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Simple Ginzburg-Landau Theory for Vortices in a Crystal Lattice
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We study the Ginzburg-Landau model with a nonlocal quartic term as a simple phenomenological
model for superconductors in the presence of coupling between the vortex lattice and the underlying
crystal lattice. In mean-field theory, our model is consistent with a general oblique vortex lattice
ranging from a triangular lattice to a square lattice. This simple formulation enables us to study the
effect of thermal fluctuations in the vortex liquid regime. We calculate the structure factor of the vortex
liquid nonperturbatively and find Bragg-like peaks with fourfold symmetry appearing in the structure
factor even though there is only a short-range crystalline order. [S0031-9007(97)03333-4]

PACS numbers: 74.20.De, 74.60.Ge, 74.72.—h

It is of great interest to study vortex lattice structurescribing the nonlocal quartic interaction. Theb plane
and correlations in superconductors in the presence @hisotropy found in high-temperature superconductors is
coupling between the vortex lattice and the underlyingalso incorporated in our model in the usual way through
crystal lattice. Various experimental probes includingsecond order gradient terms. We believe that this model
neutron diffraction [1], Bitter decoration [2], and scanning captures the same physics as in the higher derivative ap-
tunneling microscopy [3,4] have been used to reveal g@roaches of Ref. [4—6], but is just much simpler to handle
range of vortex lattice structures from the usual triangulacalculationally.
lattice to a general oblique lattice and a square lattice One feature of our simple formulation is that it allows a
oriented along a specific direction of the crystal axis. Anstudy of the effect of thermal fluctuations in the vortex
important feature of these structures is the emergence difjuid regime. This would be quite impossible in the
the fourfold symmetry representing the symmetry of theconventional formulations. We apply the nonperturbative
underlying crystal lattice. This effect of the crystal lattice method developed by us in Ref. [7] to calculate the
on the vortex lattice is found to be dependent upon thetructure factor of the vortex liquid, which is measured in
external field in such a way that a triangular vortex latticeneutron scattering experiments. One of the main results
is observed at low fields, while at higher fields a squareof the present work is that one can observe in the structure
lattice is observed [4]. factor the ring patterns expected for a liquid state but

In order to study the vortex lattice structure, one usuallybroken up into Bragg-like peaks. This suggests that even
uses a Ginzburg-Landau (GL) phenomenological theoryin the vortex liquid state where there is a short-range
Since the usual GL theory is rotationally invariant, onecrystalline order, a weak fourfold symmetric coupling to
needs additional terms that break this symmetry to accourthe underlying crystal may produce the spots observed in
for the appearance of the fourfold symmetric vortex latticeneutron scattering experiments and usually attributed to
structure. The conventional way to include this effectthe formation of the vortex crystal state.
is to introduce terms quadratic in the order parameter in The model we study in this paper is based on the
the GL free energy with fourth order derivatives [4—6]. GL free energy with a nonlocal quartic interaction for
The observed fourfold symmetric vortex lattice structurea two-dimensional superconductor in a magnetic field
can be explained within these formalisms. However, théB = V X A,
equations involved in these theories are very difficult to 52 2
handle even at the linearized level where one has to resorg[¥] = f d2r< D . W|> + — |Dy\1r|2
to approximate or numerical methods. 2 2my

In this paper we propose a much simpler phenomeno-
logical model for vortices in a crystal lattice. Our model
is the usual GL theory for a one-component complex or-
der parameter, except that the term quartic in the order X ]d2r1 d*r, |V ()P g(r — 1) [¥ ()%, (1)
parameter¥(r) is nonlocal We consider the situation
where the effect of the underlying crystal on the order pawhere «, 8 are phenomenological parameters, the
rameter symmetry can be summarized into an appropriateffective mass in the direction, m, in the y direction,
form for the nonlocal interaction potential. The vortexandD = —iV — (¢*/hic)A. Thea-b plane anisotropy is
lattice structure is determined within our model withoutrepresented by the ratio of the effective masses. For later
much calculational effort. We find that the fourfold sym- use, we defineo = (mx/my)l/“. The only difference
metric vortex lattice structure can be modeled with thebetween our model and the usual GL theory is the
appropriate choice of a minimal number of parameters deaonlocal quartic interaction term represented here by a

X

+ aI\If(r)|2> + %
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general functiong(r) = g(x,y), which is equal to the Z(k) neark =0 with the cog6 term, we need at least
delta functions®(r) for the usual local GL theory. terms in (2)]. But, in the presence of the growing length
One reason we study the two-dimensional version okcale mentioned earlier, we might expect that universality
the model in this paper is that one can easily applyapplies and the present form of the nonlocal quartic
the nonperturbative method in Ref. [7] to calculate theinteraction does not alter the physical results. Note that
vortex liquid structure factor. But, more importantly, we measure the wave vectors with respect to the inverse
as noted by one of us [8], the phase correlation lengtimagnetic length. But this is just for convenience in later
parallel to the field direction in a bulk superconductorcalculations. A more natural length scale for the nonlocal
grows exponentially as one approaches zero temperaturgernel will be the lattice spacing of the crystal lattiég,
When this length scale becomes comparable to or largérherefore, the dimensionless paramafewhich appears
than the sample size in the low-temperature regime, thi (2) will depend on the ratio of two length scales, i.e.,
system effectively behaves as a two-dimensional thirC ~ (lou)*. As the magnetic field increases, the intervor-
film with phase coherence across the sample and a vetgx spacingu ™', gets smaller, so the nonlocal interaction
low effective temperature [8]. We note that most ofterm becomes more important. This qualitative feature of
the experiments mentioned earlier are performed in thisur model is consistent with experimental findings where
regime, and we expect that they can be described bthe fourfold symmetric vortex lattice structure is observed
the present model when the paramedeiis set to large only in the high field regime.
negative values, i.e., low temperatures. It is convenient to map the free energy functional
A nonlocal quartic interaction as in (1) appeared inof Eqg. (1) into a form with isotropic gradient terms
the renormalization group study [9] of this system neawsing the following transformationsa(r’) = (a,(r’),
its upper critical dimension. Even if one starts from aa,(r')) = (o 'A(r), cA,(r)), and h(r')=g(r), where
local theory, renormalization always drives the quarticr’ = (x/,y')=(ox,0 " 'y), or the Fourier transform
term into an effective nonlocal one. It is not our aim %(k/)zg(gk;,gﬂk;)_ Then Egq. (1) becomes in the
here to derive an explicit form of(r) from a microscopic  new order parametet(r') = ¥ (r) = ¥ (o~ v/, oy'),
theory. Instead, we take (1) as our starting point for 2
the phenomenological description of superconductors in _ 20 i 2 N2
the presence of an interaction between the vortex lattice Fly] = f dr <2m D"+ aly )] )

and the crystal lattice, and show that the variety of B
vortex lattice structures observed in experiments can be + 7[ d*r! dPrh |y (e)Ph(r] — 1))
explained using a very simple form gfr).

The main ingredient one has to incorporate into the phe- X ()%, 3

nomenological construction af(r) is the presumed four-
fold symmetry of the underlying crystal. (Generalizations
to other crystal symmetries are, of course, possible.)
the present work, we construgtr) such that it contains a

whereD' = —iV' — (¢*/lic)a(r’) andm = (m,m,)"/?.
Within mean-field theory, the structure of the vortex
lattice in our model can be determined in exactly the

; - . o in Abrikosov’'s work using the lowest
term with explicit fourfold symmetry in addition to a ro- S&M& Wway as In ADMKC

tationally symmetric term. Thus, we take for the Fourier-andau level approximation (LLL) [10]. We look for a
transformg(k) = [ dr g(r)explik - r), periodic solution to the linearized GL equations while

N restricting the order parameter to the space spanned
g(k) = exp{—C(k/pn)*[1 — ecosk(@ + 69)]}, (2) by the LLL wave functions. In the Landau gauge,
_ ; — [ ; = (—By',0), the normalized solution quasiperi-
where k = (kco9, ksind) and w=./e*B/hic is the 2 (=By',0), oo
inverse magnetic length. In particularg(k) = O,d'c over th? two periodicity vectorsr; = i(1,0),
exp—C[(1 — &) (k* + k%) + 2(1 + 3e)k2k2]/ '} for @y —  T1 = [(&.m) is given by [11] 4(r') ~ ¢(x'|0) =
0. In (2), we introduced three parametefs s, andg, (27 Fexp(—p2y2 /20w (' + iy)/1I¢ + 1171]. with
in such a way that the overall constafit controls the the rt]hef'ia functiors. The rr;ggne.tm I_eznglm N ff|xeq
strength of the interaction between the vortex lattice an@V the ‘;X quantization conditioar . * = /(qrea of unit
the underlying crystal (note that wheh— 0, a local GL cell) = /"n. A useful representation fap (r') is [12]

theory is recovered), and the dimensionless parameter - i . s o ,
(0=e < 1) represents the strength of the fourfold sym- |¢@)|* = D> (—D)™exp(—G*/4u® + iG - 1),
metric interaction compared to the rotationally symmetric = (4)

one. As will be discussed latefy controls the orientation

of the vortex lattice with respect to the underlying crystal.where G = u2l(ym,n — {m) is the reciprocal lattice
This choice forg is certainly not unique. One could use vector corresponding to the periodicity vectors in e
various other forms with a fourfold symmetric term asspace. The mean-field free energy density is given by
long as they are positive definite (to ensure the stability o g = —a /28B4, Whereay = a + he*B/2me = 0

GL theory) and they do not introduce any unphysical nondetermines the upper critical field?.,(T), and the
analyticity [note that in order to ensure the analyticity of Abrikosov ratio 84, which accounts for the contribution
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from the quartic term, is given by can in principle be fixed by experiments which determine
Y o the flux lattice structure as a function of the magnetic field.
Ba = > exd—G*/2u®) h(G). (5) Thermal fluctuations, which are especially important in

high-T. materials, melt the mean-field vortex lattice into
In order to find a minimum free energy configuration, onea vortex liquid. For the local theory((= 0), the effect
has to minimizeB,. of thermal fluctuations around the mean-field solution was

Since the sum in (5) converges very quickly, it is notstudied by Eilenberger [11] using the orthonormal basis for
difficult to find a configuration that minimizeg, for  the LLL wave functions,é (r|ry) = expli u?xyo) ¢ (r|0),
given values ofC, ¢, andfy. In the limit whereC — 0 wherer, spans one fundamental cell, .= ,uz(yo, —Xx0)

(the low-magnetic field regime), one recovers the locabelongs to the first Brillouin zone. There are two different
GL theory, andg, attains the familiar minimum value, modes of excitation, whose energies are denoteel.iy).
1.159... for a triangular lattice in the’ space. Also, |nthe long wavelength limity — 0, the hard mode behaves
since rotational invariance exists in thé space when gase +(g) =const + 0(¢?) while the soft mode takes the

C — 0, the triangular lattice has no preferred orientationform e_(q) = (a/2) (¢*/u*) + 0(¢®) asq— 0. The soft

with respect to the underlying crystal. When transformednode corresponds to an incompressible shear deformation
back to the originalr space, it results in a distorted of the vortex lattice [13] and, can be identified with the
triangular lattice due to the-b plane anisotropy. shear modulusg of the triangular lattice.

In the high field regime where one cannot neglect the When terms which break the rotational symmetry are
effect of the nonlocal quartic term, the situation is different.present, the orientation of the vortex lattice is locked
Because of the-b plane anisotropy carried over idk’),  to the underlying crystal. Therefore we expect that
the system in the’ space is neither rotationally invariant there exists an excitation energy cost associated with
nor fourfold symmetric. Therefore, the vortex lattice isa rigid rotation of the vortex lattice against the crystal
orientated with respect to the crystal. In our model, thdattice. We shall calculate this energy when the coupling
parameteréd, specifies the orientation. In general, weto the underlying lattice is very weak, i.eC < 1.
obtain an oblique lattice whose form depends on the valueSollowing Ref. [11], we first determine the soft mode
of C ande. In the originalr space, this lattice is further energye_(q) associated with (1) to the lowest order in
distorted due to the:-b plane anisotropy. To be more C. (We assumer = 1 for simplicity.) After lengthy
specific, we parametrize the periodicity vectatisandri;,  but otherwise straightforward algebra, we obtain the
in terms of a centered rectangular lattice for which one caollowing anisotropic expression:
write { = 1/2 andn = (1/2)tane’, whereg’ is an angle _ o 4, 4
betweenr| andrj;. 7’We consider a general case Whe?e this e-(q@) = P [+ Ca)(q"/m)
lattice is rotated by an angke;. The resulting lattice can + Ce(Biqt + 282927 + Bagh)/u']
also be regarded as an oblique lattice with two primitive L 0. C?) ' ' (6)
vectors of equal length and an and@e’ (or 7 — 2¢') .% 7
between them. For simplicity we focus on the case wheravith knownnumericalconstantsy,, 81, 82, andB3. This
6o = 0. For givenC, &, and 8y = 0, we look for ¢’  corresponds to a general form of the effective free energy
and @), that minimizesB,. For 6, = 0, we find that the [14] for the displacementi, which should involve the
minimum free energy configuration always corresponds taotation fields, v;; = (d;u; — d;u;)/2 as well as the
@y = 0, where one of the primitive vectors;, coincides usual strain fieldsy;; = (d;u; + 9;u;)/2. In our case
with thex’ axis. Any other orientation of the vortex lattice where the vortex lattice is incompressible and fourfold
can be obtained using different valuessgf The anglep’  symmetric, the effective free energy density reduces to
that gives the minimum free energy changes continuously 2 2 2
from ~60° corresponding to a distorted triangular lattice M@y = dyuy)” + dhouyy + dovyy, + 8Ly vy,
to ~45° for a distorted square lattice as the fourfold with four energy constantsy;, A,, w, and¢. For C =
symmetric coupling: increases from O toward 1 for fixed 0, one only has the purely elastic paw & ¢ = 0)

C. Wefind that forC greater than some vald ~ 0.015, and Ay = Ay, = ¢¢6. FoOr small C, the shear modu-
there existse. which depends o such that the vortex lus will have a @QC) correction, and the rotation modu-
lattice remains as a distorted square latticesfor ¢.. A lus w and the couplingé¢ between the rotation and
similar behavior to this was obtained in Ref. [4]. Now, strain fields will be proportional toCe. From (6),
since the original order parametd(r) is quasiperiodic we obtain using the method of Ref. [13]; = c¢g[1 +
with respect td(o~',0) andi(o ', om) for ¢y = 0,the  Ca; + Ce(2B2 — B1 — B3)/4], Ar=ce(l + Cary), w =
oblique lattice in the space has an anglg where tap = ce6Ce(B1 + B3)/2, and€ = cecCe(B1 — B3)/2.

o *tang’. (This relation becomes more complicated if A useful quantity in studying the effect of thermal fluc-
oo #0.) To summarize, within mean-field theory, the tuations is the so-called structure factbfk) of the vor-
structure of the vortex lattice is mainly determined bytex liquid, which is proportional to the Fourier transform
the anisotropy parameter and the fourfold symmetric of the density-density correlation functioW (r)|*| ¥ (r +
couplinge, and the orientation bg§,. All these parameters R)|?).. In the low-temperature regime, the length scale
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1, governing the degree of a short-range crystalline order 10
perpendicular to the magnetic field in the vortex liquid be-

comes very largel( > 1). We expect then that a tiny

amount of coupling to the underlying lattice might be able

to break the rotational symmetry of the vortex liquid sys- 5
tem even though there is only a short-range translational

order. For example, a ringlike pattern expected in a struc-

ture factor will be broken up into Bragg-like spots evenin 3.

a liquid state (these spots will not be delta-function peaks, > 0
i.e., nottrue Bragg peaks). This is to be contrasted with the

usual explanation of the appearance of Bragg-like spots in
neutron diffraction patterns using a phase transition from a 5
vortex liquid state to a vortex lattice state. We can estimate

the angular dispersiofif of these spots using the above
discussion on the rotation modulus: Since the energy asso-

ciated with a rigid rotation by # of the crystalline region -10 l
of areal? is given byl? w(86)?, by equating this tagT, -10 -5 0 5 10
one finds that K./ 14

2 2 _ 2
(66) kT /wli = (0.012)kgT /cesl 1 Ce,  (7) FIG. 1. A contour plot ofA(k) at ay = —6.3. The parame-
where we have used the numerical valuesfgeand 8. ters used ar€ = 0.01, ¢ = 0.5, §p = 0, ando > = 1.15.

As the temperature is raised, according to (7), one needs
larger values ofCe to observe the Bragg-like spots. At

moderately low temperatures, an approximation schemerhis fact is in qualitative agreement with (7) (although the
called the parquet resummation method [7] is accessiblgresent numerical calculation is not done in the strict weak
for the calculation of the structure factor of the vortexcoupling limit).

liquid. Using this method, one can explicitly observe a |n summary, we considered a simple phenomenological
ringlike pattern in the structure factor is broken up intomodel for vortices in a crystal lattice using a nonlocal GL
Bragg-like spots as the temperature is lowered. For atheory. As well as explaining the observed fourfold sym-
isotropic system described by (3), it is straightfowardmetric vortex lattice structures within mean-field theory,
to apply the parquet resummation method to calculatgne present model suggests that there is a possibility of ob-
the structure factorA’(k’) in the k’ space. The only serving Bragg-like spots within the vortex liquid regime as
difference compared to the usual local theory is thakt consequence of coupling of the vortices to the underlying
one starts from the bare quartic potentigk’) which  crystal.

explicitly breaks the rotational symmetry of the local
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