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Optical Solitary Waves in the Higher Order Nonlinear Schrödinger Equation
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We study solitary wave solutions of the higher order nonlinear Schrödinger equation for
propagation of short light pulses in an optical fiber. Using a scaling transformation we reduce
equation to a two-parameter canonical form. Solitary wave (1-soliton) solutionsalwaysexist provided
easily met inequality constraints on the parameters in the equation are satisfied. Conditions f
existence ofN-soliton solutions (N $ 2) are determined; when these conditions are met the equat
becomes the modified Korteweg–de Vries equation. A proper subset of these conditions me
Painlevé plausibility conditions for integrability. [S0031-9007(96)02055-8]

PACS numbers: 42.81.Dp, 03.40.Kf, 42.65.Tg, 42.79.Sz
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The propagation of nonlinear waves in dispersive m
dia is of great interest since nonlinear dispersive syste
are ubiquitous in nature. Propagation of ultrashort lig
pulses in optical fibers is of particular interest because
the common expectation that solitary waves may be of
tensive use in telecommunication and even revolution
it. The existence of solitary wave solutions implies pe
fect balance between nonlinearity and dispersion wh
usually requires rather specific conditions and cannot
established in general. The objective of the present L
ter is to study the conditions under which the existence
solitary waves is guaranteed for ultrashort pulses.

The propagation of light pulses in fibers is we
described by the higher order nonlinear Schröding
equation (HONSE) [1–4], a partial differential equatio
(PDE) whose right hand side includes the effects of gro
velocity dispersion, self-phase modulation, third ord
dispersion, self-steepening, and self-frequency shifting
stimulated Raman scattering, respectively:

Ez ­ isa1Ett 1 a2jEj2Ed 1 a3Ettt

1 a4sjEj2Edt 1 a5sjEj2dtE . (1)

When the last three terms are omitted this propagat
equation for the slowly varying envelope of the electr
field, E, reduces to the nonlinear Schrödinger equatio
(NSE), which is integrable (meaning it not only admi
N-solitary wave solutions, but that the evolution
any initial condition is known in principle) [4–6]. We
call these N-solitary wave solutionsN-solitons, and
mean by this that the solitary waves scatter elastica
and asymptotically preserve their shape upon undergo
collisions, just like true solitons. However, for sho
duration pulses the last three terms are non-negligible
should be retained. In general, the presence or abse
of solitary wave solutions depends on the coefficie
a appearing in Eq. (1), and therefore, on the spec
nonlinear and dispersive features of the medium. He
we reduce the HONSE to a two-parameter equat
and derive a general solitary wave (1-soliton) solutio
We determine conditions whenN-soliton solutions exist
and display the solutions. We also study the Painle
0031-9007y97y78(3)y448(4)$10.00
-
s

t
of
x-
e
-
h
e
t-

of

r

p
r
ia

n

s

ly
ng

nd
ce

ts
c
e,
n
.

é

plausibility conditions for integrability and show tha
these are only a proper subset of the conditions neces
for N-soliton solutions to exist.

We begin by scaling the HONSE, lettingE ­ b1A,
z ­ b2z , andt ­ b3t. Substituting into the HONSE we
obtain

Az ­ ifsb2a1yb2
3 dAtt 1 sb2

1b2da2jAj2Ag
1 sb2a3yb3

3 dAttt 1 sb2
1b2a4yb3d sjAj2Adt

1 sb2
1b2a5yb3d sjAj2dtA . (2)

Choosingb1 ­ fa3
1ysa2a

2
3 dg1y2, b2 ­ a

2
3ya

3
1 , andb3 ­

a3ya1, we can set the coefficients of the first, second, a
third terms on the right hand side of Eq. (2) to unity, s
that the HONSE becomes

Az ­ isAtt 1 jAj2Ad 1 Attt 1 g1sjAj2Adt

1 g2sjAj2dtA , (3)

where g1 ­ b2
1b2a4yb3 ­ a4a1ya2a3 and g2 ­

b2
1b2a5yb3 ­ a5a1ya2a3.
A solution to Eq. (3) of the formAsz , td ­ yst 1

bz d expfiskz 2 Vtdg, with y real, exists regardless o
the values of the parametersg1 and g2 as can be easily
demonstrated by substituting this form into Eq. (3) an
equating the real and imaginary parts of the resulti
equation. This procedure yields the following necessa
and sufficient condition onV, and an equation fork in
terms ofV:

V ­
3g1 1 2g2 2 3

6sg1 1 g2d
, sV fi 1y3d , (4)

k 2 V3 1 V2 ­ sb 1 3V2 2 2Vd s1 2 3Vd . (5)

The functionysjd (j ­ t 1 bz ) satisfies the ordinary
differential equation

yjj ­ sb 1 3V2 2 2Vdy 2
3g1 1 2g2

3
y3, (6)

whose solution is given generally in terms of doub
periodic elliptic functions. For zero energy [i.e., fo
y2

j 2 sb 1 3V2 2 2Vdy2 1 s3g1 1 2g2dy4y6 ­ 0] we
find the solitary wave solution
© 1997 The American Physical Society
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Asz , td ­

µ
6sb 1 3V2 2 2Vd

3g1 1 2g2

∂1y2

cosh21fsb 1 3V2 2 2Vd1y2st 1 bz dg

3 expsssihfsb 1 3V2 2 2Vd s1 2 3Vd 1 V3 2 V2gz 2 Vtjddd , (7)
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provided sb 1 3V2 2 2Vd . 0 and 3g1 1 2g2 . 0.
Thus, solitary wave solutions always exist (in contra
with what is implied in Ref. [7]) provided3g1 1 2g2 .

0. For V ­ 0 (i.e., for 3g1 1 2g2 ­ 3) the solitary
wave solution reduces toAsz , td ­ 21y2h cosh21fhst 1

h2z dg expsih2z d, wherek ­ b ; h2 . 0.
The case ofV ­ 1y3 is very special, not only becaus

Eq. (4) [which should be written in the form3g1 1

2g2 ­ 3s1 2 g1Vdys1 2 3Vd] is not applicable, but also
because Eq. (3) is expected to be integrable for this c
as we shall show below using a Painlevé analysis [8–1
The Painlevé condition for integrability (see below)

g1 ­ 3, g2 ­ 23y2 (8)

(which differs from the result claimed in Ref. [7]) yield
V ­ 1y3 andk ­ 22y27, and the solitary wave solution
takes the form

Asz , td ­ sb 2 1y3d1y2 cosh21fsb 2 1y3d1y2st 1 bz dg
3 expf2is2z y27 1 ty3dg . (9)

It is of interest to compare the solitary wave solutio
for different values of parametersg1 and g2. All soli-
tary waves have intensity profiles of the formIsz , td ­
jAsz , tdj2 ­ Is cosh22fst 1 bz dytsg. The solitary wave
width ts and its intensityIs are related by the expressio
Ist2

s ­ 6ys3g1 1 2g2d (where3g1 1 2g2 . 0 for a soli-
tary wave solution). For comparison, recall thatIst2

s ­ 2
for the NSE solitary wave (a3 ­ a4 ­ a5 ­ 0), so that
for equalts, IHONSE

s yINSE
s ­ 3ys3g1 1 2g2d. The width

ts andb (the negative of the inverse velocity in the coo
dinate system moving with the group velocity of the lig
pulse, i.e., the solitary wave velocityys ­ yg 2 b21,
whereyg is the group velocity) are related by the equ
tion ts ­ sb 1 3V2 2 2Vd21y2, whereV is given by
Eq. (4).

As is well known, existence of solitary wave solution
does not guarantee existence ofN-soliton solutions with
N . 1. In the absence of the inverse scattering solut
th
t

e,
].

for the HONSE, the Hirota method [11], based on the c
off of the Padé approximation [12]A ­ GyF, F being
real, is often useful. Direct substitution of this represe
tation into the PDE in Eq. (3) can be expedited using H
rotaD operators [11] [defined by its operation on biline
forms Dts f ? gd :­ s≠y≠t 2 ≠y≠t0dfstdgst0djt­t0 ] and by
separation of the linear part of the PDE to yield

sDz 2 iD2
t 2 D3

td sG ? Fd ­ 0 , (10)

sG ? Fd f2iD2
tsF ? Fd 1 isGp ? Gd 1

sg1 1 g2dDtsGp ? Gdg 1 DtsG ? Fd 3

f23D2
tsF ? Fd 1 s3g1 1 2g2d sGp ? Gdg ­ 0 . (11)

The standard algorithm is to further substitute a 2-solit
solution in a power series ine of the form

G ­ efexpsu1d 1 expsu2dg 1 e2Gs2d 1 . . . , (12)

F ­ 1 1 eFs1d 1 e2Fs2d 1 . . . , (13)

ui ­ piz 1 qit 1 fi, i ­ 1, 2 , (14)

and require that the series truncate.
The Hirota method is well adapted to the case wh

Eq. (11) reduces to a bilinear equation or can be s
into two or more independent (and consistent) biline
equations. Unfortunately, further splitting of Eq. (11) in
two bilinear equations is impossible in the general ca
[the direct naive splitting of Eq. (11) into two equation
corresponding to the two expressions in square brac
[7,13] is incorrect, since it givesp1 ­ p2 andq1 ­ q2 for
the2-soliton substitution (12) which is forbidden]. Direc
analysis of the multilinear equation (11) is not success
either. We shall try further reduction by substituting

G ­ G expfiskz 2 Vtdg (15)

into Eqs. (10) and (11). Choosingk ­ V2 2 V3 we
retain the structure of Eq. (10), while Eq. (11) takes t
following form:
sG ? Fd f2is1 2 3VdD2
tsF ? Fd 1 is1 2 Vg1dsGp ? G d 1 sg1 1 g2dDtsGp ? Gdg 1

DtsG ? Fdf23D2
tsF ? Fd 1 s3g1 1 2g2d sGp ? Gdg ­ 0 . (16)
at

le

We
SelectingV ­ 1y3 or V ­ 1yg1 eliminates the terms
~ D2

tsF ? Fd or sGp ? G d in the first part of Eq. (16),
respectively. Further simplification can be achieved in
particular caseg1 ­ 3 when the choiceV ­ 1y3 leads to
the following equation:

DtsG ? Fd f23D2
tsF ? Fd 1

s9 1 2g2d sGp ? G dg 1

sG ? Fd s3 1 g2dDtsGp?G d ­ 0 . (17)
e

Note that the first Hirota equation (10) implies th
any N-soliton solution which takes the Hirota form
can be written asGyF ­ Lsg2dGyF, where G and
F are independent of the parameterg2 (cf. [7,11,13]).
Substituting this into (17) shows that this is possib
only if g2 ­ 23 or lnsG pyG d ­ const. The first choice
corresponds to the case described in Ref. [11].
shall consider here the second choice which leavesg2

arbitrary.
449
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Returning to Eqs. (3) we substitute

A ­ E sz , td expfiskz 2 Vtdg , (18)

which gives

Ez ­ 2isk 1 V2 2 V3dE 1 s2V 2 3V2dEt

1 is1 2 3VdEtt 1 is1 2 Vg1d jE j2E 1 Ettt

1 g1sjE j2E dt 1 g2E sjE j2dt . (19)

Choosing k ­ V3 2 V2 and making the coordinat
transformation T ­ t 1 s2V 2 3V2dz eliminates the
terms ~ E and Et. SelectingV ­ 1y3 or V ­ 1yg1

eliminates terms~ Ett or jE j2E , respectively. In the
particular caseg1 ­ 3, V ­ 1y3, one arrives at the
following complex modified Kortweg–de Vries (KdV
equation:

Ez ­ ETTT 1 3sjE j2E dT 1 g2E sjE j2dT , (20)

which is more general than the equation considered
Ref. [14] since it is for arbitraryg2. It is easy to see
that, for the special caseg1 ­ 3, Eq. (3) has anN-soliton
solution of the form

A ­ Bsz , T d expfis22z y27 2 ty3 1 cdg ,

T ­ t 1 z y3, c ­ const, (21)

where Bsz , T d is the N-soliton solution of the rea
modified KdV equation

Bz ­ BTTT 1 s9 1 2g2dB2BT , (22)

and can be written as [5]

B ­ i

√
6

9 1 2g2

!1y2

sss lns fpyfddddT , (23)

f ­
X

m­0,1

exp

√
NX

i­1

mishi 1 ipy2d 1

NX
1#i,j

mimjAij

!
,

(24)

hi ­ qiT 1 q3
i z 1 h

s0d
i , Aij ­ ln

√
qi 2 qj

qi 1 qj

!2

.

(25)

This N-soliton solution differs from that proposed i
Ref. [7] (which does not fulfill the corresponding nonlin
ear equation). Note that the existence ofN-soliton solu-
tions does not in general imply integrability. Howeve
the integrability of the complex modified KdV in the sp
cial case ofg1 ­ 3 and g2 ­ 23y2 has been demon
strated in Ref. [14].

Finally, we study the integrability of the HONSE, ap
plying the Painlevé analysis [8–10]. It is widely believe
that possession of the Painlevé feature is a sufficient c
rion for integrability (see discussion in Refs. [15,16]). T
PDE in Eq. (3) can be analyzed to ascertain whether
integrable by seeking a solution of the PDE in the Painle
form Asz , td ­ fasz , tdg2s

P`
m­0 bmsz d fasz , tdgm, where

bmsz d are analytic functions ofz in the neighborhood of a
450
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noncharacteristic movable singularity manifold defined
asz , td ­ t 2 fsz d. Following Ref. [16] we substitute
into Eq. (3) the following Laurent series

A ­ st 2 t0d2s
X

m­0

Rmsz d st 2 t0dm, (26)

Ap ­ st 2 t0d2s
X

m­0

Smsz d st 2 t0dm, (27)

(in the vicinity of a movable singular pointt ­ t0sz d.
Inspection of the strongest singularity immediately giv
s ­ 1 and R0S0 ­ 26ys3g1 1 2g2d. The subsequent
substitution of (26) and (27) into Eq. (3) should allow
identification of the otherRm and Sm leaving exactly
six arbitrary functions [includingt0szd] undetermined.
Analysis of resonances is carried out by making
auxiliary substitution of the formA ­ R0st 2 t0d21 1

Rpst 2 t0dp21 (and similarly forAp) into the PDE and
retaining only linear terms inRp (cf. Ref. [5,7]). This pro-
cedure shows that resonances occur atp ­ 21, 0, 3, 4,
and 3 6 2

p
2g1ys3g1 1 2g2d. The resonances a

p ­ 21 and p ­ 0 correspond to the arbitrariness o
t0 and S0yR0, respectively. Requiring that the resona
indicesp be integers [16] one finds that eitherg1 ­ 22g2

or g1 ­ 2g2. Further substitution of the complete powe
series of (26) and (27) into Eq. (3) shows that there a
a sufficient number of arbitrary functions if and only i
g1 ­ 3 and g2 ­ 23y2. This corresponds to the cas
studied in Ref. [14]. Thus, the parameters that ensure
Painlevé feature are a proper subset of the parameters
ensure existence of anN-soliton solution of the HONSE.

To summarize, we have derived a1-soliton solution
of the general HONSE, without any constraints on i
coefficients except for the weak inequality constrai
3g1 1 2g2 . 0. The 1-soliton width and intensity are
related by the expressionIst2

s ­ 6ys3g1 1 2g2d, so the
intensity decreases with increasings3g1 1 2g2d for a
given ts. We have shown thatN-soliton solutions
exist wheng1 ­ 3 and g2 is arbitrary, thus extending
significantly the results of Refs. [11,14]. The Painlev
plausibility condition for integrability,g1 ­ 22g2 ­ 3,
has been shown to be a proper subset of the conditi
for N-soliton solutions, and consistent with the integrab
case found in Ref. 14, while integrability of our mor
general case is still unknown. Our analysis does n
exclude existence ofN-soliton solutions nor does it
disprove integrability for arbitraryg1 andg2.
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