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Simple Ginzburg-Landau Theory for Vortices in a Crystal Lattice
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We study the Ginzburg-Landau model with a nonlocal quartic term as a simple phenomenolog
model for superconductors in the presence of coupling between the vortex lattice and the underl
crystal lattice. In mean-field theory, our model is consistent with a general oblique vortex latt
ranging from a triangular lattice to a square lattice. This simple formulation enables us to study
effect of thermal fluctuations in the vortex liquid regime. We calculate the structure factor of the vor
liquid nonperturbatively and find Bragg-like peaks with fourfold symmetry appearing in the structu
factor even though there is only a short-range crystalline order. [S0031-9007(97)03333-4]

PACS numbers: 74.20.De, 74.60.Ge, 74.72.–h
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It is of great interest to study vortex lattice structur
and correlations in superconductors in the presence
coupling between the vortex lattice and the underlyin
crystal lattice. Various experimental probes includin
neutron diffraction [1], Bitter decoration [2], and scannin
tunneling microscopy [3,4] have been used to revea
range of vortex lattice structures from the usual triangu
lattice to a general oblique lattice and a square latt
oriented along a specific direction of the crystal axis. A
important feature of these structures is the emergence
the fourfold symmetry representing the symmetry of th
underlying crystal lattice. This effect of the crystal lattic
on the vortex lattice is found to be dependent upon t
external field in such a way that a triangular vortex lattic
is observed at low fields, while at higher fields a squa
lattice is observed [4].

In order to study the vortex lattice structure, one usua
uses a Ginzburg-Landau (GL) phenomenological theo
Since the usual GL theory is rotationally invariant, on
needs additional terms that break this symmetry to acco
for the appearance of the fourfold symmetric vortex latti
structure. The conventional way to include this effe
is to introduce terms quadratic in the order parameter
the GL free energy with fourth order derivatives [4–6
The observed fourfold symmetric vortex lattice structu
can be explained within these formalisms. However, t
equations involved in these theories are very difficult
handle even at the linearized level where one has to re
to approximate or numerical methods.

In this paper we propose a much simpler phenomen
logical model for vortices in a crystal lattice. Our mode
is the usual GL theory for a one-component complex o
der parameter, except that the term quartic in the ord
parameter,Csrd is nonlocal. We consider the situation
where the effect of the underlying crystal on the order p
rameter symmetry can be summarized into an appropr
form for the nonlocal interaction potential. The vorte
lattice structure is determined within our model withou
much calculational effort. We find that the fourfold sym
metric vortex lattice structure can be modeled with th
appropriate choice of a minimal number of parameters d
0031-9007y97y78(23)y4490(4)$10.00
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scribing the nonlocal quartic interaction. Thea-b plane
anisotropy found in high-temperature superconductors
also incorporated in our model in the usual way through
second order gradient terms. We believe that this mod
captures the same physics as in the higher derivative a
proaches of Ref. [4–6], but is just much simpler to handle
calculationally.

One feature of our simple formulation is that it allows a
study of the effect of thermal fluctuations in the vortex
liquid regime. This would be quite impossible in the
conventional formulations. We apply the nonperturbative
method developed by us in Ref. [7] to calculate the
structure factor of the vortex liquid, which is measured in
neutron scattering experiments. One of the main resul
of the present work is that one can observe in the structu
factor the ring patterns expected for a liquid state bu
broken up into Bragg-like peaks. This suggests that eve
in the vortex liquid state where there is a short-rang
crystalline order, a weak fourfold symmetric coupling to
the underlying crystal may produce the spots observed
neutron scattering experiments and usually attributed
the formation of the vortex crystal state.

The model we study in this paper is based on th
GL free energy with a nonlocal quartic interaction for
a two-dimensional superconductor in a magnetic fiel
B ­ = 3 A,

FfCg ­
Z

d2r
µ

h̄2

2mx
jDxCj2 1

h̄2

2my
jDyCj2

1 ajCsrdj2
∂

1
b

2

3
Z

d2r1 d2r2jCsr1dj2gsr1 2 r2d jCsr2dj2, (1)

where a, b are phenomenological parameters,mx the
effective mass in thex direction, my in the y direction,
andD ­ 2i= 2 sepyh̄cdA. Thea-b plane anisotropy is
represented by the ratio of the effective masses. For lat
use, we defines ; smxymyd1y4. The only difference
between our model and the usual GL theory is th
nonlocal quartic interaction term represented here by
© 1997 The American Physical Society
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general functiongsrd ­ gsx, yd, which is equal to the
delta functionds2dsrd for the usual local GL theory.

One reason we study the two-dimensional version
the model in this paper is that one can easily app
the nonperturbative method in Ref. [7] to calculate th
vortex liquid structure factor. But, more importantly
as noted by one of us [8], the phase correlation leng
parallel to the field direction in a bulk superconducto
grows exponentially as one approaches zero temperatu
When this length scale becomes comparable to or larg
than the sample size in the low-temperature regime, t
system effectively behaves as a two-dimensional th
film with phase coherence across the sample and a v
low effective temperature [8]. We note that most o
the experiments mentioned earlier are performed in th
regime, and we expect that they can be described
the present model when the parametera is set to large
negative values, i.e., low temperatures.

A nonlocal quartic interaction as in (1) appeared i
the renormalization group study [9] of this system nea
its upper critical dimension. Even if one starts from
local theory, renormalization always drives the quart
term into an effective nonlocal one. It is not our aim
here to derive an explicit form ofgsrd from a microscopic
theory. Instead, we take (1) as our starting point fo
the phenomenological description of superconductors
the presence of an interaction between the vortex latt
and the crystal lattice, and show that the variety o
vortex lattice structures observed in experiments can
explained using a very simple form ofgsrd.

The main ingredient one has to incorporate into the ph
nomenological construction ofgsrd is the presumed four-
fold symmetry of the underlying crystal. (Generalization
to other crystal symmetries are, of course, possible.)
the present work, we constructgsrd such that it contains a
term with explicit fourfold symmetry in addition to a ro-
tationally symmetric term. Thus, we take for the Fourie
transformegskd ;

R
d2r gsrdexpsik ? rd,egskd ­ exph2Cskymd4f1 2 ´cos4su 1 u0dgj , (2)

where k ­ skcosu, ksinud and m ­
p

epByh̄c is the
inverse magnetic length. In particular,egskd ­
exph2Cfs1 2 ´d sk4

x 1 k4
y d 1 2s1 1 3´dk2

xk2
y gym4j for u0 ­

0. In (2), we introduced three parametersC, ´, and u0
in such a way that the overall constantC controls the
strength of the interaction between the vortex lattice an
the underlying crystal (note that whenC ! 0, a local GL
theory is recovered), and the dimensionless paramete´

s0 # ´ , 1d represents the strength of the fourfold sym
metric interaction compared to the rotationally symmetr
one. As will be discussed later,u0 controls the orientation
of the vortex lattice with respect to the underlying crysta
This choice foreg is certainly not unique. One could use
various other forms with a fourfold symmetric term a
long as they are positive definite (to ensure the stability
GL theory) and they do not introduce any unphysical no
analyticity [note that in order to ensure the analyticity o
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egskd neark ­ 0 with the cos4u term, we need at leastk4

terms in (2)]. But, in the presence of the growing leng
scale mentioned earlier, we might expect that universal
applies and the present form of the nonlocal quar
interaction does not alter the physical results. Note th
we measure the wave vectors with respect to the inve
magnetic length. But this is just for convenience in lat
calculations. A more natural length scale for the nonloc
kernel will be the lattice spacing of the crystal lattice,l0.
Therefore, the dimensionless parameterC which appears
in (2) will depend on the ratio of two length scales, i.e
C , sl0md4. As the magnetic field increases, the intervo
tex spacing,m21, gets smaller, so the nonlocal interactio
term becomes more important. This qualitative feature
our model is consistent with experimental findings whe
the fourfold symmetric vortex lattice structure is observe
only in the high field regime.

It is convenient to map the free energy functiona
of Eq. (1) into a form with isotropic gradient terms
using the following transformations:asr0d ­ sssaxsr0d,
aysr0dddd ; ssss21Axsrd, sAysrdddd, and hsr0d ; gsrd, where
r0 ­ sx0, y0d ; ssx, s21yd, or the Fourier transformehsk0d ­ egssk0

x , s21k0
yd. Then Eq. (1) becomes in the

new order parametercsr0d ; Csrd ­ Css21x0, sy0d,

Ffcg ­
Z

d2r0

µ
h̄2

2m
jD0cj2 1 ajcsr0dj2

∂
1

b

2

Z
d2r0

1 d2r0
2jcsr0

1dj2hsr0
1 2 r0

2d

3 jcsr0
2dj2, (3)

whereD0 ­ 2i=0 2 sepyh̄cdasr0d andm ­ smxmyd1y2.
Within mean-field theory, the structure of the vorte

lattice in our model can be determined in exactly th
same way as in Abrikosov’s work using the lowes
Landau level approximation (LLL) [10]. We look for a
periodic solution to the linearized GL equations whil
restricting the order parameter to the space spann
by the LLL wave functions. In the Landau gauge
a ­ s2By0, 0d, the normalized solution quasiperi
odic over the two periodicity vectors,r0

I ­ ls1, 0d,
r0

II ­ lsz , hd is given by [11] csr0d , fsr0j0d ;
s2hd1y4exps2m2y02y2du3fpsx0 1 iy0dyljz 1 ihg with
the theta functionu3. The magnetic lengthm21 is fixed
by the flux quantization condition;2pm22 ­ (area of unit
cell) ­ l2h. A useful representation forfsr0d is [12]

jfsr0dj2 ­
X̀

m,n­2`

s21dmnexps2G2y4m2 1 iG ? r0d ,

(4)

where G ­ m2lshm, n 2 z md is the reciprocal lattice
vector corresponding to the periodicity vectors in ther0

space. The mean-field free energy density is given
FMF ­ 2a

2
Hy2bbA, whereaH ; a 1 h̄epBy2mc ­ 0

determines the upper critical fieldHc2sT d, and the
Abrikosov ratiobA, which accounts for the contribution
4491
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from the quartic term, is given by

bA ­
X
m,n

exps2G2y2m2d ehsGd . (5)

In order to find a minimum free energy configuration, on
has to minimizebA.

Since the sum in (5) converges very quickly, it is no
difficult to find a configuration that minimizesbA for
given values ofC, ´, andu0. In the limit whereC ! 0
(the low-magnetic field regime), one recovers the loc
GL theory, andbA attains the familiar minimum value,
1.159 . . . for a triangular lattice in ther0 space. Also,
since rotational invariance exists in ther0 space when
C ! 0, the triangular lattice has no preferred orientatio
with respect to the underlying crystal. When transforme
back to the originalr space, it results in a distorted
triangular lattice due to thea-b plane anisotropy.

In the high field regime where one cannot neglect th
effect of the nonlocal quartic term, the situation is differen
Because of thea-b plane anisotropy carried over toehsk0d,
the system in ther0 space is neither rotationally invariant
nor fourfold symmetric. Therefore, the vortex lattice is
orientated with respect to the crystal. In our model, th
parameteru0 specifies the orientation. In general, we
obtain an oblique lattice whose form depends on the valu
of C and´. In the originalr space, this lattice is further
distorted due to thea-b plane anisotropy. To be more
specific, we parametrize the periodicity vectors,r0

I andr0
II,

in terms of a centered rectangular lattice for which one ca
write z ­ 1y2 andh ­ s1y2dtanw0, wherew0 is an angle
betweenr0

I andr0
II. We consider a general case where th

lattice is rotated by an anglew0
0. The resulting lattice can

also be regarded as an oblique lattice with two primitiv
vectors of equal length and an angle2w0 (or p 2 2w0)
between them. For simplicity we focus on the case whe
u0 ­ 0. For given C, ´, and u0 ­ 0, we look for w0

andw
0
0 that minimizesbA. For u0 ­ 0, we find that the

minimum free energy configuration always corresponds
w

0
0 ­ 0, where one of the primitive vectors,r0

I, coincides
with thex0 axis. Any other orientation of the vortex lattice
can be obtained using different values ofu0. The anglew0

that gives the minimum free energy changes continuous
from ,60± corresponding to a distorted triangular lattice
to ,45± for a distorted square lattice as the fourfold
symmetric couplinǵ increases from 0 toward 1 for fixed
C. We find that forC greater than some valueCc , 0.015,
there existś c which depends onC such that the vortex
lattice remains as a distorted square lattice for´ . ´c. A
similar behavior to this was obtained in Ref. [4]. Now
since the original order parameterCsrd is quasiperiodic
with respect tolss21, 0d andlss21z , shd for w

0
0 ­ 0, the

oblique lattice in ther space has an anglew, where tanw ­
s22tanw0. (This relation becomes more complicated i
w

0
0 fi 0.) To summarize, within mean-field theory, the

structure of the vortex lattice is mainly determined b
the anisotropy parameters and the fourfold symmetric
coupling´, and the orientation byu0. All these parameters
4492
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can in principle be fixed by experiments which determi
the flux lattice structure as a function of the magnetic fie

Thermal fluctuations, which are especially important
high-Tc materials, melt the mean-field vortex lattice int
a vortex liquid. For the local theory (C ­ 0), the effect
of thermal fluctuations around the mean-field solution w
studied by Eilenberger [11] using the orthonormal basis
the LLL wave functions,fsrjr0d ­ expsim2xy0dfsrj0d,
wherer0 spans one fundamental cell, orq ­ m2sy0, 2x0d
belongs to the first Brillouin zone. There are two differe
modes of excitation, whose energies are denoted bye6sqd.
In the long wavelength limit,q ! 0, the hard mode behave
as e1sqd ­ const 1 Osq2d while the soft mode takes the
form e2sqd ­ sa0y2d sq4ym4d 1 Osq6d asq ! 0. The soft
mode corresponds to an incompressible shear deforma
of the vortex lattice [13] anda0 can be identified with the
shear modulusc66 of the triangular lattice.

When terms which break the rotational symmetry a
present, the orientation of the vortex lattice is locke
to the underlying crystal. Therefore we expect th
there exists an excitation energy cost associated w
a rigid rotation of the vortex lattice against the cryst
lattice. We shall calculate this energy when the coupli
to the underlying lattice is very weak, i.e.,C ø 1.
Following Ref. [11], we first determine the soft mod
energye2sqd associated with (1) to the lowest order i
C. (We assumes ­ 1 for simplicity.) After lengthy
but otherwise straightforward algebra, we obtain t
following anisotropic expression:

e2sqd ­
a0

2
fs1 1 Ca1d sq4ym4d

1 C´sb1q4
x 1 2b2q2

xq2
y 1 b3q4

ydym4g

1 Osq6, C2d , (6)

with knownnumericalconstantsa1, b1, b2, andb3. This
corresponds to a general form of the effective free ene
[14] for the displacementu, which should involve the
rotation fields, yij ; s≠iuj 2 ≠juidy2 as well as the
usual strain fields,uij ; s≠iuj 1 ≠juidy2. In our case
where the vortex lattice is incompressible and fourfo
symmetric, the effective free energy density reduces to
1
2 hl1s≠xux 2 ≠yuyd2 1 4l2u2

xy 1 4vy2
xy 1 8juxyyxyj ,

with four energy constants,l1, l2, v, and j. For C ­
0, one only has the purely elastic part (v ­ j ­ 0)
and l1 ­ l2 ­ c66. For small C, the shear modu-
lus will have a OsCd correction, and the rotation modu
lus v and the couplingj between the rotation and
strain fields will be proportional toC´. From (6),
we obtain using the method of Ref. [13]l1 ­ c66f1 1

Ca1 1 C´s2b2 2 b1 2 b3dy4g, l2 ­ c66s1 1 Ca1d, v ­
c66C´sb1 1 b3dy2, andj ­ c66C´sb1 2 b3dy2.

A useful quantity in studying the effect of thermal fluc
tuations is the so-called structure factorDskd of the vor-
tex liquid, which is proportional to the Fourier transform
of the density-density correlation functionkjCsrdj2jCsr 1

Rdj2lc. In the low-temperature regime, the length sca
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l' governing the degree of a short-range crystalline ord
perpendicular to the magnetic field in the vortex liquid be
comes very large (l' ¿ l0). We expect then that a tiny
amount of coupling to the underlying lattice might be abl
to break the rotational symmetry of the vortex liquid sys
tem even though there is only a short-range translation
order. For example, a ringlike pattern expected in a stru
ture factor will be broken up into Bragg-like spots even i
a liquid state (these spots will not be delta-function peak
i.e., not true Bragg peaks). This is to be contrasted with t
usual explanation of the appearance of Bragg-like spots
neutron diffraction patterns using a phase transition from
vortex liquid state to a vortex lattice state. We can estima
the angular dispersiondu of these spots using the above
discussion on the rotation modulus: Since the energy as
ciated with a rigid rotation bydu of the crystalline region
of areal2

' is given byl2
'vsdud2, by equating this tokBT ,

one finds that

sdud2 , kBTyvl2
' ­ s0.012dkBTyc66l2

'C´ , (7)

where we have used the numerical values forb1 andb3.
As the temperature is raised, according to (7), one nee

larger values ofC´ to observe the Bragg-like spots. At
moderately low temperatures, an approximation schem
called the parquet resummation method [7] is accessib
for the calculation of the structure factor of the vorte
liquid. Using this method, one can explicitly observe
ringlike pattern in the structure factor is broken up int
Bragg-like spots as the temperature is lowered. For
isotropic system described by (3), it is straightfowar
to apply the parquet resummation method to calcula
the structure factorD0sk0d in the k0 space. The only
difference compared to the usual local theory is th
one starts from the bare quartic potentialehsk0d which
explicitly breaks the rotational symmetry of the loca
theory. For the detailed form of the nonperturbativ
equations one has to solve numerically forD0, and the
reader is referred to Ref. [7] for details. The structur
factor in the original space is given simply byDskd ­
D0sk0d, wheresk0

x , k0
yd ­ ss21kx , skyd.

We have calculatedDskd for various values of the
parameters,C, ´, and at different temperatures down to
aT , 26.7, where the temperature is represented by th
dimensionless quantity,aT ; aH

p
2pybm2, which goes

to 2` as one approaches zero temperature. Figure
shows a contour plot ofDskd ataT . 26.3 for the values
of C and´ that correspond to a moderately strong couplin
between the vortex lattice and the underlying crystal (´ ­
0.5). One can clearly observe four bright spots, whic
correspond to the nearest peaks in the structure fact
emerging from a ringlike pattern. To observe the nex
and higher order spots (which will give a structure factor
closer resemblance to that expected for a triangular lattic
one has to obtain the structure factor at lower temperatur
We find in general that, as the coupling between the vort
lattice and the underlying crystal gets weaker, one has
go to lower temperatures to observe the Bragg-like spo
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FIG. 1. A contour plot ofDskd at aT . 26.3. The parame-
ters used areC ­ 0.01, ´ ­ 0.5, u0 ­ 0, ands22 ­ 1.15.

This fact is in qualitative agreement with (7) (although the
present numerical calculation is not done in the strict wea
coupling limit).

In summary, we considered a simple phenomenologic
model for vortices in a crystal lattice using a nonlocal GL
theory. As well as explaining the observed fourfold sym
metric vortex lattice structures within mean-field theory
the present model suggests that there is a possibility of o
serving Bragg-like spots within the vortex liquid regime as
a consequence of coupling of the vortices to the underlyin
crystal.
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