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Metastable Bloch Oscillators
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We give in a rigorous way the time behavior of the metastable Bloch oscillators for weak electric
field. The validity of the Fermi golden rule, with the change of the numerical prefactor suggested by
Kane and Blount, is definitely proved. Moreover, we give a new version of the acceleration theorem
and the behavior of the Bloch oscillators in the adiabatic limit. [S0031-9007(97)03209-2]

PACS numbers: 73.20.Dx, 73.40.Gk

Our aim is to give a better description and understandelimination of the same numerical prefactor in the formula
ing of the dynamics of an electron in a one-dimensionabbtained by Kane himself [6].
crystal moving under the effect of a homogeneous ex- Now, we discuss the first point of this Letter: the exact
ternal field. In particular, this problem concerns at leastomputation of WS resonances and the validity of the
three effects: the Bloch oscillators (BO) [1], the Wannier-FGR for weak electric field. To this end, we consider a
Stark (WS) localization [2], and the Zener tunneling. Thesimplified model with two bands, one finite and the other

WS Hamiltonian is one infinite [12], where the contributions due to phonons,
5 interactions, impurities, etc., are neglected. We assume
=2 4 V(x) + eFx, V(x) = V(x + d), also, for the sake of definiteness, =2m, f =eF >0,
2m d = 2, and that the crystal potential is symmetric [i.e.,

V(=x) = V(x)]. The crystal momentum representation

where V(x) is the periodic crystal potential with period of the WS Hamiltonian operator takes the form

d, e is the electron charge, an# is the strength of
the electric field. If a single band packet (hereafter DB -
called Bloch oscillator) is initially localized about a given Hy = Hf" + fX
value ky of the crystal momentum (quasimomentum)
variable, then oscillations with periofl; = 27 /i/|leF|d ~ and it acts onL*(B,dk) ® L*(R,dp) where B = [0, 1)
are expected because of the acceleration theorem [33 the Brillouin zone;k denotes the crystal momen-
and the periodicity of the band function. Actually, BO tum variable in the finite band ang denotes the crys-
has been observed in superlattices [4], but not in bulkdl momentum variable in the infinite band (sometimes
materials [5]. they are both denotegh for the sake of simplicity).
On the other side, because of the tunneling effect, thélf~ = diagH,, ) is the decoupled band approxima-
state gradually goes into the other bands. Actually, thision, H, = ifj—k + FE(k), H, = if% + Fo(p), and X
effect could destroy the Bloch oscillations [6]. The studyis the coupling term. The first band functid (k) is a
of the transmission across a barrier created by a *“tiltegheriodic function with period and the second band func-
gap” goes back to Zener [7] and it was related to thetion Z,(p) has the asymptotic behavid,(p) = (p —
transition between close levels in adiabatic problems. %)2[1 + 0(p~1)] as p goes to infinity; moreover, they
Later, Wannier obtained stationary states for the singlyre analytic functions with branch points of square root
band approximated problem [8]. Recently, the existencype atk, = 1 + ir, andk., r. > 0: Alk,) = Ak.) =
of ladders of resonances associated to resonant states (hej&ghere A (p) = F,(p) — i (p) [13].
after called WS state_s) has.been prpved by means of .the The spectrum of H, consists of one ladder of
convergent perturbatlon series starting from the Wanmegimme real  eigenvalues e;(f) = (E) + 27 jf,
approximation, and their lifetime has been computed b)ﬁ = 0,=1,+2,..., where () is the mean value of
means of the Fermi golden rule (FGR), that is, at the SeChe first band function, with associated eigenvectors
ond perturbation order [9]. At this order a numerical pref-% = (a1, a»,), wherea, ; = 0 and
actor equal tq7/3)? appears. However, the estimate that T |
Buslaev and Dmitrieva [10] have given, by means of an
adiabatic approximation in thespace, shows the absence
of this factor. Therefore, the validity of the FGR was putin
doubt. Let us also recall that, for what concerns the probawhen we restore the coupling terf then the ladder of
bility of transmission, Kane and Blount [11] proposed thereal eigenvalueg;(f) becomes a ladder of resonances

k
i) = exg| 2mjk + /) [0 [F1(g) — (E)dg ]
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E;(f) = Eo(f) + 2mjf, SEo(f) <0, associated with Let us stress that (3) can be written as

WS states. Resonances are defined here as complex

discrete eige_nvalues, inAthe strifgs A <71‘Sz < 0, of the Py = f IS p(E())|dx

nonsymmetric operatatl; = U H;U, ', where'U, is barrier

a one-parameter family of analytic distortions [14] and

JA < 0. For the sake of simplicity we drop if not ~ whereE(x) = E{ — fx andE] is the top of the first band;

necessary. hence, it represents the Agmon length of the Zener barrier.
In order to compute exactly these resonances we in- Finally, going back to the true units, the imaginary part

troduce a technical hypothesis [15]: the two lines, startof the resonance is given by

ing from k. with asymptotic directionr /6 and57 /6 and

such that?s[ffv A(q') dq] = 0 (anti-Stokes Iines), belong SE;(f) = —(d/am)fe "[1 + o(1)]

to the complex strip-r. < JIp < 0. Under this hypo-

thesis the FGR is true and we give now a sketch of th%sf goes to zero, where, using a recent result [£8]

proof leaving to a forthcoming paper the detailed proofcan pe directly written in terms of the periodic potential

[16]. Let E,(f) be a resonance and 16t = (a; ;, a5 ;) Vix):
be the associated wave function:

d
A g IA — __m _ 2
(1} — E;(f3) =0, @) pr= s [0 - wFa @
where
A (V) denotes the mean value of the crystal potential. Now,
apjk) = ay j(k)[1 + O(f)] (2)  from [20] we have
andII&Q,jIILZ(R) = O(f) asf goes to zero. By multiply-
ing (1) by the vectoKa, ;,0) and by using the first resol- P = 2IE;l/h = pTy",
vent formula, we obtain the following expression for the
imaginary part of the resonance: where T; ! is the frequency of the periodic motion in
~ L ) —2p, the band andP is the probability of transmission of a
SE;(f) = —lHNHF/2)fe (1 + O(f)], single WS state per unit time, so that the probability of
asf goes to zero, where ~ transmission per period has the leading behavior [21]
k.
pr = /1) [ Ap)dp. @) e a0, -

By means of the above hypothesis and the convergent

perturbation series, by introducing the “semiclassical ) ) )
action” variables(p) = (1/f) f%’ A(g) dg and by using We discuss now the second point of this Letter: the

a formula given by Berry [17]( we obtain tha f) = time behavior of BO and the single band version of the
>, 1,(f) where this series is uniformly convergent for acceleration theorem [22]. Let’(k) be a state initially

f small enough and where in the first band, i.e.y%(k) = (a}(k),0), wherea! (k) is

a periodic f —independent smooth function with period
L(f) =267/6)>""/2n + 1) + O(f ). d/2m. The projectiona}(k) on the first band of the state
¢'(k) has the following time behavior

Hence, it follows thatI(f) =i + o(1) as f goes . , 0
to zero. Therefore we have shown, under a technical ay(k) ~ ajo(k)(ai/aio) (k — ft/h) (6)
condition surely true for a class of double band models,
the validity of the FGR for the WS problem where we for small f, for any ¢ dif 'In(f 1) <t<
replace the numerical prefactdfy| = 7/3 by 1. The d»/ISEo(f)l, where dy,d, >0 are independent of
transition froma /3 to 1 goes as the Taylor series of the f, and aj (k) = e "%"/fiq; 4(k). Thus, we have BO,
sine function computed at /6. with period Ty and tunneling probability (5), and a new
There is evidence that the correct result is also giverversion of the acceleration theorem fd(k) [3]. In this
by the Adams-Wannier iteration scheme [18] by meansase we have a connection betwdgn the probability of

of the Abel sum of the series transmissionp, and the lifetime of the WS states (coin-
* ciding with the BO lifetime). The interval of validity of
l==n/3+7/3 2[1/6]'1[_1/6]nﬁn/(”!)2’ (6) contains a number of periods of the ordere?:// for
n=1 somed; > 0.
where 8 =1-0" and (@), = ala +1)---(a + In order to prove (6) we consider the time evolution of
n—1). the state)’(k). By the spectral theorem and by performing
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an analytic complex distortioftl, with IA < 0, we have We thank Aldo Di Carlo and Fausto Rossi for useful
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where y; is a closed circle surrounding the resonance 'Electronic address: Sacchet@c220.unimo.it
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