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Dirt Softens Soap: Anomalous Elasticity of Disordered Smectics
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We show that a smectic in a disordered medium (e.g., aerogel) exhibits anomalous elasticity, with the
compression moduluB(k) vanishing and the bend modul&gk) diverging ask — 0. In addition, the
effective disorder develops long ranged correlations. These divergencewuahestronger than those
driven by thermal fluctuations in pure smectics, and are controlled by a zero temperature glassy fixed
point, which we study in ark = 5 — d expansion. We discuss the experimental implications of these
theoretical predictions. [S0031-9007(97)03385-1]

PACS numbers: 61.30.Cz, 64.60.Fr, 82.65.Dp, 82.70.—y

The effects of quenched disorder on the properties ofhe marginal anomalous elasticity of thermal smectics,
condensed matter systems continue to be a fascinatirand is described by a zero-temperature fixed point that is
area of active research, which includes the study of disperturbatively accessible #h = 5 — e dimensions. The
ordered superconductors [1], charge density waves [2Elastic anomaly is much stronger in quenched disordered
Josephson junction arrays [3], and Helium in aerogel [4]smectics because layer fluctuations are much larger, even
to name a few. Some of this attention has focused [5,654t7 = 0, than in a pure smectic & > 0.
on liquid crystals in the random environment of an aero- One experimental signature of these divergences is in
gel. While a complete picture of aerogel-confined lig-the smectic correlation length for smectics in aerogel,
uid crystals is still being developed [6], in this Letter which has a different, universal dependence on the bare
we show that a smectic phase of these systems possessesectic elastic constants and the aerogel density than
strong anomalous elasticity, when subjected to an arbitrapredicted by harmonic theory. Detailed predictions for
ily weak amount of quenched disorder. This result haghese lengths can be found at the end of this Letter.
important experimental consequences. Our model of a quenched disordered smectic starts with

The anomalous elasticity puresmectics was predicted de Gennes’ theory [8] for the smectic density figldand
some time ago [7], and is characterized by bulk compresthe nematic directofi, and includes a disorder field that
sional and tilt moduliB(k) and K (k) which, respectively, couples to the nematic director via
vanish and diverge at long wavelengthks- 0). This is
a general property of all one-dimensional crystals in which 6H, = _] d*r(g(r) - n)?, 1)
the direction of the 1D ordering wave vector is chosen i
spontaneously. As a consequence of thEontaneous whereg(r) is a qgen(_:hed random vector along the Iocally
breaking of rotational symmetry (a property of smecticsPreferred nematic alignment.  Such prel_‘erenqes can arise
but not of charge density waves), in such systems, comrRecause, e.g., the nematogens may align with the Io<_:a|,
pression can be relieved by smoothing out fluctuation§@ndomly oriented aerogel strands. Below the nematic—
(wrinkles in the smectic layers), so the effective layerSmectic-A transitionj can be written agyle™", with
compressional modulusB(k) vanishes at long wave- u(r) describing the Ioca_l dllsplacement of the smectic
lengths. Similarly, in the presence of fluctuations, al@yers from perfect periodic order. Furthermore, far
bending of smectic layers necessarily leads to a comPelow the nematic transition (i.e., |nS|d_e the smectic
pression, which implies that the effective tilt modulus Phase) we can také ~ 2 + én, wherez is the mean
K (k) diverges at long wavelengths. Unfortunately, thisnormal to the smectic layers, and denotes directions
thermally driven behavior inpure smectics is difficult to  Orthogonal toz. Integrating out the “massivelys| and
observe experimentally because the effect is very weaR™ fields, which has the effect of replacingn — V, u
(logarithmic) in 3D. (i.e., the Higg's mechanism), and keeping only the most

The main ingredients necessary for anomalous e|a§_elgvant terms, we obtain the elastic Hamiltonian that
ticity, namely spontaneoushproken rotational invariance defines our model,
and fluctuations, both exist even at zero temperature in _ /’ [E(Vz P+ B <a B l(V )2>2
quenched disordered smectics. In this Letter we demon- L2 Lu 2 U 7 Lu
strate the existence of anomalous elasticity in quenched-
disordered smectics which is significantly stronger than + h(r) - VL”} (2
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whereh(r) = g.(r)g(r) is quenched random tilt disorder A simple analysis gives
that for simplicity we take to be Gaussian, zero mean, and

2 >
completely characterized by 8B = —%f [TG(q)* + 2A4° G(q)*1q" . (6)
q
hi(Oh;(r) = A% r — r')8,; . 3) Y %]> di g, 45
—o0 27T

The use of short-ranged correlations, even though the
density of the (fractal) aerogel has long-ranged correla-
tions, is justified, since therientationsof its constituent 3 C B \\/2
silica strands, beyond their microscopic persistence =~ —— —<4-! A<—5> L, (8)
length, are certainly short-range correlated [5,6]. We 165—-d \K
will focus here on the behavior of the smectic in the
(large) window of length scales between the intrinsic
orientational correlation length of the aerogel and th
distance between disorder-induced smectic dislocations.
The anharmonic terms included in Eq. (2) are require
by the underlying global rotational invariance of the

smectic phase [7], hidden by ttepontaneousthoice of the breakdown of conventional harmonic elastic theory on

the layers to stack along t.ﬁedlrectlon: . length scales longer thagy;, which we define as the
To compute self-averaging quantities, e.g., the disorder . A . o :
L : value ofL at which|6B(&y;)| = B. This definition gives

averaged free energy, it is convenient (but not necessaryfsl
16(5 — d)K5/2>1/<5—d>

@m)! (Kqt + Bg?)? ’(7

where the constar®, = 279/2/[(27)4T'(d/2)], we have
dropped the thermal contribution that is subdominant to
he disorder part, shown only the dominant contribution
or d < 5, and introduced a long wavelength cutdff
defined by restricting the wave vector integralgo >
1/L). The divergence of this correction As— o signals

to employ the replica “trick” [9] that relies on the identity

1L

logZ = lim,_o 2>—. This allows us to work with a ENL < 3C,-1B'/2A
translationally invariant field theory at the expense of
introducing » replica fields (with the: — 0 limit to be ~ which for physical 3D smectics is given by, =
taken at the end of the calculation). After replicating and(64=K>/?/3B'/2A)!/2. We can also obtain a nonlinear
integrating over the disordeh(r) utilizing Eq. (3), we crossover length in the direction &5, = (£32)?/A ~
obtain K%/A, where A = (K/B)'/2, by imposing the infrared

| n | 2 cutoff in thez direction.
Hlug,]= = Z [K(Viua)z + B<8zua -= (Vlua)2> } To understand the physics beyond this crossover scale,

2)r oo 2 i.e., to make sense of the apparent infrared divergences
A i Viug - Vg, ) found in Eq. _(8), we employ the standar(_j momentum shell

2T renormalization group (RG) transformation. We separate

: (9)

" a,B=1 . . . .

g the displacement field into high and low wave vector
from which the noninteracting propagat@,.s(q) =  componentsu,(r) = u;(r) + u (r), whereu(q) has
V= Kuq(q)ug(—q))o can be easily obtained, support in the wave vector rangee ¢ < ¢, < A and

Gup(q) = TG(q)Sup + Ag G(g), (5) A is an ultraviolet cutoff of orderl/&y;, integrate

) s 5 i _out the high wave vector parnt_ (r), and rescale the
with G(q) = 1/(Kq1 + Bg:). The fluctuations associ- |engths and long wavelength part of the fields with
ated with the disorder [the term in Eq. (5) proportional 10, = e, 7 = 7/e®t, andu=(r) = eX‘u’ ('), SO as to
A] are much larger ag — 0 than those associated with restore the uv cutoff back ta. The underlying rotational

thermal fluctuations (the term proportional. invariance insures that the graphical corrections preserve
We first attempt to assess the effects of the anharg,, rotationally invariant operatdid, i, — %(Vlua)z],

monicities, disorder, and thermal fluctuations by perform-

X X : Lo | .. 'renormalizing it as a whole. It is therefore convenient
ing a simple perturbation expansion in the nonlinearitiegy, t ot necessary) to choose the dimensional rescaling
of H[u,]. The lowest order correctioAB to the bare

lasti ional modul f fth that also preserves this operator; the appropriate choice is
eastic compressional moduliiscomes from a part of the x = 2 — w. Thisrescaling then leads to the zeroth order

diagram in Fig. 1. RG flows of the effective coupling& (¢) = Ke@~ 1=,
B({) = Beldt3730)t  and (A/T)(£) = (A/T)eld =),
From these dimensional couplings one can construct
two dimensionless couplings, = (B/K?)!/? and g, =
A(B/K®)!/2, whose flow is given byg;({) = gjeC~9¢
and g,({) = g,e09¢ g, is just the coupling that
becomes relevant ih < 3 and was discovered in Ref. [7]
to lead to anomalous elasticity in pure smectics. It

FIG. 1. Feynman graph that renormalizes the elastic moduliS, however, only marginally irrelevant i@ = 3 gnq _
K, B, and the disorder varianck. therefore only leads to a weak anomalous elasticity in
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physical 3D smectics. In contrast, the upper criticalA for the dimensionless coupling,. To establish the
dimensiond,,. below whichg, becomes relevant ig,. = anomalous behavior &, we look atk, = 0. We then
5, and leads to much stronger anomalous elasticity thathoose the rescaling variabl such thatk e’ = A.

should be experimentally observable in disordered 3DWe also choosé, sufficiently small such thag,(€*) has
smectics. These observations imply that temperature igached our nontrivial fixed poing;. Eliminating €* in

a strongly irrelevant variable near the disorder dominatedavor of k; , we then obtain

fixed point. We will therefore seéf = 0 in all subsequent

calculations. G(k,,0,K,B, g) =

The integration over the high wave vector components A \FHd-w
of u, can only be accomplished perturbatively in non- <—> G(A,0,K(€*),B({*), g5). (15)
linearities of H[u]. This perturbation theory can be rep- ki

resented graphically; the graph giving the leading ordeg;nqg the right hand side is evaluated at the Brillouin zone

correctionsé B, 6K, and 8A (with the part diagonal in 1y, ,ndary it can be calculated perturbatively in the fixed
the replica indicesy, 8 renormalizingk and B, and the point couplingg;. To lowest order we obtain
part independent ok, 8 correctingA) is shown in Fig. 1 ) Ty

(AJk )t

[10]. Evaluating it, and performing the rescalings de-
scribed above, we obtain the following RG flow equations: A*K(AJk )d-1-o+g/32)°

Gk, ,0,K,B,g) =

(16)
‘”;_if) =(d+3-30w - 13—6g2)B, (10) .
- . 17
dgg) —d-1-w+ égz)K, (11) Kk )KL +
d(A/T) (€)

—d 41w+ 6L4g2) A/T), (12) where we integrated Eq. (11) to obtdir{¢*), and defined

de the anomalous tilt modulus which diverges at long length
where we have defined a dimensionless coupling constarcrf:""leS
g» = A(B/K®)Y2C,_;A4~3, which obeys -
K(ki) = Kk /A)", (18)
del) _ o) 302 (13)
dt 32°2° with an anomalous exponent
with e =5 — d. As required the flow ok, is indepen- L
dent of the arbitrary choice of the anisotropy rescaling ex- Nk = 3282 = 36, (19)
ponentw. The RG flow Eq. (13) shows that the Gaussian
g>» = 0 fixed point becomes unstable far< 5, and the K = % ford =3. (20)

low temperature phase is controlled by a stable, nontrivial,
glassyT = 0 fixed point atg; = 32¢/5.
The existence of this nontrivial fixed point leads to  gjmilar calculations for the other coupling constants
the anomalous elasticity, which we can calculate usingng other directions dé show that, in general,
the following matching approach. For this purpose it
is convenient to use our RG results to evaluate the _ 1y\- 1\
: . . K(k) = K(k M fr(k, E5p /(K , 21
connected disordered averaged two-paitk) correlation (k) (koéne) ™ felhedin /R €)) s (21)
function G(k) o (Ju(k)|?) — (u(k))}{u(—K)). The power .
of the renormalization group is that it establishes a  B(k) = Bk &y)" fa(k-£5./ (kL €x)f),  (22)
connection between a correlation function at a small wave
vector (which is impossible to calculate in perturbation AK) = A(k EEV M (ko €50 /(K E5)E 23
theory due to the infrared divergences) to the same (k) (krée) ™ falke i/ én)®),  (23)
correlation function at large wave vectors, which can be, i, the anisotropy exponent = 2 — (15 + 7x)/2
easily calculated in a controlled perturbation theory. ThiSyhich would be 2 in the absence of anharmonié ef-
relation forG(k) is fects, ms = 3¢3/16 = 6¢/5 = 12/5 in d =3, and
B nA = g,/64 = €/10 = 1/5ind = 3.
Gk, ke, K.B, g2) = Of course, we do not completely trust the extrapolation
BTGk el k.e®,K(€), B(f),g2(€)), of these smalk results down toe = 2 (d = 3). How-
14 ever, since by definitionig,/d{ = 0 at the nontrivial
(14) fixed point, this condition implies aexactrelation be-

where the prefactor on the right hand side comes fronfV€en the anomalous exponents
the dimensional rescaling using the exact Ward identity 5

i : : S—d+my="2+2 24
X = 2 — w, and we have traded in the disorder variable na = 5 ) K > (24)
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which is obviously satisfied by the anomalous exponents, We have also ignored dislocations so far. Further de-
computed here to first order ia. This Ward identity tailed analysis [6] shows that in a harmonic theory dis-
between the anomalous exponents can be equally easilycations unbind for arbitrarily weak disorder. However,
obtained from a self-consistent integral equation for theheir effects are felt only on length scales greater than
u — u correlations functions, using renormalized waveé&gis = (a2/A)e™*2 wherer, is a parameter of ordétk
vector dependent elastic moduli and disorder variance [6which is much longer, in the weak disordér & 0) limit,

At length scales beyondy; and £5;, the elasticity than the translational correlation length found here. In-
and fluctuations of the disordered smectic are controlle@luding anomalous elasticity, we find [6] a shorégy that
by our new glassy fixed point. One of the importantnonetheless remains much longer tigdn Hence our pre-
consequences can be seen in the layer fluctuations that cdittions for£X and the anomalous elasticity studied here
be observed in x-ray scattering experiments. For instanceemain valid.

layer displacement fluctuations alongre described by In summary, we have found that the addition of disorder
to a smectic liquid crystal phase leads to anomalous
C(z) = (u0,,z) — u(0,,0)]), elasticity that is much stronger than in the pure system.

J 5 This elasticity is controlled by a zero temperature glassy
_ [ dk 2[1 — cogk:2)]A(K)kL (25) fixed point, perturbative ik = 5 — d. We expect that in
2m)? K&k + B(K)K2]> contrast to marginally weak anomalous elasticity of pure
smectics, the strong anomaly in the elasticity of disordered
One can then naturally define the Xx-ray translationakmectics, described here, should be readily observable.
correlation lengthéX as the length along at which Note added—After this work was completed we
C(z = £)) = a*, wherea is the smectic layer spacing. learned of earlier work [11] on the model Eq. (4) in the
A simple calculation, using Egs. (21)—(23) leads in 3D tocontext of spin glasses. However, this earlier work misses
the essential physics of the nontrivial renormalization of
X = (a/N)YYK/A = (a/ V)7 E, (26)  disorder, and therefore makemiantitatively and quali-
tatively wrongpredictions of nearly all results; e.g., the
wherey = (g + nx)/{. Note that this x-ray correla- anomalous exponents, disorder correlations, scaling expo-
tion length is finite even a& — 0. This result is consis- nent relations, etc., correct versions of which are given in
tent with the experimental observation [5] that the x-rayour Eqgs. (12)—(24).
correlation length for smectics in aerogel saturates at some L. R. and J.T. acknowledge useful discussions with
finite value at low temperatures. Note also that this lengtiN. Clark and support by the NSF through Grants
should be different for different smectics in the same aeroNo. DMR-9625111 and No. DMR-9634596, respectively.
gel, sinceB, K, andA will change from smectic to smec-
tic. Since we expech « p,4, the aerogel density [6], the
aerogel density dependence §f could test the predic-
tion of Eq. (26). Likewise, theemperaturedependence
of ggf could be used to determing, since thebulk K(T) [1] D.S. Fisher, M.P. A. Fisher, and D.A. Huse, Phys. Rev.
andB(T) that implicitly appear in Eq. (26) have tempera- B 43, 130 (1991); C. Ebner and D. Strouthjd. 31, 165
ture dependence that can be extracted from measurements, (1985); D.A. Huse and S. Seunigid. 42, 1059 (1990).
on bulk materials. [2] Charge Density Wavc_as in Solidsdited by L.P. Gorkov
Note also that this correlation length is longer than the and G. Gruner (Elsevier, Amsterdam, 1989).

- . [3] E. Granato and J.M. Kosterlitz, Phys. Rev.3, 6533
nonlinear crossover length for < a (i.e., for largeB). (1986); Phys. Rev. Let62, 823 (1989).

2
F?r A > a (small B), C(z) r_eacheSa before_z reaches [4] M. Chanet al., Phys. Today49, No. 8, 30 (1996).
&y, and hence anharmonic effects are unimportant. In[s] Noel A. Clark et al., Phys. Rev. Lett71, 3505 (1993);
this case, the correlation lengéff can be determined in a T. Bellini et al., ibid. 74, 2740 (1995).
harmonic theory [which amounts to evaluating the integral [6] L. Radzihovsky and J. Toner (unpublished).
in Eq. (25) withK (k), B(k), and A(k) replaced by their  [7] G. Grinstein and R.A. Pelcovits, Phys. Rev. Left,
constant (bare) valuek, B, and A]. This gives gX = 856 (1981); L. Golubovic and Z. G. Waniid. 69, 2535
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Although our ent_lre d'.SCUSS'(.)n so far has focused OnlBflo] The first order terms in nonlinearities aoff do not

on the effects oforientational disorder, we have shown

. ) ) S lead to corrections of the elastic constants. Aside from
[6] that translational disorder (i.e., random pinning of correcting the free energy, they generate an operator

the positions of the layers), ikess important, at long linear in 9.us — +(V,u,)? which corresponds to a
wavelengths (ind < 5) than the orientational disorder. renormalization of the smectic wave vectpy.

Thus, the results described herein are directly applicablg1] L. loffe and M. Feige'man, Sov. Phys. JET8, 1047
to real smectics, where both kinds of disorder are present.  (1983);ibid. 61, 354 (1985).
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