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We study electron transport through a small metallic island in the perturbative regime. Us
diagrammatic real-time technique, we calculate the occupation of the island as well as the condu
through the transistor to fourth order in the tunneling matrix elements, a process referred
cotunneling. Our formulation does not require the introduction of a cutoff. At resonance we
significant deviations from previous theories and quantitative agreement with recent experim
[S0031-9007(97)03397-8]

PACS numbers: 73.40.Gk, 73.23.Hk, 73.40.Rw
i

a

i

i

to

ion
i-
el-

or-
as

ic

s
y.
ith
ter.
to

ge
a

or

ut

-

is

by

s-
ibed
Electron transport through small metallic islands
strongly influenced by the charging energy associat
with low capacitance of the junctions [1–3]. A variety
of single-electron effects, including Coulomb blockad
phenomena and gate-voltage dependent oscillations of
conductance, have been observed. If the conductance
the barriers is low

a0 ; hys4p2e2RTd ø 1 , (1)

they can be described within the “orthodox theory” [1
which treats tunneling in lowest order perturbation theo
(golden rule). This corresponds to the classical picture
incoherent, sequential tunneling processes. On the ot
hand, there is experimental and theoretical evidence t
in several regimes higher-order tunneling processes h
to be taken into account.

First, in the Coulomb blockade regime, sequential tu
neling is exponentially suppressed. The leading contrib
tion to the current is a second-order process ina0 where
electrons tunnel via a virtual state of the island. Aver
and Nazarov [4] evaluated the transition rate of th
“inelastic cotunneling” process at zero temperature.
divergence which arises at finite temperature requires
regularization, which they treated by an approximatio
which is valid far away from the resonances. In th
regime, their results were confirmed by experiments [5]

Second, even at resonance where sequential tunne
occurs, higher-order processes can have a significant
fect on the gate-voltage dependent linear and nonline
conductance [6,7]. Similar effects were discussed for t
equilibrium properties of the single-electron box [8–12
A diagrammatic real-time technique developed for meta
lic islands [6,7] as well as for quantum dots [13,14] allow
a systematic description of the nonequilibrium tunne
ing processes. The effects from quantum fluctuations b
come observable either for strong tunnelinga0 , 1 or at
low temperaturesa0 ln ECyT , 1, whereEC denotes the
charging energy (see below). The theory has been eva
ated in the limit where only two adjacent charge states a
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included (even virtually). Therefore, it was necessary
introduce a bandwidth cutoff,EC. The predicted broad-
ening of the conductance peak as well as the reduct
of its height was confirmed qualitatively in recent exper
ments on a single-electron transistor in the strong tunn
ing regime by Joyezet al. [15]. However, a quantitative
fit between theory and experiment requires using a ren
malized value for the charging energy. This value h
been determined independently in the experiments.

In this Letter, we use the real-time diagrammat
technique to obtain the current in second order ina0

including all relevant states. In this case no cutoff i
required; all terms are regularized in a natural wa
This analysis allows an unambiguous comparison w
experiments where only bare system parameters en
At resonance we obtain new contributions compared
the earlier theory of electron cotunneling. They emer
from a change of the occupation probabilities and
renormalization of the charge excitation energy. F
realistic parametersTyEC , 0.05 and a

L
0  a

R
0 , 0.02

the corrections are of order20%. We compare with recent
experiments [15] and find excellent agreement witho
any fitting parameter.

The system is modeled by the Hamiltonian

H  HL 1 HR 1 HI 1 Hch 1 HT  H0 1 HT . (2)

HereHr 
P

kn e
r
kna

y
rknarkn andHI 

P
qn eqncy

qncqn de-
scribe the noninteracting electrons in the two leadsr 
L,R and on the island. The wave vectorsk andq numerate
the states of the electrons, whilen  1, . . . , N is the trans-
verse channel index which includes the spin. In the follow
ing, we consider “wide” metallic junctions withN ¿ 1.
The Coulomb interaction of the electrons on the island
described by the capacitance modelHch  ECsn̂ 2 nxd2,
where EC  e2ys2Cd with C  CL 1 CR 1 Cg. The
excess particle number operator on the island is given
n̂. Furthermore, the “external charge,”enx  CLVL 1

CRVR 1 CgVg, accounts for the applied gate and tran
port voltages. The charge transfer processes are descr
© 1997 The American Physical Society
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by the tunneling Hamiltonian

HT 
X

rL,R

X
kqn

T rn
kq a

y
rkncqne2iŵ 1 H.c. (3)

The matrix elementsTrn
kq are considered independent o

the statesk and q. They are related to the tunneling re
sistancesRT,r of the left and right junctions by1yRT,r 
s2pe2yh̄dNNr s0dNIs0djTrnj2, whereNIyr s0d are the den-
sity of states of the island and leads. The operatore6iŵ

changes the charge on the island by6e.
We proceed using the diagrammatic technique dev

oped in Refs. [6,7]. The nonequilibrium time evolutio
of the charge degrees of freedom on the island is d
scribed by a density matrix, which we expand inHT. The
reservoirs are assumed to remain in thermal equilibriu
(with electrochemical potentialmr ) and are traced out
using Wick’s theorem, such that the Fermion operato
are contracted in pairs. For a large number of chann
N , the “simple loop” configurations dominate where th
two operators ina

y
rkncqn from one termHT are contracted

with the corresponding two operatorscy
qnarkn from an-

other termHT, while the contribution of more compli-
cated configurations are small.

The time evolution of the reduced density matrix in
basis of charge states is visualized in Fig. 1. The forwa
and backward propagators (on the Keldysh contour) a
coupled by “tunneling lines,” representing tunneling i
junctionr. In Fourier space they are given by

a6
r svd  6ar

0
v 2 mr

expf6bsv 2 mr dg 2 1
, (4)

if the line is directed backward or forward with respec
to the closed time path. Furthermore, we associate w
each tunneling vertex at timet a factor exps6iDn td
depending on the energy difference of the adjacent cha
statesDn  Echsn 1 1d 2 Echsnd. If the vertex lies on
the backward path it acquires a factor21. We define
a0 

P
r a

r
0 andasvd 

P
r ar svd.

The time evolution of the density matrix leads to
formally exact master equation [6,7]

Ùpn 
X

n0fin

fpn0Sn0,n 2 pnSn,n0g (5)

for the probability pn of charge staten and the tran-
sition rates Sn,n0 between n and n0. In the pertur-

FIG. 1. A diagram showing contributions to sequential tun
neling (S

L,2
0,1 andS

R,1
1,0 ) and cotunneling (SR,1

0,0 andS
L,2
0,0 ).
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bative regime we writepn  p
s0d
n 1 p

s1d
n 1 p

s2d
n 1 · · ·

and Sn,n0  S
s1d
n,n0 1 S

s2d
n,n0 1 S

s3d
n,n0 1 · · · wherep

skd
n and

S
skd
n,n0 denote the term,a

k
0 of the expansion. The mas

ter equation must hold in each order. In lowest ord
(sequential tunneling) in the stationary state it rea
p

s0d
n a1sDnd 2 p

s0d
n11a2sDnd  0. At low temperature at

most two charge states (n  0, 1) are important, all other
states are suppressed exponentially.

Because of higher-order processes the occupation
modified and also the probability for the other charg
states can be nonzero (they are algebraically suppres
but not exponentially). The expansion of the master equ
tion up toa

2
0 gives a relation between the rates in seco

order S
s2d
n,n0 (diagrams with two lines) and the occupatio

in first orderp
s1d
n which lead to a correction in the averag

occupationknl 
P

n npn  knls0d 1 knls1d 1 · · ·.
The stationary currentIr  2ie

P
n,n0 pnS

r1
n,n0 through

reservoir r uses the ratesSr1
n,n0 where the rightmost

tunneling line corresponds to reservoirr and is an
outgoing (incoming) one if the rightmost vertex lie
on the upper (lower) propagator (and vice versa f
S

r2
n,n0). There are two types of diagrams contributin

to the second-order correction of the currentI s2d: those
of the form ps0dSs2d and others likeps1dSs1d. The first
ones correspond to the cotunneling processes derived
Averin and Nazarov [4]. The second ones are due
changes in the occupation probabilities in higher orde
They have not been considered in previous theories,
are equally as important as the first one.

In lowest order the average occupationknls0d 
a1sD0dyasD0d is smeared only by temperature. Quan
tum fluctuations yield in next order

knls1d 
1

2EC

≠

≠nx
fp

s0d
0 sf0 2 f21d 1 p

s0d
1 sf1 2 f0dg ,

(6)

wherefn 
P

r a
r
0 sDn 2 mr d ReCfi b

2p sDn 2 mr dg and
C denotes the digamma function.

In equilibrium, i.e., atV  0, the transistor is equiva-
lent to the single-electron box. A systematic perturbati
expansion of the partition function (up to ordera

2
0 )

was performed by Grabert [12]. The result Eq. (6)
identical to his result in ordera0, which at T  0
readsknls1d  a0 lnfs1 1 2nxdys1 2 2nxdg. Equation (6)
generalizes the analysis to nonequilibrium situation, i.
V fi 0.

The currentI  IL  2IR is in lowest order given by

I s1dsD0d 
4p2e

h
aLsD0daRsD0d

asD0d
f fRsD0d 2 fLsD0dg .

(7)

The total second order, “cotunneling” contribution can b
4483



VOLUME 78, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 9 JUNE 1997

l

on
h
e
ns
e
m
of

in
er
of
ut
er
e
e.
-
he
th

-

divided into three partsI s2dsD0d 
P3

i1 I
s2d
i sD0d,

I
s2d
1 sD0d 

Z
dv I s1dsvdasvd

3 Refp
s0d
0 R2svd2 1 p

s0d
1 R1svd2g , (8)

I
s2d
2 sD0d  2I s1dsD0d

Z
dv Re

X
s6

assvdRssvd2, (9)

I
s2d
3 sD0d  2

≠I s1dsD0d
≠D0

Z
dv Re

X
s6

assvdRssvd ,

(10)

where we used the definitionR6svd  f1ysv 2 D0 1

i01dg 2 f1ysv 2 D61 1 i01dg. The poles atv  D

are regularized in a natural way (it comes out of ou
theory and isnot added by hand) as Cauchy’s prin
cipal values Res1yx 1 i01d  P

1
x and their derivative

Ref1ysx 1 i01d2g  2
d
dx P

1
x .

In the Coulomb blockade regime, we havep
s0d
0  1,

p
s0d
1  0, andI s1dsD0d  0. Consequently, only the first

term of I
s2d
1 contributes. AtT  0, the integrand is zero

at the poles, and we can omit the term1i01. This gives
the well-known result of inelastic cotunneling [4]. At
finite temperature, however, the regularization scheme
needed which is not provided by previous theories [16
Our result is also well defined forT fi 0.

Furthermore, we are able to describe the system
resonance. In this regime,I

s2d
2 and I

s2d
3 become impor-

tant. The origin of the second term may intuitively b
interpreted as the reduction of the first-order contributio
I s1dsD0d since quantum fluctuations lead to an occupatio
of the adjacent charge statesn  21 and 2. Therefore,
the probability of the system to be in staten  0 or 1 is
decreased. The third term may indicate the appearance
a renormalization of the excitation energyD0 [6,7,9,11].
Because of this renormalization the system is effective
“closer” to the resonance as the original parameters wou
suggest. The current would then, in second order,
roughly given by the derivative of the first order term
times the renormalization.

The behavior of the system at resonance (and
crossover to the Coulomb blockade regime) was al
described in Refs. [6,7] within the resonant tunnelin
approximation for the two charge state model. Therefor
the expansion of the resonant tunneling formula up
a

2
0 yields Eqs. (8)–(10) if we omit all terms withD1

and D21. The integrals, then, become divergent and
cutoff (of the order of the charging energy) has to b
introduced. In this Letter, however, we took into accoun
all processes, and, therefore, no cutoff is needed.

In Fig. 2 we show the second-order contribution t
the linear differential conductanceG  ≠Iy≠V (in the
following we choosea

L
0  a

R
0 ). In Figs. 3 and 4 a

comparison of the first order, the sum of the first an
second orders, and the resonant tunneling approximat
4484
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FIG. 2. The second-order contribution of the differentia
conductanceGs2d 

P3
i1 G

s2d
i for TyEC  0.05, a0  0.04,

andV  0.

(where the cutoff is adjusted atEC) is displayed for
the linear and nonlinear regimes. The deviation from
sequential tunneling is significant and of the order20%.
The agreement with the resonant tunneling approximati
provides a clear criterion for the choice of the bandwidt
cutoff. Furthermore, and most importantly, it shows th
existence of a parameter regime where renormalizatio
of EC, a0, and D0 by higher-order charge states can b
neglected although the current deviates significantly fro
the classical result. We have checked the significance
third-order terms,a

3
0 by using the resonant tunneling

formula [6,7] and exact results for the average charge
third order at zero temperature [12]. For the paramet
sets used in the figures, the deviations to the sum
first- and second-order terms were smaller than abo
2%. Therefore, at not too low temperatures, second-ord
perturbation theory is a good approximation even if th
tunneling resistance approaches the quantum resistanc

In Fig. 5 we compare our results with recent ex
periments [15]. The temperature dependence of t
Coulomb oscillations were measured for two samples wi

FIG. 3. The differential conductance forTyEC  0.05, a0 
0.04, and V  0: sequential tunneling, sequential plus cotun
neling, and resonant tunneling approximation.
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FIG. 4. The differential conductance forTyEC  0.01, a0 
0.02, and VyEC  0.2: sequential tunneling, sequential plus
cotunneling, and resonant tunneling approximation.

different conductances. For one witha0  0.015, our
results in second-order perturbation theory agree perfec
in the whole temperature and gate-voltage range. Al
for the other sample witha0  0.063 the agreement
is very good. For still stronger tunneling higher-orde
effects such as the inelastic resonant tunneling [7] wou
be relevant.

We emphasize that only bare values fora0 and
EC have been used here, as determined unambiguou
in the experiment. In contrast the resonant tunnelin
approximation with the bare value of the charging energ
would lead to a deviation from the experiment by abou
10%. Thus, the inclusion of higher-order charge state
within second-order perturbation theory, as presented
this Letter, is an important improvement of the theory.

The peak conductance shown in Fig. 5 depend
logarithmically on temperature. From Eqs. (8)–(10
we find at low temperatureGmaxyGas 

1
2 2 a0fg 1

lnsECypT dg 1 Osa2
0 d with g being Euler’s constant and

Gas  1ysRL 1 RRd the asymptotic high temperature
limit. This result may be interpreted as a renormalizatio
of Gas or a0 [6,7,9,11]. It shows a typical logarithmic
temperature dependence since, at least in the equil
rium situation, the low-energy behavior of the system
is expected to be that of the multichannel Kondo mod
[9]. While at resonance the new terms are crucial, th
Coulomb blockade regime is sufficiently described b
Eq. (8) to find a very good agreement between theory a
experiment.

In conclusion, we have presented a consistent calcu
tion of the current of the single-electron transistor up t
second-order perturbation theory (cotunneling). The a
proach is free of any divergences and provides cutoff i
dependent results. At resonance we find new terms whi
are significant for experimentally realistic parameter
and are responsible for logarithmic behavior. A compar
son with experiments shows good quantitative agreeme
without renormalization of system parameters.
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FIG. 5. Maximal and minimal linear conductance forEC 
1.47 K and a0  0.015, andEC  1 K and a0  0.063. The
data points are experimental data from Ref. 15.
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