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We present the results of a quantum Monte Carlo study of the extendedl thed,._,» pairing
correlation functions for the two-dimensional Hubbard model, computed with the constrained-path
Monte Carlo method. For small lattice sizes and weak interactions, we find thathe pairing
correlations are stronger than the extendegbairing correlations and are positive when the pair
separation exceeds several lattice constants. As the system size or the interaction strength increases,
the magnitude of the long-range part of both correlation functions vanishes. [S0031-9007(97)03299-7]

PACS numbers: 74.20.-z, 02.70.Lq, 71.10.Fd

Since the discovery of high-temperature superconducand hence an exponential growth in computer time as the
tivity, the two-dimensional Hubbard model has been thdattice size is increased and the temperature is lowered.
subject of an unprecedented level of theoretical activity taNVhile QMC simulations have shown indications of pair-
determine whether it can serve as the paradigm for thigg correlations, uncertainty has remained because of their
novel and important phenomenon. Particularly with re-restriction to relatively small lattice sizes and high tem-
spect to magnetic properties [1], the physics of the modgberatures [2,6].
qualitatively represents the behavior of the real materi- Here, using our new constrained path Monte Carlo
als. For example, at half filling the model is an antiferro-(CPMC) method [7], we discuss the behavior of the ex-
magnetic insulator. Upon doping the antiferromagnetismendeds and d,-—,- pairing correlations obtained from
rapidly becomes strongly suppressed. This behavior isimulations free of such restrictions. Contrary to stan-
observed in the cuprate superconductors. A variety oflard algorithms [8,10], this new ground-stafe € 0 K)
calculations also predict [2] that the doped model exhibitsnethod exhibitsalgebraic scaling of computer time with
an attractive interaction between pairs; th@andd,.—,»  system size. It eliminates the exponential growth of vari-
symmetries of this attraction are consistent with the likelyances by what we call the constrained-path approximation.
symmetries of the experimentally measured superconductn a variety of benchmarking calculations [7], the CPMC
ing gap [2]. Yet unobserved, however, is convincing evi-method has yielded accurate estimates of the energy as
dence that the attractive interaction leads to a ground stateell as other ground-state observables.
with off-diagonal long-range order [1,2]. In this Letter We considered the following familiar form of the two-
we will present results from quantum Monte Carlo (QMC) dimensional Hubbard model on a square latticeNof=
simulations which suggest that the long-range extended L X L sites withN, (o =1,]) electrons:
andd,:—,: pairing correlations, in fact, vanish in the ther- ¥ ¥
modynamic limit. H =1 (clycios + ¢jocio) + UZ”iI”il~ (1)

The fundamental difficulty in deciding whether the \\.o ook ; ﬁﬁl" and assumed periodiclboundary condi-

two-dimensional Hubbard ”.‘Ode' Superqonducts is. th(?ions. The pairing correlation function we computed is
absence of an exact solution. Approximate solutions P.(1) = (AL (DAL (0) 2
have often been uncontrolled, difficult to benchmark, and alt) e wr

conflicting. On several key points, computer simulationgVheré « indicates the nature of pairing. The pair

have provided important information. In fact, the possible/i€ld-operator at sité is Ae(l) = Zifa(‘s)[cﬂclm -
existence of superconductivity in the Hubbard model wag1¢i+351], whered is (£1,0) and (0, =1). For extended
suggested by the results of a QMC simulation before’ PINNG, f;(8) = 1. Ford.._,: pairing, f4(8) is 1 when

the discovery of the high temperature superconducting = (¥1,0) and—1 otherwise. ,
materials [3]. To facilitate contact with prior simulations, we also

Numerical approaches have, however, had their 0\,\,ﬁx<';1mined the_“vertex contribution” to the correlation
difficulties, typically being limited to small system sizes, lunction [8] defined by
high temperatures, and selected electron fillings. Quan- Po(l) = Po(l) = (AL (DAL (0))o . 3)
tum Monte Carlo methods, for example, experience thdhe second function on the right is shorthand notation
infamous fermion sign problem [4,5], which causes an exfor the uncorrelated pairing correlation. For each term in
ponential growth in the variance of the computed result,, (1) like <cTTq cfcl>, it has a term Iikdc?q) <cfc1>.
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Our numerical method is extensively described and9] of a 4 X 4 lattice with a closed shell filling ofv; =
benchmarked elsewhere [7]. Here we only discuss it&v, = 5 and with U = 2 and 4. At each location of
basic approximation. In this method, the ground-stateéhe pairs, we reproduce the exact result within an error
wave function|W,) is projected from a known initial of 1% or less. (Here, in order to compare with the
wave function |¥7) by a branching random walk in exact diagonalization data, we computeﬁd(l)Ai(O»
an over-complete space of Slater determindits In  with A (1) = ¢ D5 fa(8)ci+s1.)
such a space, we can writd,) = Z(/, x (&) o), where As a further calibration of our method, we show
x(¢) > 0. The random walk produces an ensemble ofin Fig. 1 the long-range portion of thé,._,» pairing
|¢), called random walkers, which repres¢®ty) in the  correlation P,(I) as a function of|/| for a half-filled
sense that their distribution is a Monte Carlo sampling8 X 8 system atU = 4. At half filling, the standard
of y(o). auxiliary-field quantum Monte Carlo (AFQMC) method

To completely specify the ground-state wave func-[10] has no sign problem and is exact, and the CPMC
tion, only determinants satisfyingo|¢) > 0 are needed; method can be made exact by removing the constrained
hence,| V) resides in either of two degenerate halves ofpath condition. In this CPMC calculation, however, we
the Slater determinant space, separated by a nodal pladeliberately kept the constraint and used fdf;) the
N that is defined byWy|¢) = 0. The sign problem oc- uHF solution of the system d&f = 0.5. In the figure, the
curs because walkers can crdB§ as their orbitals evolve computedP,(I) from the CPMC simulation is compared
continuously in the random walk. Asymptotically they with exact AFQMC results. Also shown is the result
populate the two halves equally, leading to an ensemblpredicted by |¥7). The inset shows, as a function
that has zero overlap withVy). If 2N" were known, we of electron filling (N + N})/N, the relative difference
would simply constrain the random walk to one half of thebetween the ground-state energies calculated by CPMC
space and obtain an exact solution of Schrédinger's equand AFQMC simulations. The point indicated by the
tion. Withouta priori knowledge of N', we use a trial arrow corresponds to the CPMC calculation shown in the
wave function|¥7) and require(Wr|¢) > 0. The ran- main graph. Atl%, this difference represents the largest
dom walk again solves Schrddinger’s equation in determisystematic error in the CPMC calculation of the energy.
nant space, but under an approximate boundary conditioWith the energy as a gauge, the CPMC calculation at 1/2
This is what we call the constrained-path approximation. filling would appear to be of the poorest quality; yet, we

The ground-state energy computed by the CPMGee that it still yields an accura#; (/). The magnitude
method is an upper bound. The quality of the calculatiorand range of these correlations is comparable to those we
clearly depends on the trial wave functi¢¥7). Since now discuss for the doped cases.
the constraint involves only the overall sign of its overlap Figure 2 shows the long-range part &;(l) as a
with any determinant¢), it seems reasonable to expectfunction of |/| for a 12 X 12 lattice atU = 2, 4, and
the results to show insensitivity {#7). Through exten- 8. Here, the electron filling is 0.85, which corresponds
sive benchmarking on the Hubbard model, we have foundb a closed shell case witN; = N} = 61. Figure 2(a),
that simple choices of this function can give very goodthe U = 2 case, shows three different evaluations of this
results [7]. In the calculations reported here we tookcorrelation function. One is the free-electron prediction
|¥7) to be a single Slater determinant. For closed-shelfor the pairing. Another is based on definition (2), and
electron fillings, we used the free-electraii & 0) wave the third is the vertex contribution to this definition.
function. For open-shell fillings, we used unrestrictedFigure 2(b) shows the same set of curves tor= 4,
Hartree-Fock (uHF) solutions. For the latter, we havewhile the inset to Fig. 2(b) shows thié = 8 results with
found that uHF solutions obtained with low values the vertex contribution omitted for clarity. These three
(<1), i.e., those resembling free-electron wave functionssets of curves show th&;(l) is smaller at all three vaules
tend to be good choices f¢W) for U up to 8. of U than the noninteracting case. They also show that

As a calibration of our method, we compare in Table lincreasingU causes the long-range correlations, including
its prediction for thed,»—,- pairing correlation function the vertex contribution, to vanish. At = 8, despite the
to that obtained by an exact diagonalization calculationarge error bars, the correlations are reduced to simply

TABLE I. Comparison of the CPM@,:_,» pairing correlation function with exact diagonalization results [9] as a function of pair
separatiory = (I,,l,). The system size i¢ X 4 with Ny = Ny = 5. In the CPMC calculations the free-electron wave function
was used fotW;). Statistical errors in these calculations are in the last digit and are indicated in parentheses.

U (0,0) (1,0) (2,0) (1,1) 2,1) 2,2)

2 CPMC 2.0672(2) 0.0924(1) —0.1121(1) 0.1140(1) 0.0284(1) 0.1779(2)
exact 2.06693 0.09223 —0.11187 0.11381 0.02840 0.17793

4 CPMC 2.0635(5) 0.0876(3) —0.0941(3) 0.1006(4) 0.0246(2) 0.1532(6)
exact 2.06345 0.08714 —0.09422 0.10013 0.02453 0.15302
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hopping, and the existence of the “plateau” was attributed
its presence. Our results show that the “plateau” behavior

/ 8x8 U=4
is no less pronounced in the simple Hubbard model. As
U increases to 8, however, it vanishesPas/) does.
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N ,'?‘ / §1' In Fig. 3, we address the question of what happens
AN o/ 8 to these “long-range” correlations if the lattice size is
oo 0.02 \\‘u 4 '.‘ I/ © ok %] increased td6 X 16. Here, for a closed shell case with

- \”/ 08 o8 1o the same electron filling of 0.85V( = N; = 109), we
1 NN show the CPMC results fot/ =2 and 4. First, we
° notice that as in Fig. 2 increasing the interaction strength
eventually causes the correlations to vanish, but now

they vanish byU = 4. The U = 4 case is shown in

50 6.0 Fig. 3(b); the accuracy is still sufficient to discern the

1l irregular oscillations ofP,(/) around zero. In Fig. 3(a)

the vertex contribution is again relatively flat, but nearly
zero. Compared to Fig. 2(a), it has decreased with the

3.0 4.0

FIG. 1. Long-range behavior of th&:_,2 pairing correlation
function versus distance for a half-filledx 8 lattice atU = 4
computed with|¥;) and by the CPMC and AFQMC methods. increase in lattice size. At = 4 it has, in fact, vanished
The inset shows the relative difference between the CPMC angnd is not shown for clarity. We note that we have also
ecarried out calculations with a second neighbor hopping
and did not find any qualitatively different behavior.

AFQMC energies as a function of electron filling. The error

bars are statistical in origin and mainly associated with th
A representative result for the extended pairing

correlation functionP (/) is shown in Fig. 4 for the same

AFQMC results.
We also see that the vertesystem as in Fig. 2. The pairing correlation function
We

fluctuating around zero.

contribution is a fairly flat function of pair separation is shown for the whole range df|. Its short-distance

up toU = 4. This flat region is the “plateau” observed magnitude is much greater than that in the tail.
mention that thed,-_,» wave pairing correlation shows

in Ref. [11] for calculations up td/ = 2. In this work
the Hubbard model was studied with next near-neighbothe same general behavior. In both cases, the short-range
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FIG. 2. Long-range behavior of th&:_,> pairing correlation
function versus distance for 0.85 filled2 X 12 lattice at

U = 2, 4, and 8. This behavior is shown for the free-electronU = 2 and 4. This behavior is shown for the free-electron and
and CPMC calculations. Also shown is the vertex contribution.CPMC calculations. Also shown is the vertex contribution.
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3.4 typically small. In fact, it is often orders of magnitude
1 smaller than the statistical error in simulations using the
29 U=4 standard AFQMC method.

With this very small statistical error, we have pulled

o4 A pairing correlations “out of the noise,” and have shown
\\\\%-ﬁ-@ﬁ%g%l*—g examples that for a given system size they disappear
19 o as the interaction strength increases and for a given
< 1 interaction strength they disappear as the system size
o 14 o-==° fé?j“"‘l\;g'ec”on increases. We note that similar behavior exists for the

noninteracting problem and the half-filled case.

We have also computed the lattice size, interaction
50 60 70 80 strength, and electron-filling dependence of the ground
state energy, electron momentum distribution, and static
spin-spin correlation function. We will report these
K . . : : : : : results elsewhere.
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correlation actually increases dg$ is increased from
zero. Hence, the often used integrated pairing correlation
function, or equivalently thek = (0,0) component of
P, in momentum space, ifot a good indicator of
superconductivity. Comparing the inset with Fig. 2(b),  *Present address: Department of Applied Science and
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