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Microscopic Theory of Motional Narrowing of Microcavity Polaritons in a Disordered Potential
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The influence of static disorder on the optical properties of microcavity-embedded quantum wells is
studied by means of a microscopic model. Both the exciton-photon coupling and the exciton-disorder
interaction are treated nonperturbatively. Despite the nonconservation of the in-plane momentum
due to disorder, the Rabi splitting is still present. Moreover, the lower polariton is subject to
motional narrowing of the spectral response, while for the upper one this effect is less important.
This result shows very good agreement with recently observed spectra in high-quality samples.
[S0031-9007(97)03351-6]
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The optical response of Wannier excitons in narrowcontext, we stress the importance of including the full po-
quantum wells (QWSs) usually shows a significant broad{ariton dispersion and the interbranch scattering. The cal-
ening of the exciton line due to the presence of impuritieculations first show that the Rabi splitting still exists for
and, mainly, to the imperfections of the QW interfaces.sizable values of the disorder parameter, indicating that
In addition to inhomogeneous broadening, other featurethe k-conserving exciton-photon interaction prevails over
such as asymmetry of the exciton line and Stokes shift ithe k-nonconserving exciton-disorder interaction. More-
the photoluminescence originate as a consequence of tloeer, the obtained polariton inhomogeneous broadening is
disorder present in the system. Existing models whictsmaller than what expected from tlkeconserving mod-
describe these properties are based on the solution of tleds [6,7]. The shape of the optical spectra is strongly
Schrddinger equation for the exciton center-of-mass moasymmetric at resonance, showing an upper polariton peak
tion in the presence of a disordered potential [1-5]. Théroader and less pronounced than the lower one. We ex-
optical response is then calculated as usual by means pfain these results in terms aiotional narrowingof the
the Fermi golden rule. polariton modes. The term motional narrowing indicates

When a QW is embedded in a planar semiconductor mithe averaging of the fluctuations when a quantum particle
crocavity (MC), the influence of in-plane disorder on thewith a finite size moves along a disordered potential with
optical properties becomes crucial. In fact, the conservaa correlation length of comparable size [9]. Recently,
tion of the exciton in-plane momentum is essential for theWhittaker et al. [10] have reported reflectivity measure-
existence of the MC polariton modes and, in particularments on a high quality MC sample displaying both these
of the normal mode splitting (Rabi splitting) in the strong features. They propose a scaling theory which explains
coupling regime. However, it was shown [6,7] that a sim-the subaverage broadening in terms of motional narrow-
plified model in which the effect of disorder is included ing. Their theory, however, while relying on the image
only through an inhomogeneous exciton level distribution of microcavity polaritons, disregards the interbranch scat-
without lifting the in-plane momentum conservation, still tering and the strong nonparabolicity of the polariton dis-
describes the main features of the optical response. Thgersion. The model fails to predict the asymmetry of the
question thus arises whether lifting the in-plane momengpolariton spectrum at resonance. Our results, on the con-
tum conservation produces relevant changes in the optictlary, explain very satisfactorily the observed polariton
spectra and, in particular, in the Rabi splitting. broadenings in terms of motional narrowing, thus show-

In this Letter, we propose a microscopic model of dis-ing the importance of a nonperturbative treatment. We
ordered QW embedded in a MC. The coupled equationalso provide a qualitative argument which shows that only
of the exciton and cavity photon systems are solved nuthe upper polariton is affected by the interbranch scatter-
merically and the optical spectra for normal incidence areng and its linewidth is therefore larger than the one of the
calculated. The treatment is nonperturbative and includel®wer polariton.
multiple scattering to all orders, both for the exciton- Let us consider a planar Fabry-Pérot resonator with
photon interaction [8], and for the exciton-disorder in- perfectly reflecting mirrors and thickneds. The cou-
teraction which involves differenk vectors. In this pling to the outside radiation will be introduced later. We
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neglect higher order modes of the Fabry-Pérot, assumt. and vy are the correlation length and the average
ing that their energy separation from the fundamentabmplitude of the fluctuations df (R), respectively. The
mode is much larger than the exciton-radiation couplingtwo parameters\. and vy can be related to measurable
Under this assumption, an exciton state with a giverguantities by introducing the potential density

in-plane wave vectok is coupled to the fundamental

Fabry-Pérot mode with the sarke Consequently, the po- P(w) = %f 8(hw — V(R))dR, ()
lariton Hamiltonian, which describes the coupled exciton- L
photon system, writes where L represents a quantization length for the exciton
T " center-of-mass motion and is the dimensionality of the
Hpor = Z[hv\/kz + kZagax + hoxbyby system { = 2 in the QW case). It has been shown [3,4]
k

that in the limit of infinite exciton mass the potential
density P(w) corresponds to the exciton density of states
(in the absence of a MC) and gives the line shape of
the excitonic transition. In this case, the variance of
the distribution (4), which we denote hy, defines the
exciton inhomogeneous broadening. In the case of finite
exciton mass, the exciton line turns out to be narrower
%‘han o [3], which is a more rigorous definition of the

+ Clap by + axby)]

+ 3 Vik — Kby by, 1)
k. k'

where k, = 27 /L., ax and b, are the cavity photon
and exciton Bose operators, respectively, @idis the
polariton coupling constant [8]. The last term in (1)
describes the in-plane disorder in terms of scatterin
between exciton states at different wave vectors. Th
coefficient V(k — k') is the Fourier transform of the
disordered two-dimensional potentidf(R), which is
an effective potential acting on the exciton center-of- 4
mass motion. This formulation implies the assumption 2 o L1
that the disorder does not affect the exciton internal 0" =80 = v0<,\_c ﬁ) ' )
degrees of freedom [1], which is valid provided the
fluctuation amplitude of the energy gap along the QW . :
plane is smaller than the exciton confinement energfyStem' To this /purpose! we work out 'the cavity photon
This requirement is always met by good quality samples.prOpagatO'Z.).(k’ k "")’.Wh'Ch is the Fourier tr_ansform of

The coefficientV (k) characterizes the disorder and, the probability per unit time of a photon being scattered

in general, depends on the specific realization of théromk tok’. It obeys the following Dyson equation:
disordered system. However, for most purposes, it isD(k,k’, w) = DO(k, )8y + ZD(O)(k,w)
possible to use a statistical description of the disordered K’

potential which has the advantage of accounting for the X CyG(k, kK", 0)CxD(K" k', ), (6)

important parameters characterizing the disorder, Witho%hereD(O)(k ©) = (oI T2 — hiw + ie) ' is the
including its microscopical details. We assume, as i ree photon,propagator an(}”(kz K'.w) is the exciton

Rf;t[ﬂ’ ?ta;f;ll;T;’;'FO'Ptrizorflat'fr:jfté?cn??:v O_f ﬂ?ﬁt propagator in the presence of disorder which, in turn,
exciton potentia actorize as products of two-po obeys the following Dyson equation:

correlation functions. The second order correlation is
written as Gk, k', ) = GOk, )y

_p — /
where the brackets mean configuration average. Then the o 7)

potentialV(R) can be modeled as
l In the above equationG?(k, w) = (wx — @ + ie)”!
V(R) = > c(k)[g(k)]* exp—ik - R),  (3) is the free exciton propagator.

k The numerical solution of Egs. (6) and (7) in a two-
where g(k) is the Fourier transform of the correlation dimensionak space requires a huge computational effort.
function (2) andc(k) is a random function with complex Since we want to include multiple scattering to all orders
values on the unitary circle, which is delta correlated,into the calculations, a perturbative approach is not ade-
namely,(c*(k)c(k’)) = Sxx. Moreover, sinceV(R) is  quate. We thus restrict ourselves to the problem in one-
a real quantity, the condition(k) = c*(—k) must be dimensionalk space. The analogous problem for a bare
obeyed. The function(k) provides the random character Qw has been solved both in one [4] and two [5] dimen-
of the potential V(R), while the correlation function sjons, and only quantitative differences between the 1D
g(R) accounts for the significant parameters such agnd 2D absorption spectra emerge from the calculations.
the fluctuation amplitude and the correlation length. Wewe chooser. = 140 A. This assumption is justified by

assume a Gaussian correlatipfk) = v%e_%Asz, where the fact that every short-range fluctuation of the energy

otional narrowing effect. The quantity can however

e taken as a figure of merit of the amount of disorder
present in the system. With the assumption of Gaussian
correlation, from (3) one obtains [4]

Our aim is to calculate the linear optical response of the
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gap is averaged out by the finite space extent of the exci{*Voigt profile) [11]. This linewidth is plotted in Fig. 1
ton envelope function [1,3]. Thus, only fluctuations largeras a function ofo. We see that both polariton branches
than the Bohr radiugg contribute to the exciton center- exhibit a subaverage broadeningoehavior; namely,
of-mass potentiaV’(R). The Dyson equations are solved their linewidths lie below the Voigt linewidth. Another
over an interval oR.5 X 10° cm™! aroundk = 0 by tak-  important characteristic is that the lower polariton peak
ing 400 sample points. This corresponds to a quantizations always narrower than the upper one, whose linewidth
length in real spacé = 10* nm. follows more closely the Voigt linewidth. Both these
The coupling to the external radiation is introduced byfeatures can be attributed to a motional narrowing of the
means of the quasimode formalism [6]. The couplingpolariton modes.
between the cavity mode and the external radiation field, In order to explain the difference in the broadenings
which takes place through the cavity mirrors, is appliedof the two polaritons, we rewritéd,, in terms of the
as a first order perturbation oved,,. The forward polariton operators (which would be the eigenstates in
scattering amplitude is finally obtained in terms of theabsence of the disorder term);, = W;(k)a, + X;(k)by,
cavity photon propagator as whereW, (k) andX; (k) are the Hopfield coefficients which
Si(@) =1 — iy (DK, k, »), (8) €xpress the photon and exciton fraction in the polariton

) o mode respectively. We have
whose square modulus gives the MC transmission spec-

trum at incident wave vectaor. In this expressiony,(k) _ t
is the cavity mode broadening which enters through the Hpol %EQZ’kBl’kBl’k
quasimode formalism. In our calculations we perform +
configuration averages of the square modulus of (8) in + > > Vk — k)X, (X} (k"B By,  (9)
order to reproduce the macroscopic spectra [4,5]. Lk Ik

The transmission spectra of polaritons in a MC-where the indiced and !/’ run over the two polariton
embedded QW are calculated for different values of thdéranches. The lower polariton exciton fractiof (k)
disorder parametes- and normal incidence. The value varies from 1/\/5l to 1 in a region of the order of
used for the cavity mode broadeningyis(0) = 0.7 meV Ak ~ (M.Qg/F%)=, where M, = lik./v is the cavity
and the polariton coupling is chosen such that the systemode mass att = 0. In correspondence, the upper
is in the strong coupling regime. The bare exciton energyolariton quantityX,(k) varies from1/+/2 to 0. From
liwp = 1.5 eV is resonant with the cavity mode &at= 0  the polariton Hamiltonian we derive the corresponding

and the exciton mass & = 0.25m.. In Fig. 1 we plot eigenvalue equation for the center-of-mass motion of the
the linewidths of the two polariton peaks as a functiontwo polaritons which, irk space, reads

of o. It appears that the two polariton lines become

broader aso increases. Moreover, the pronounced Qci(k) + ZVI,Z’(k»k/)(l’)l’(k/) = F¢,(k), (10)
asymmetry of the transmission spectrum is clearly seen in Ik

the inset of Fig, 1. In the absence of motional narrowing,ynere the effective potential V, ;(k, k') = V(k —

the pola_lriton Iineshape is given by the_ convol_ution of a')x,(k)X;(k'") has been introduced. This potential
Lorentzian of widthy.(0)/2 and a Gaussian of widitr /2 depends separately an and k' and the corresponding

potential in real space is nonlocal. Let us disregard for

A the moment the cross terms in (10). We are left with two
2'§ L obomertranen ° separate equations for the two branches. The equation for
1g [T Voigteurve ,6" o ] the lower branch, with,!’ = 1, is characterized by an

s $ effective potential Vy(k,k’) = V(k — k')X1(k)X{ (k')

[] »! r ’ q . . .

E L0 o 1 which has essentially the samie space extension as

2l &0 o 1 the exciton potentiaV(k — k'), given by A_!. Within

E 10l 0 o f " ] ] this region, the lower polariton dispersion is mostly

S 08l ﬁ,goo Lo b 1] excitonlike, because\kA, < 1. Thus, the lower po-

& ef” coom ! 1] lariton is subject to the same motional narrowing effect
04| ] as the bare exciton and the narrowing with respect to
02| M ey the Voigt linewidth follows. In the case of the upper
0.0 : - . . polariton, the extension irk space ofV,,(k, k') sig-

0.0 0.5 1.0 15 2.0 25 4

o (meV) nificantly reduced by the factok,(k’) with respect to

V(k — k'). The new correlation length is consequently

FIG. 1. Transmission peak linewidth calculated at resonanc%iven by \. = 27 /Ak > A.. Moreover, the polariton
as a function ofo. Circles and squares indicate upper ¢ < '

and lower polariton branches, respectively. The dashed lin&Nass along its dispersion _is always close to_ the: 0
corresponds to the Voigt linewidth described in the text. Thevalue 2M.. It can be verified that the rescaling of the
inset shows a typical transmission spectrador= 0.7 meV. correlation length and of the mass in the equation of
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motion compensate and that, again, the same motional 3.1 s e R

narrowing is expected. The different linewidths obtained 29 >~ | oRe. [10], upper branch |~ ]

in the numerical calculations indicate that the cross terms 271 Cgei;f'c‘:]:‘;"e' o]

in Eqg. (10) play a crucial role. The cross term with s 257 s 7 ]

[ =1 and!" =2 is negligible becausé\kA., < 1 and g237f

the above considerations for the lower polariton are still % 211

valid. For the same reason, the other cross term actually z 190

appears to be even more important than the diagonal £ 171

term with /, I’ = 2. We thus argue that this term causes £18¢1

the additional broadening obtained in the numerical s3r

calculation. The above derivation differs significantly 1

from that in Ref. [10] in the fact that thle dependence of 2'3 ]

the coefficientsX;(k), the exact polariton dispersion, and 05 L e

the coupling between the two branches are fully taken "8 6 4 2 0 2 4 6 8

into account. All these contributions are fundamental Detuning (meV)

for the nonperturbative approach which includes multipler|g. 2. Comparison between the calculated and measured
scattering to all orders. [10] polariton linewidths as a function of the detuning. The

Finally, in Fig. 2 we compare the results of the modeldashed lines reproduce the results obtained from a simple
with the experimental data presented in Ref. [10]. For thidinewidth averaging argument.
calculation, the parameter = 1.4 meV was used. This
value has been chosen in order to reproduce the full widthroadening. The solution in one-dimensiokadpace al-
at half maximum of 3.1 meV, measured independently idows a very clear explanation of recently measured data
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