is a function ofyd, as would be the case if the system
were spherical. Thusan enters Eq. (6) implicitly. If the
small system was a gas,k would be a strong function of
yd . However, the drop of the capillarity approximation is
forced, by a hidden implicit constraint, to remain liquid
4508
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even under the relatively small pressurepvap , so thatk is
small and almost constant.

When the drop andyd are large the second term o
the right of Eq. (6) may be neglected, leaving the res
kT s≠ ln qny≠yddT ­ pvap . Since, for a large system
surface effects are negligible, the left side of this equati
is simply the pressure of the system. Thus we recover
result that the pressurein the system equals that of the
barostat.

For a mesoscopic drop,yd is small andpvap in Eq. (6)
can be ignored, with the result

s≠ ln qny≠yddT ­ fkTydsndkg21y2 ­ s21
yd

. (7)

For the problem at hand, Eq. (7) may written asq0
n ­

qn exphdydysyd
j ­ qn exph2duysyd

j. Comparison of
this value forq0

n with its use in definingPn shows that

PnykT ­ 1ysyd or yn ­ kTyPn ­ syd . (8)

Thus we arrive at the result that the volume scale f
Smix is identical with the variance of the fluctuating
volume. The physical significance of Eq. (8) is eviden
the location of the drop cannot be specified more clos
than the range of fluctuation. Thussyd

plays a role
in resolving states in coordinate space similar to that
Planck’s constant in phase space.

From Eq. (6), as the drop becomes large,Pn con-
verges onpvap so thatyn ­ kTyPn ­ kTpvap , and the
length scale becomes the volume per molecule in
surrounding vapor. We show below that, under this c
cumstance, the classical theory is recovered, a physic
reasonable result since the capillarity approximation rea
refers to a macroscopic drop. The volume scale giv
by Eq. (8) may be expressed asyn ­ kTyPn ­ syd ­
n1y2

p
kTkyliq, whereyd ­ nyliq andyliq are the volume

per molecule in the liquid.
The required referral to the phase space definition

entropy occurred in the comparison of the last express
for G with Eq. (2) and the subsequent use of Eq. (6
sinceG in that expression was derived directly from th
partition function (or phase volume) of the system. Th
expression forsyd , with kTyPn replaced bysyd andV set
equal toNvapkTypvap, can now be used in the derivation
of the equilibrium distribution of drop (cluster) sizes. Th
chemical potentialmn of a drop ofn molecules is obtained
from mn ­ s≠Gy≠NndNvap ,Nn0fin ,T ,p with the result

mn ­ snmliq 1 san 1 kT ln rvapsyd
d 1 kT ln Xn ,

(9)

whereXn ­ NnyNvap, andrvap is the vapor density. The
quantitity in parentheses is the chemical potential in t
standard state. The reader can verify that ifPn were set
equal topvap [as would be the case, according to Eq. (6
if the drop were large] thenyn would be kTypvap ­
1yrvap , i.e., the volume per molecule in the vapor, an
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syd in Eq. (9) would be replaced by this quantity. Th
logarithmic term would then disappear, and the quant
in parentheses would be identical to the result of t
classical theory. This shows that the classical theory h
(implicitly and incorrectly) chosen the volume scale to b
the volume per molecule in the vapor.

The equilibrium size distribution is now obtained b
substituting Eq. (9) into the law of mass action,mn ­
nmvap . The result is Eq. (3) with

R ­ 1ysyd
rsed

vap , S ­ rvapyrsed
vap . (10)

Thus1yS appears naturally, andR, independentof S, is of
the experimentally reasonable order of104. Both factors
have their origin in the inclusion of the mixing entropy.

If one were to assume that the liquid could be a
curately modeled by a simple cell model of the liqui
[20], the choice of the correct volume scale leads
full consistency, and,in general, the correct choiceal-
most produces consistency. In the cell model, each
the Nliq molecules in the total volumeVliq behaves like
an ideal gas within a cell of volumeyliq, communal en-
tropy [20] is accounted for, the reference level for e
ergy is that of the ideal vapor, and the internal ener
of vaporization is denoted byDU. The equilibrium va-
por pressure proves to bepsed

vap ­ kTrliq exph2sDH 2

kT dykT j, whererliq ­ NliqyVliq is the liquid density and
DH ­ DU 1 kT is the heat of vaporization per mole
cule. Furthermore,k ­ 2s1yVliqd s≠Vliqy≠pliqdNliq,T ­
yliqykT . Within the capillarity approximation, the Gibbs
free energy of vaporization of a single molecule isDG ­
sa1 2 kT lnsVvapyy1d, wherea1 is the surface area of a
drop svolume­ yliqd consisting of a single molecule and
the last term in is due to the mixing entropy. Neglectin
the slight temperature dependences of all other quanti
exceptT itself, substitution of this expression forDG into
the Gibbs-Helmholtz relation [21] yieldsDH ­ sa1 1

kT . Substitution of thisDH into the equation for the
saturation pressure yieldspsed

vap ­ kTrliq exph2sa1ykTj.
Substitution of the equation fork into the equation for
syd givessyd ­ yn ­ yliq

p
n. The theory is internally

consistent, i.e.,N1 ­ Nvap , since Eq. (3), with this equa-
tion for syd

substituted into Eq. (10), with the result sub
stituted back into Eq. (4) withn set to unity, and with the
use ofmliq 2 mvap ­ 2kT ln S, yields

N1 ­ srliq exph2sa1ykTjyrsed
vapdNvap

­ srsed
vapykT dyrsed

vap ­ Nvap , (11)

where the second step used the expression for the s
ration pressure. Equation (11) is exact for the simple
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cell model. However, if we had used the compressibi
ity of a typical real liquid, the result for the volume scale
would not be much different. Thus, within the caveat o
having arrived only at an estimate, internal consistency
preserved and the three issues mentioned in the title a
resolved.
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