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Optical Solitary Waves in the Higher Order Nonlinear Schrodinger Equation
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We study solitary wave solutions of the higher order nonlinear Schrodinger equation for the
propagation of short light pulses in an optical fiber. Using a scaling transformation we reduce the
equation to a two-parameter canonical form. Solitary wave (1-soliton) solutieves/sexist provided
easily met inequality constraints on the parameters in the equation are satisfied. Conditions for the
existence ofN-soliton solutions § = 2) are determined; when these conditions are met the equation
becomes the modified Korteweg—de Vries equation. A proper subset of these conditions meet the
Painlevé plausibility conditions for integrability. [S0031-9007(96)02055-8]

PACS numbers: 42.81.Dp, 03.40.Kf, 42.65.Tg, 42.79.Sz

The propagation of nonlinear waves in dispersive meplausibility conditions for integrability and show that
dia is of great interest since nonlinear dispersive systemthese are only a proper subset of the conditions necessary
are ubiquitous in nature. Propagation of ultrashort lightfor N-soliton solutions to exist.
pulses in optical fibers is of particular interest because of We begin by scaling the HONSE, letting = b,A,
the common expectation that solitary waves may be of exz = b,{, andr = b3r. Substituting into the HONSE we
tensive use in telecommunication and even revolutionizebtain
it. The existence of solitary wave solutions implies per- _ 2 2 2
fect balance between nonlinearity and dispersion which A¢ l[(bzal/b3)3A” * (blbj)azml Al 5
usually requires rather specific conditions and cannot be + (baa3/b3)Arrr + (bibraa/bs3) (|AI°A),
established in general. The objective of the present Let- + (bibras/b3) (|AI7),A. 2
ter is to study the conditions under which the existence OE:hoosingbl — [} f(@ad)]2, by = a2/, andbs =

solitary waves is guaranteed for ultrashort pulses. as3/aq, we can set the coefficients of the first, second, and

The propagation of light pulses in fibers is well _ = . . .
described by the higher order nonlinear Schr'odingemgsﬂtgﬂ%ﬁgéhgeré%mgsnd side of Eq. (2) to unity, so

equation (HONSE) [1-4], a partial differential equation
(PDE) whose right hand side includes the effects of group ~ A¢ = i(A;r + |APA) + A, + y1(|AIPA),

velocity dispersion, self-phase modulation, third order + y2(141),A, (3)
dispersion, self-steepening, and self-frequency shifting via

_ 32 _ _
stimulated Raman scattering, respectively: where  y; = bibras/bs = asar/aa;  and vy =
bibyas/bs = asai/asas.

E; = i(a\Ey + ao|EPE) + a3Eu A solution to Eq. (3) of the formA(Z,7) = y(r +
+ a4(|EI*E), + as(|E|*).E. (1) B exdi(k¢ — Q7)], with y real, exists regardless of

When the last three terms are omitted this propagatio@]e valutestofd tge pa[)a’t‘?tett‘?’f’i ?hn.d 7f/2 as .C?n Ee egsny d
equation for the slowly varying envelope of the electric emonstrated by substituting this form into Eqg. (3) an

field, E, reduces to the nonlinear Schrddinger equationgquat!ng the _real and Imaginary parts of_the resulting
(NSE), which is integrable (meaning it not only admits equation. .Th's propgdure yields the foIIow_lng necessary
N-solitary wave solutions, but that the evolution of @"d sufficient condition o2, and an equation fok in
any initial condition is known in principle) [4—6]. We terms of(}:

call these N-solitary wave solutionsN-solitons, and _ 3y + 2y, — 3
mean by this that the solitary waves scatter elastically 6y + y)
and asymptotically preserve their shape upon undergoing

collisions, just like true solitons. However, for short % — 00+ 02 =(B+30°-20)(1 -39). (5
duration pulses the last three terms are non-negligible anfhe functiony(¢) (¢ = 7 + B¢) satisfies the ordinary
should be retained. In general, the presence or absenggferential equation
of solitary wave solutions depends on the coefficients 3y + 2
a appearing in Eq. (1), and therefore, on the specific  y;: = (8 + 3Q% — 2Q)y — uy3, (6)
nonlinear and dispersive features of the medium. Here, 3

we reduce the HONSE to a two-parameter equatiomvhose solution is given generally in terms of doubly
and derive a general solitary wave (1-soliton) solution.periodic elliptic functions. For zero energy [i.e., for
We determine conditions wheMN-soliton solutions exist y§ — (B + 302 = 20)y* + By, + 2y2)y*/6 = 0] we
and display the solutions. We also study the Painlevéind the solitary wave solution

. @=#13), 4
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2 _ 1/2
A7) = (6(5 ;132 27229)) costi'[(8 + 307 — 20)"2(r + )]
X exp({[(B + 3Q% —20)(1 — 3Q) + O — Q¢ — Q7), (7)

provided (8 + 3Q2 — 2Q) > 0 and 3y, + 2y, > 0. | for the HONSE, the Hirota method [11], based on the cut-

Thus, solitary wave solutions always exist (in contrastoff of the Padé approximation [12 = G/F, F being

with what is implied in Ref. [7]) providedy, + 2y, >  real, is often useful. Direct substitution of this represen-

0. For Q =0 (i.e., for 3y; + 2y, = 3) the solitary tation into the PDE in Eqg. (3) can be expedited using Hi-

wave solution reduces ta(Z, 7) = 22y cosh’'[n(r +  rotaD operators [11] [defined by its operation on bilinear

n2{)]explin?l), wherexk = B = n* > 0. formsD,(f - g) := (9/at — 3/t f(t)g(t')|;=+] and by
The case of) = 1/3 is very special, not only because separation of the linear part of the PDE to yield

Eq. (4) [which should be written in the fordy, + ) 3

2y, = 3(1 — v;Q)/(1 — 3Q)]is not applicable, but also (D¢ = iD7 = D)) (G - F) =0, (10)

because Eq. (3) is expected to be integrable for this case, (G - F)[—iD3(F - F) + i(G* - G) +

as we shall show below using a Painlevé analysis [8—10]. (y1 + y2)D.(G* - G)] + D,(G - F) X

The Painlevé condition for integrability (see below) ) .
[=3DZ(F - F) + By1 +2y2)(G" - G)] = 0. (11)

Y1 =3, y2 = —3/2 (8)
(which differs from the result claimed in Ref. [7]) yields The standard algorithm is to further substitute a 2-soliton
Q = 1/3 andx = —2/27, and the solitary wave solution Solution in a power series ia of the form
takes the form G = elexp6)) + exp(62)] + €GP + ..., (12)
A7) = (B = 1/3)"cosi'[(B = 1/3)!(r + BL)] Fel+ e+ QF® 4+ (13)
X expg—i(2¢/27 + 7/3)]. 9
o xedmiedpr Al ©) = pil +qiT + b i=12, (14)
It is of interest to compare the solitary wave solutions _ .
for different values of parameterg; and y,. All soli-  and require that the series truncate.
tary waves have intensity profiles of the forkty, 7) = The Hirota method is well adapted to the case when

|A(Z, 7)|> = I, cosh[(r + B¢)/7s]. The solitary wave EQq. (11) reduces to a bilinear equation or can be split
width 7, and its intensity/, are related by the expression into two or more independent (and consistent) bilinear
1,72 = 6/(3y; + 2v,) (where3y; + 2y, > Oforasoli- equations. Unfortunately, further splitting of Eq. (11) into
tary wave solution). For comparison, recall tiigt>? = 2 two bilinear equations is impossible in the general case
for the NSE solitary waved; = a4 = as = 0), so that [the direct naive splitting of Eq. (11) into two equations
for equalr, IHONSE /INSE = 3/(35,, + 2v,). Thewidth ~corresponding to the two expressions in square brackets
7, and B8 (the negative of the inverse velocity in the coor- [7,13] is incorrect, since it giveg; = p> andg; = g, for
dinate system moving with the group velocity of the light the2-soliton substitution (12) which is forbidden]. Direct
pulse, i.e., the solitary wave velocity, = v, — g8~!,  analysis of the multilinear equation (11) is not successful
wherewv, is the group velocity) are related by the equa-either. We shall try further reduction by substituting
E:(;n (Zf)z (B + 3Q?% — 2Q0)"'/2, whereQ is given by G — Gexdi(x¢ — O] (15)

As is well known, existence of solitary wave solutionsinto Egs. (10) and (11). Choosing = Q2 — Q3 we
does not guarantee existenceMfsoliton solutions with retain the structure of Eqg. (10), while Eq. (11) takes the
N > 1. In the absence of the inverse scattering solutiorfollowing form:

|
(G - F)[—=i(1 =3Q)DI(F - F) + i(1 = Qy))(G" - G) + (y1 + y2)D-(G" - G)] +
DA(G - F)[=3D(F - F) + (371 + 2y2)(G" - G)] = 0. (16)
SelectingQ) = 1/3 or Q) = 1/, eliminates the terms| Note that the first Hirota equation (10) implies that
« D2(F - F) or (G* - G) in the first part of Eq. (16), any N-soliton solution which takes the Hirota form
respectively. Further simplification can be achieved in thecan be written asG/F = A(y,)G/F, where G and
particular casey; = 3 when the choic€) = 1/3leadsto F are independent of the parametes (cf. [7,11,13]).
the following equation: Substituting this into (17) shows that this is possible
D.(G - F)[-3DX(F - F) + only if y, = =3 or In(G*/G) = const. The first choice
= corresponds to the case described in Ref. [11]. We
. O +27)(G E)]i shall consider here the second choice which leayes
(G- F)(3 + v,)D,(G"-G) =0. (A7)  arbitrary.
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Returning to Egs. (3) we substitute noncharacteristic movable singularity manifold defined by
A= Teedited —0nl (8 {8 g Laurent series.
which gives
Fp = —i(k + Q% — OHF + 20 - 30)F, A=(1—7) 7 D RulQ)(r — 19", (26)
+i(1 = 3Q)E,, + il — Qy)|EPE + ..\ m=0
+ NUEPE), + nEIEP),. (19) A =(r=10) 7 Y Sul@) (7 = 7). (27)
m=0

Choosing k = Q3 — Q2 and making the coordinate
transformation7 = 7 + 2Q — 3Q2)¢ eliminates the (in the vicinity of a movable singular point = 7y(¢).
termso« £ and E,. SelectingQ = 1/3 or Q = 1/y, Inspection of the strongest singularity immediately gives
eliminates terms< E,, or |E|>*E, respectively. In the o =1 and RySo = —6/(3y; + 2v2). The subsequent
particular casey; = 3, Q = 1/3, one arrives at the substitution of (26) and (27) into Eq. (3) should allow
following complex modified Kortweg—de Vries (KdV) identification of the otherR, and S, leaving exactly
equation: six arbitrary functions [includingro(z)] undetermined.
. 2 2 Analysis of resonances is carried out by making an

E; = Errr + 3(EFE)r + »EIEDr,  (20) auxiliary substitution of the formt = Ro(r — 79)~! +
which is more general than the equation considered imp(T — 70)?~! (and similarly forA*) into the PDE and
Ref. [14] since it is for arbitraryy,. It is easy to see retaining only linear terms iR, (cf. Ref. [5,7]). This pro-
that, for the special casg = 3, Eq. (3) has aw-soliton  cedure shows that resonances occupat —1, 0, 3, 4,

solution of the form and 3 = 2./—v;/(3y; + 2y,). The resonances at
A= B, T)exdi(—2¢/27 — 7/3 + )], p = —1 and p = 0 correspond to the arbitrariness of
10 and Sy/ Ry, respectively. Requiring that the resonant
T =1+/{/3 ¥ = const (21)  indicesp be integers [16] one finds that either = —2y-
where B({,T) is the N-soliton solution of the real OF y1 = —v2. Further substitution of the complete power
modified KdV equation series of (26) and (27) into Eq. (3) shows that there are
_ 5 a sufficient number of arbitrary functions if and only if
B; = Brrr + (9 + 2v2)B°Br, (22) v1 = 3 andy, = —3/2. This corresponds to the case
and can be written as [5] studied in Ref. [14]. Thus, the parameters that ensure the
‘ 12 Painlevé feature are a proper subset of the parameters that
B—=i In( £* , 23 ensure existence of aw-soliton solution of the HONSE.
l(9 + 272) (In(£/ ) (23) To summarize, we have derived lasoliton solution
N N of the general HONSE, without any constraints on its
f= exp(Z wiln; +im/2) + Z MiMinj)» coefficients except for the weak inequality constraint
u=0,1 i=1 1=i<j 3y; + 2y, > 0. The I-soliton width and intensity are

(24)  related by the expressioh7? = 6/(3y; + 2v), so the
intensity decreases with increasiny,; + 2vy,) for a
2 . . .
3 ) qi — q; given 7,. We have shown thatV-soliton solutions
mi =qT +q;{+mni, Ay =1n Gt a ) exist wheny; = 3 and v, is arbitrary, thus extending
' ! (25) significantly the results of Refs. [11,14]. The Painlevé
plausibility condition for integrability,y, = —2vy, = 3,
This N-soliton solution differs from that proposed in has been shown to be a proper subset of the conditions
Ref. [7] (which does not fulfill the corresponding nonlin- for N-soliton solutions, and consistent with the integrable
ear equation). Note that the existenceNdBoliton solu-  case found in Ref. 14, while integrability of our more
tions does not in general imply integrability. However, general case is still unknown. Our analysis does not
the integrability of the complex modified KdV in the spe- exclude existence ofV-soliton solutions nor does it
cial case ofy; =3 and y, = —3/2 has been demon- disprove integrability for arbitrary; andy-.
strated in Ref. [14]. This work was supported in part by a grant from the
Finally, we study the integrability of the HONSE, ap- US-Israel Binational Science Foundation.
plying the Painlevé analysis [8—10]. It is widely believed
that possession of the Painlevé feature is a sufficient crite-
rion for integrability (see discussion in Refs. [15,16]). The
PDE in Eg. (3) can be analyzed to ascertain whether it iS;3] v, Kodama and A. Hasegawa, IEEE J. Quantum Electron.
integrable by seeking a solution of the PDE in the Painlevé ~ 23 5610 (1987).

formA({,7) = [a(Z, 7)] 77 X _o bm(O) [a({, )], where [2] F.M. Mitschke and L.F. Mollenauer, Opt. LetLl, 657
b, () are analytic functions of in the neighborhood of a (1986).
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