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The complexity exhibited by cellular automata is studied using both topological (graph-theoretical)
and metric (thermodynamic) techniques. A novel topological classification, based on a hierarchy of
languages, is introduced. In particular, it is shown that the elementary rule 22 is able to produce, upon
iteration, a deep nesting of grammatical rules and that this asymptotically yields a phase transition when
the thermodynamic formalism is applied to the limit spatial configuration. [S0031-9007(96)02188-6]
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Deterministic cellular automata (CAs) exhibit a remark-main findings are an unexpected grammatical structure
able ability to produce intricate, although not necessarilyof the spatial configuration even at finite times, given a
random patterns, even when acting upon a nearly uniformandom initial condition, and strong numerical evidence
initial condition [1]. The apparent contrast between thisfor the existence of a phase transition in the asymptotic
behavior and the elementary form of the dynamical rulespatial configuration, which appears to exhibit an infinite
constitutes a challenge to the definition and characterizanesting of grammatical rules.
tion of complexity [2]. The structure of CAs makes them We study symbolic sequences of the tyge=
a fertile ground for testing conjectures and new methods;s,,...,s,, with s; €{0,1,....,b — 1} and n > 1,
of analysis both in a physical and in a computational consuch as those produced by a dynamical system endowed
text. On the one hand, in fact, they mimic more realisticwith a b-element phase-space partition [9] or by a
models, such as partial differential equations and coupledne-dimensional CA. The latter consists of a dynamical
map lattices, while yielding quicker simulations; on therule which updates synchronously the variable§),
other hand, the discreteness of space, time, and field vaffier all i € Z, wheret is the discrete time [1]. Spatial
ables assimilates them to Turing machines [3], so that apzonfigurationsS at fixed timet, possibly withz > 1,
plication of computational tools is straightforward. will be studied through the properties of the associated

Some of the schemes proposed to classify CAs can banguage £, the set of all finite subwords o8 In
viewed as complexity measurements. In particular, dyorder for a statistical analysis and, in particular, for the
namical behavior lying “between” ordered (periodic) andthermodynamic formalism [10] to be applicable to the
chaotic evolution is sometimes regarded as “complex.” Irspatial patterns, these must be stationary (as it is always
spite of all efforts made to formalize this conjecture [4],true with rule 22 whenever the initial condition is also
however, the very existence of complex cellular automatatationary).
is still in doubt. Rigorous methods, in fact, are seldom us- In Ref. [11], two indicators have been proposed to
able in practice because of uncomputability problems [5]characterize the topological complexity df. The for-
Others, based on mean-field approximations [6], demormer, C'V, was identified with the topological entrogkp,
strate the utility of a physical approach. Notwithstand-which represents the exponential growth rate of the num-
ing their different origin and motivation, these proceduresber N(n) of words of lengthn in £ [12]; the latter,C?,
present several interconnections to such an extent thaias defined as the topological entropy of the $eof all
even without seeking exact results, much progress can beeducible forbidden words (IFW) d& These are words
made by carefully combining them in the analysis. which do not belong tal , although all their proper sub-

In the present paper, we present a novel graphwords do. Hence, denoting wit,(n) the number of
theoretical technique for the characterization of generi¢dFWs of lengthn,
one-dimensional symbol sequences which stresses the Q) _ i
hierarchical nature of the underlying language. We then "= ,il—n»l [Ny (m)]/m (1)
apply it to the limit set of the “elementary” CA 22, a SinceN(n) is, at most, equal tdN(n — 1), C? = ¢
one-dimensional, nearest-neighbor rule over two symboland the passage frorf to F in the description of
which has gained the fame of being indeed complexS represents,de facto a compression of information.
especially because of the difficulty of estimating its metricAt this stage, the maximum degree of complexity is
entropy [7]. For this reason, we also evaluate its “ther-attained when no compression takes place, i.e., when
modynamic properties” through the entropy spectrum othe equality holds. On the contrar;® = 0 implies
the limit set using the nearest-neighbor method [8]. Ousimplicity, since a compact description of the topology
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of L is achieved throughF. In particular, all systems is a finite graph itself, the procedure can be iterated,
with a finite F (called subshifts of finite type) belong thus obtaining a cascade of languages characterized by
to this class, random signals corresponding to the extremgecreasing topological entropi€s? (d = 1,2,...). We
situationF = . In generalC® can be seen to measure conjecture that, for each regular language, there exists a
the difficulty of approximating the languag€ through finite d, such thatC“*! = 0; i.e., d, is the number of
subshifts of finite type with increasing memory (length of nested hierarchical levels in the languafeand may be
the IFWSs). seen as the “topological depth” of the language.

Strictly positiveC® can be found already in the class The elementary CA rule 22, defined by(k + 1) =
of regular languages (akin to Markov processes in d if s;—i(k) + s;(k) + s;+1(k) =1 and s;(k + 1) =0
physical language). An example is given by the sebtherwise k being the discrete time), illustrates the above
L' of words that do not contain any expression of theideas. Let us apply it on a random initial condition
type 101(1 + 00)*101, where the asterisk means arbitrary (which corresponds to a regular language wfth= ).
concatenations of the words 1 and 00. Indeed, none df is known that any elementary cellular automaton yields,
these forbidden sequences contains any other one, becawdter k steps, a spatial configuratiof, in the class of
of the delimiter word 101, so that they are true IFWsthe regular languages if the initial conditiof, also
belonging to a setf’. After recoveringL’ from F/,  belonged to it [1]. The number of IFWs, however, may
one findsC") = 0.6374 andC® =~ 0.4812, in agreement increase in time. Indeed, the analysis of the language
with the supposed inequality between the two exponents.L; obtained after one iteration of rule 22 reveals the

We now extend this scheme by supplying a recursiveexistence of four hierarchical levels with topological
procedure which makes the approach truly hierarchicalexponentsCV = 0.6508, C? = 0.5297, C® = 0.4991,
The clue is to realize that the IFW languad@ can be andC® = 0.1604.
analyzed in the same way as the original langudge No rigorous results are instead known for the limit set
More precisely, we propose to determine the set [which)™ (the intersection of the se@® of all spatial con-
we indicate with F(F)] of all irreducible prohibitions figurations surviving aftek steps, fork = 0,..., ) of
found in F and to iterate the procedure gfA(F) and rule 22. Since, however, the size of the graph associa-
on its possible descendants. Special care is requireted with S, is a rapidly increasing function &, one ex-
however. In fact,’F is neither factorial nor transitive; pects that both the topological depth = d;(k) and the
i.e., concatenations of words iff do not belong to’F exponentsC? (k) also increase wittk. Rather than at-
by definition, and, ifu, w € F, thenuvw &€ F, Vv. tempting a troublesome investigation of the convergence
LanguagesL which originate from dynamical systems, properties of the sequend€@(k)} for increasingk, we
instead, enjoy these two properties. The langugge have preferred to attack the more meaningful problem
above, for example, has a factorial, transitive componendf constructing a hierarchical description of the limit
(given by all possible concatenations of 1 and 00)set which, in the present context, is tantamount to the
and “one-way” parts, corresponding to the prefix/suffixidentification of all IFWs for increasing length. Unfor-
101. In general, therefore, knowledge of all prohibitionstunately, one is immediately faced with a fundamental
in F [i.e., of F(F)] does not permit unambiguous limitation: At variance with the case of dynamical sys-
reconstruction of F itself. Notwithstanding this and tems with known generating partition [14], there is no al-
the presumable lack of a general theory that covers aljorithm which may determine all forbidden sequences in
languages, the hierarch§ — F — F(F) — ...canbe the limit setQ® of a generic automaton in a finite time.
descended whenever the main source of diversity in eacBne could imagine to proceed as follows: Given a CA
of its members consists of a finite number of factorial,rule, all the preimages of a test sequei®ef length n
transitive components. When this holds, the complexityare computed fok backward iterates (their length being
of F originates from its own IFWs and a new indé®  n + 2rk in elementary automata with rang® Then,
can be properly defined as the topological entropy of thé& is forbidden if an empty set is found for a finite
languagef (). This procedure, however, is not guaranteed to halt since

This is, in particular, possible for regular languages.there is no bound, in principle, to the smalléstvhich
the words of which can be generated by following allis necessary to reach in order to assess the legality of
paths on a finite grapls [13]. There is, in fact, a well- In practice, however, the detection of forbidden words is
defined procedure to construct a gra@h, the “dual” of  not too hard since knowledge of the previously identified
G, which reproduces the languagé As a consequence, ones may be used to speed up the computation. Usu-
JF is also regular [2]. In general;; contains transient ally, a few iterates are sufficient to identify the “short”
parts (arising from the lack of factoriality and transitivity prohibitions.
of F) as well as disjoint ergodic components (usually A more fundamental difficulty is represented by se-
associated with different nodes of the original graph).quences that are only “asymptotically” forbidden. Let
The exponentC?® is just the largest of the topological P(S,n;k) denote the occurrence probability of a sequence
entropies of such components. Since each of thers of length n in the kth image of a uniformly random
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initial configuration. Then, p=m/n,. L—iistogramSS of the entropies were constructed
o N —(nt2rk for n, € [10°,9.8 X 10°] andm € {20, 40, 60,80}. The
P(S’n’_k) = Np(S,n: k)b ( , _ (2) curvé in Fig. 2 refers tom, = 8 X 10°, m = 40, and
where N, (S, n; k) is the number okth order preimages represents the typical shape of the curves obtained for all
of S and the factorb~"*>*) represents the Lebesgue pairs(m,n,). The curves are most reliable in the region
measure of each preimage. Th&must be considered around the valuec = K; = 0.51 * 0.01 of the metric
asymptotically forbidden i (S, n; k) — 0 for k — <. entropy, which has been estimated independently. More
The existence of such sequences is easily verifiedccurate results can be obtained with a finite-size scaling
for rule 22: 8" = 10101, e.g., has only one preimage analysis. The topological entrop, in particular, has
of orderk, consisting of5 + 2k alternating Os and 1s. peen determined either as
Accordingly, the probability of observing 10101 aftier

iterations of the rule isP(10101,5; k) = 27>~ %, which k%0n) =1In M or asky” (n) = IN wmax(n) ,
vanishes exponentially for larde Further asymptotically N(n — 1)
forbidden words are 010110001 and 100110011. 3)

The preimages method enabled us to determine
IFWs up to length 25 in a spatial configuratiaf
generated by rule 22 ik = 10000 iterations from a

allhere umax(n) 1S the largest eigenvalue of the transition
matrix for the graphG that reproduces all prohibitions

L L X g up to lengthn. Assuming an exponential convergence
random initial condition. The results, illustrated in Fig. 1, (i) - .
yield ¢ = 0.545. Before comparing this value with of the form Ky (n) ~ Ko + a;e™ ™", we have estimated

the topological entropyKy, let us shift to the general the topological entropy t0 beky = 0.55 = 0.01 and

framework offered by the thermodynamic formalism” =~ 0.08 in both cases (see Fig. 3). The agreement
which provides a more complete characterization 0]between the two approaches strengthens the validity of the

o " numerical findings [16]. It is important to notice that"
S . o he PIObSEIE (7)o 22 is vy lose G0, which s at e maximal degree of
entropyx(S) = — In P(S, n)/n [8] and considers the num- order-two complexity for _the asymptotic Seq“‘?fﬁ;e
ber dN, (x') of such sequences with € (', k' + dx’). Moreover, the approx[mately Ilm_ear behav!or ofx)
Setting N, (k) ~ ¢"¢®) for n — %, one may interprek vs k for 0.2§ <K< Q.S is suggestive of a (first-order)
as the thermodynamic enerdy of a chain ofn spins, phase transition. . This gr_aph IS, indeed, analogqus to an
and g(x), the “entropy spectrum,” as the COrrespondingentropy-energy diagram in which subsystems with local

thermOdynamiC entropﬂ(E) [2,10] The funCtiong(K) energieS in a finite range coexist at the same temper-

— -1 H
has been estimated for the asymptotic configuration ?ture T"; (ds/ df) ’ 'Arralogtous cuSrves:”?re lobtalned
from the dimension spectrunf(a) [8] in the space or well-known dynamical systems [8]. € slow con-

of symbolic sequences [the interval x € [0, 1], with vergence of the thgrmodynamic functions (finite-sizg esti-
x(S) =Y. 5,271] using the relation x = a7ln2 be. Mates show thay is indeed small for other generalized
tween k alnd the local dimensior. We have analyzed entropiesk, [8] as well) confirms this conjecture. Within
M = 10° symbols of S using the fixed-mass method the error bounds, we may p_rgsur_nably conclude that_ t_he
[15]. The local entropies were computed nx 10° presence of the phase transition is related to the validity

. . inc® = c@ i i-
randomly chosen neighborhoods, each containing a ma the exact equality” C*?, which could not be d
rectly assessed.
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FIG. 1. Natural logarithm of the numbeN,(n) of IFWs
of length n for the asymptotic spatial configuration of the FIG. 2. Entropy spectrung(x) vs « for the elementary CA
elementary CA rule 22 va. The fitted slope is® = 0.545. rule 22.
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.70 In this work, we have introduced a method which al-
lows one to identify a hierarchy of nested levels of gram-
Kofn) e matical structure in a generic symbolic sequence. Its ap-
o x plication to the language generated by a single iteration of
65 * rule 22 reveals four different levels. Investigation of the
Oo* limit set of the same rule indicates that the spatial config-
0o uration is a good candidate for a second-order maximally
60 o ", complex language. The implications of this finding in the
. ®og . e thermodynamic setting have been demonstrated with a di-
%00, " rect estimate of the entropy spectrum which appears to
exhibit a phase transition.
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