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Microscopic Theory of Motional Narrowing of Microcavity Polaritons in a Disordered Potential
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The influence of static disorder on the optical properties of microcavity-embedded quantum wells is
studied by means of a microscopic model. Both the exciton-photon coupling and the exciton-disorder
interaction are treated nonperturbatively. Despite the nonconservation of the in-plane momentum
due to disorder, the Rabi splitting is still present. Moreover, the lower polariton is subject to
motional narrowing of the spectral response, while for the upper one this effect is less important.
This result shows very good agreement with recently observed spectra in high-quality samples.
[S0031-9007(97)03351-6]
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The optical response of Wannier excitons in narro
quantum wells (QWs) usually shows a significant broa
ening of the exciton line due to the presence of impuritie
and, mainly, to the imperfections of the QW interface
In addition to inhomogeneous broadening, other featur
such as asymmetry of the exciton line and Stokes shift
the photoluminescence originate as a consequence of
disorder present in the system. Existing models whic
describe these properties are based on the solution of
Schrödinger equation for the exciton center-of-mass m
tion in the presence of a disordered potential [1–5]. Th
optical response is then calculated as usual by means
the Fermi golden rule.

When a QW is embedded in a planar semiconductor m
crocavity (MC), the influence of in-plane disorder on th
optical properties becomes crucial. In fact, the conserv
tion of the exciton in-plane momentum is essential for th
existence of the MC polariton modes and, in particula
of the normal mode splitting (Rabi splitting) in the strong
coupling regime. However, it was shown [6,7] that a sim
plified model in which the effect of disorder is included
only through an inhomogeneous exciton level distributio
without lifting the in-plane momentum conservation, sti
describes the main features of the optical response. T
question thus arises whether lifting the in-plane mome
tum conservation produces relevant changes in the opti
spectra and, in particular, in the Rabi splitting.

In this Letter, we propose a microscopic model of dis
ordered QW embedded in a MC. The coupled equatio
of the exciton and cavity photon systems are solved n
merically and the optical spectra for normal incidence a
calculated. The treatment is nonperturbative and includ
multiple scattering to all orders, both for the exciton
photon interaction [8], and for the exciton-disorder in
teraction which involves differentk vectors. In this
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context, we stress the importance of including the full p
lariton dispersion and the interbranch scattering. The c
culations first show that the Rabi splitting still exists fo
sizable values of the disorder parameter, indicating th
the k-conserving exciton-photon interaction prevails ove
the k-nonconserving exciton-disorder interaction. More
over, the obtained polariton inhomogeneous broadening
smaller than what expected from thek-conserving mod-
els [6,7]. The shape of the optical spectra is strong
asymmetric at resonance, showing an upper polariton p
broader and less pronounced than the lower one. We
plain these results in terms ofmotional narrowingof the
polariton modes. The term motional narrowing indicate
the averaging of the fluctuations when a quantum partic
with a finite size moves along a disordered potential wi
a correlation length of comparable size [9]. Recentl
Whittaker et al. [10] have reported reflectivity measure
ments on a high quality MC sample displaying both the
features. They propose a scaling theory which expla
the subaverage broadening in terms of motional narro
ing. Their theory, however, while relying on the imag
of microcavity polaritons, disregards the interbranch sc
tering and the strong nonparabolicity of the polariton di
persion. The model fails to predict the asymmetry of th
polariton spectrum at resonance. Our results, on the c
trary, explain very satisfactorily the observed polarito
broadenings in terms of motional narrowing, thus show
ing the importance of a nonperturbative treatment. W
also provide a qualitative argument which shows that on
the upper polariton is affected by the interbranch scatt
ing and its linewidth is therefore larger than the one of th
lower polariton.

Let us consider a planar Fabry-Pérot resonator w
perfectly reflecting mirrors and thicknessLc. The cou-
pling to the outside radiation will be introduced later. W
© 1997 The American Physical Society
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neglect higher order modes of the Fabry-Pérot, assu
ing that their energy separation from the fundamen
mode is much larger than the exciton-radiation couplin
Under this assumption, an exciton state with a give
in-plane wave vectork is coupled to the fundamenta
Fabry-Pérot mode with the samek. Consequently, the po-
lariton Hamiltonian, which describes the coupled excito
photon system, writes

Hpol 
X
k

fh̄y

q
k2 1 k2

z a
y
kak 1 h̄vkb

y
kbk

1 Cksay
kbk 1 akb

y
kdg

1
X
k,k0

V sk 2 k0dby
k0bk , (1)

where kz  2pyLc, ak and bk are the cavity photon
and exciton Bose operators, respectively, andCk is the
polariton coupling constant [8]. The last term in (1
describes the in-plane disorder in terms of scatteri
between exciton states at different wave vectors. T
coefficient V sk 2 k0d is the Fourier transform of the
disordered two-dimensional potentialV sRd, which is
an effective potential acting on the exciton center-o
mass motion. This formulation implies the assumptio
that the disorder does not affect the exciton intern
degrees of freedom [1], which is valid provided th
fluctuation amplitude of the energy gap along the QW
plane is smaller than the exciton confinement energ
This requirement is always met by good quality sample

The coefficientV skd characterizes the disorder and
in general, depends on the specific realization of t
disordered system. However, for most purposes, it
possible to use a statistical description of the disorder
potential which has the advantage of accounting for t
important parameters characterizing the disorder, witho
including its microscopical details. We assume, as
Ref. [4], that all then-point correlation functions of the
exciton potentialV sRd factorize as products of two-point
correlation functions. The second order correlation
written as

gsR 2 R0d  kV sRdV sR0dl , (2)

where the brackets mean configuration average. Then
potentialV sRd can be modeled as

V sRd 
X
k

cskd fg̃skdg
1

2 exps2ik ? Rd , (3)

where g̃skd is the Fourier transform of the correlation
function (2) andcskd is a random function with complex
values on the unitary circle, which is delta correlate
namely,kcpskdcsk0dl  dk,k0. Moreover, sinceV sRd is
a real quantity, the conditioncskd  cps2kd must be
obeyed. The functioncskd provides the random characte
of the potential V sRd, while the correlation function
gsRd accounts for the significant parameters such
the fluctuation amplitude and the correlation length. W
assume a Gaussian correlationg̃skd  y

2
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lc and y0 are the correlation length and the averag
amplitude of the fluctuations ofV sRd, respectively. The
two parameterslc and y0 can be related to measurabl
quantities by introducing the potential density

Psvd 
p

Ld

Z
dsssh̄v 2 V sRdddd dR , (4)

whereL represents a quantization length for the excito
center-of-mass motion andd is the dimensionality of the
system (d  2 in the QW case). It has been shown [3,4
that in the limit of infinite exciton mass the potentia
densityPsvd corresponds to the exciton density of state
(in the absence of a MC) and gives the line shape
the excitonic transition. In this case, the variance
the distribution (4), which we denote bys, defines the
exciton inhomogeneous broadening. In the case of fin
exciton mass, the exciton line turns out to be narrow
than s [3], which is a more rigorous definition of the
motional narrowing effect. The quantitys can however
be taken as a figure of merit of the amount of disord
present in the system. With the assumption of Gauss
correlation, from (3) one obtains [4]

s2  gs0d  y2
0

√
L
lc

1
p

2p

!d

. (5)

Our aim is to calculate the linear optical response of t
system. To this purpose, we work out the cavity photo
propagatorDsk, k0, vd, which is the Fourier transform of
the probability per unit time of a photon being scattere
from k to k0. It obeys the following Dyson equation:

Dsk, k0, vd  Ds0dsk, vddk,k0 1
X
k00

Ds0dsk, vd

3 Cp
kGsk, k00, vdCk00 Dsk00, k0, vd , (6)

whereDs0dsk, vd  sh̄y
p

k2 1 k2
z 2 h̄v 1 ied21 is the

free photon propagator andGsk, k0, vd is the exciton
propagator in the presence of disorder which, in tur
obeys the following Dyson equation:

Gsk, k0, vd  Gs0dsk, vddk,k0

1
X
k00

Gs0dsk, vdV sk 2 k00dGsk00, k0, vd .
(7)

In the above equation,Gs0dsk, vd  svk 2 v 1 ied21

is the free exciton propagator.
The numerical solution of Eqs. (6) and (7) in a two

dimensionalk space requires a huge computational effo
Since we want to include multiple scattering to all orde
into the calculations, a perturbative approach is not ad
quate. We thus restrict ourselves to the problem in on
dimensionalk space. The analogous problem for a ba
QW has been solved both in one [4] and two [5] dimen
sions, and only quantitative differences between the 1
and 2D absorption spectra emerge from the calculatio
We chooselc  140 Å. This assumption is justified by
the fact that every short-range fluctuation of the ener
4471
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gap is averaged out by the finite space extent of the ex
ton envelope function [1,3]. Thus, only fluctuations large
than the Bohr radiusaB contribute to the exciton center-
of-mass potentialV sRd. The Dyson equations are solved
over an interval of2.5 3 106 cm21 aroundk  0 by tak-
ing 400 sample points. This corresponds to a quantizatio
length in real spaceL  104 nm.

The coupling to the external radiation is introduced b
means of the quasimode formalism [6]. The couplin
between the cavity mode and the external radiation fie
which takes place through the cavity mirrors, is applie
as a first order perturbation overHpol. The forward
scattering amplitude is finally obtained in terms of th
cavity photon propagator as

Sksvd  1 2 igcskdDsk, k, vd , (8)

whose square modulus gives the MC transmission sp
trum at incident wave vectork. In this expression,gcskd
is the cavity mode broadening which enters through th
quasimode formalism. In our calculations we perform
configuration averages of the square modulus of (8)
order to reproduce the macroscopic spectra [4,5].

The transmission spectra of polaritons in a MC
embedded QW are calculated for different values of th
disorder parameters and normal incidence. The value
used for the cavity mode broadening isgcs0d  0.7 meV
and the polariton coupling is chosen such that the syste
is in the strong coupling regime. The bare exciton ener
h̄v0  1.5 eV is resonant with the cavity mode atk  0
and the exciton mass isM  0.25me. In Fig. 1 we plot
the linewidths of the two polariton peaks as a functio
of s. It appears that the two polariton lines becom
broader ass increases. Moreover, the pronounce
asymmetry of the transmission spectrum is clearly seen
the inset of Fig, 1. In the absence of motional narrowin
the polariton lineshape is given by the convolution of
Lorentzian of widthgcs0dy2 and a Gaussian of widthsy2

FIG. 1. Transmission peak linewidth calculated at resonan
as a function of s. Circles and squares indicate uppe
and lower polariton branches, respectively. The dashed li
corresponds to the Voigt linewidth described in the text. Th
inset shows a typical transmission spectra fors  0.7 meV.
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(Voigt profile) [11]. This linewidth is plotted in Fig. 1
as a function ofs. We see that both polariton branches
exhibit a subaverage broadeningbehavior; namely,
their linewidths lie below the Voigt linewidth. Another
important characteristic is that the lower polariton pea
is always narrower than the upper one, whose linewid
follows more closely the Voigt linewidth. Both these
features can be attributed to a motional narrowing of th
polariton modes.

In order to explain the difference in the broadening
of the two polaritons, we rewriteHpol in terms of the
polariton operators (which would be the eigenstates
absence of the disorder term)Bl,k  Wlskdak 1 Xlskdbk ,
whereWlskd andXlskd are the Hopfield coefficients which
express the photon and exciton fraction in the polarito
mode respectively. We have

Hpol 
X
l,k

h̄Vl,kB
y
l,kBl,k

1
X
l,k

X
l0,k0

V sk 2 k0 dXlskdXp
l0sk0 dBy

l,kBl0,k0 , (9)

where the indicesl and l0 run over the two polariton
branches. The lower polariton exciton fractionX1skd
varies from 1y

p
2 to 1 in a region of the order of

Dk , sMcVRyh̄2d
1

2 , where Mc  h̄kzyy is the cavity
mode mass atk  0. In correspondence, the upper
polariton quantityX2skd varies from1y

p
2 to 0. From

the polariton Hamiltonian we derive the correspondin
eigenvalue equation for the center-of-mass motion of th
two polaritons which, ink space, reads

Vl,kflskd 1
X
l0,k0

Vl,l0 sk, k0dfl0sk0 d  E flskd , (10)

where the effective potential Vl,l0 sk, k0d  V sk 2

k0 dXlskdXp
l0 sk0 d has been introduced. This potentia

depends separately onk and k0 and the corresponding
potential in real space is nonlocal. Let us disregard fo
the moment the cross terms in (10). We are left with tw
separate equations for the two branches. The equation
the lower branch, withl, l0  1, is characterized by an
effective potential V1,1sk, k0d  V sk 2 k0 dX1skdXp

1 sk0 d
which has essentially the samek space extension as
the exciton potentialV sk 2 k0 d, given by l21

c . Within
this region, the lower polariton dispersion is mostly
excitonlike, becauseDklc ø 1. Thus, the lower po-
lariton is subject to the same motional narrowing effec
as the bare exciton and the narrowing with respect
the Voigt linewidth follows. In the case of the upper
polariton, the extension ink space of V2,2sk, k0 d sig-
nificantly reduced by the factorX2sk0 d with respect to
V sk 2 k0 d. The new correlation length is consequently
given by l0

c  2pyDk ¿ lc. Moreover, the polariton
mass along its dispersion is always close to thek  0
value 2Mc. It can be verified that the rescaling of the
correlation length and of the mass in the equation o
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motion compensate and that, again, the same motio
narrowing is expected. The different linewidths obtaine
in the numerical calculations indicate that the cross term
in Eq. (10) play a crucial role. The cross term with
l  1 and l0  2 is negligible becauseDklc ø 1 and
the above considerations for the lower polariton are st
valid. For the same reason, the other cross term actua
appears to be even more important than the diago
term with l, l0  2. We thus argue that this term cause
the additional broadening obtained in the numeric
calculation. The above derivation differs significantl
from that in Ref. [10] in the fact that thek dependence of
the coefficientsXlskd, the exact polariton dispersion, and
the coupling between the two branches are fully take
into account. All these contributions are fundament
for the nonperturbative approach which includes multip
scattering to all orders.

Finally, in Fig. 2 we compare the results of the mode
with the experimental data presented in Ref. [10]. For th
calculation, the parameters  1.4 meV was used. This
value has been chosen in order to reproduce the full wid
at half maximum of 3.1 meV, measured independently
Ref. [10] for the bare exciton transition. The cavity mod
linewidth is gcs0d  0.8 meV. The linewidths obtained
by a simple linewidth averaging argument have bee
plotted for comparison. The present results are in ve
good agreement with the measurements by Whittak
et al. The main discrepancy appears for the lowe
polariton and for positive detuning. We argue tha
this discrepancy originates from having used a on
dimensional model for the derivation of the spectra
In fact, as showed by Glutschet al. [5], the motional
narrowing effects are more pronounced in 1D than
2D systems. Another source of discrepancy comes fro
the way detuning is varied in the sample of Ref. [10
Since the MC is not wedge shaped, the exciton energy
tuned by varying the temperature. This, however, implie
an increase of the exciton homogeneous broadening
positive detuning (higher temperature), an effect which
not included in the model.

In conclusion, we have presented a model of MC p
laritons in the presence of in-plane disorder in the QW
The numerical solution of the coupled exciton-photo
equations reveals that polariton modes are subject to
motional narrowing effect analogous to the one acting o
exciton states in bare QWs. It turns out that, in the stron
coupling regime, the motional narrowing occurs mainl
for the lower polariton branch. The upper polariton, o
the other hand, is affected by multiple scatterings occu
ring between the two branches which cause addition
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FIG. 2. Comparison between the calculated and measur
[10] polariton linewidths as a function of the detuning. The
dashed lines reproduce the results obtained from a simp
linewidth averaging argument.

broadening. The solution in one-dimensionalk space al-
lows a very clear explanation of recently measured da
on high-quality samples.
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