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We show that a smectic in a disordered medium (e.g., aerogel) exhibits anomalous elasticity, with
compression modulusBskd vanishing and the bend modulusKskd diverging ask ! 0. In addition, the
effective disorder develops long ranged correlations. These divergences aremuchstronger than those
driven by thermal fluctuations in pure smectics, and are controlled by a zero temperature glassy fi
point, which we study in ane ­ 5 2 d expansion. We discuss the experimental implications of these
theoretical predictions. [S0031-9007(97)03385-1]

PACS numbers: 61.30.Cz, 64.60.Fr, 82.65.Dp, 82.70.–y
s,
is

ed
en

in
l,
re
an
r

ith

y
ise
al,
c–

ic
r
ic

st
t

The effects of quenched disorder on the properties
condensed matter systems continue to be a fascinat
area of active research, which includes the study of d
ordered superconductors [1], charge density waves [
Josephson junction arrays [3], and Helium in aerogel [4
to name a few. Some of this attention has focused [5,
on liquid crystals in the random environment of an aero
gel. While a complete picture of aerogel-confined liq
uid crystals is still being developed [6], in this Lette
we show that a smectic phase of these systems posse
strong anomalous elasticity, when subjected to an arbitr
ily weak amount of quenched disorder. This result ha
important experimental consequences.

The anomalous elasticity ofpuresmectics was predicted
some time ago [7], and is characterized by bulk compre
sional and tilt moduliBskd andKskd which, respectively,
vanish and diverge at long wavelengths (k ! 0). This is
a general property of all one-dimensional crystals in whic
the direction of the 1D ordering wave vector is chose
spontaneously. As a consequence of thisspontaneous
breaking of rotational symmetry (a property of smectic
but not of charge density waves), in such systems, co
pression can be relieved by smoothing out fluctuatio
(wrinkles in the smectic layers), so the effective laye
compressional modulusBskd vanishes at long wave-
lengths. Similarly, in the presence of fluctuations,
bending of smectic layers necessarily leads to a co
pression, which implies that the effective tilt modulu
Kskd diverges at long wavelengths. Unfortunately, thi
thermally driven behavior inpure smectics is difficult to
observe experimentally because the effect is very we
(logarithmic) in 3D.

The main ingredients necessary for anomalous ela
ticity, namelyspontaneouslybroken rotational invariance
and fluctuations, both exist even at zero temperature
quenched disordered smectics. In this Letter we demo
strate the existence of anomalous elasticity in quenche
disordered smectics which is significantly stronger tha
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the marginal anomalous elasticity of thermal smectic
and is described by a zero-temperature fixed point that
perturbatively accessible ind ­ 5 2 e dimensions. The
elastic anomaly is much stronger in quenched disorder
smectics because layer fluctuations are much larger, ev
at T ­ 0, than in a pure smectic atT . 0.

One experimental signature of these divergences is
the smectic correlation length for smectics in aeroge
which has a different, universal dependence on the ba
smectic elastic constants and the aerogel density th
predicted by harmonic theory. Detailed predictions fo
these lengths can be found at the end of this Letter.

Our model of a quenched disordered smectic starts w
de Gennes’ theory [8] for the smectic density fieldc and
the nematic director̂n, and includes a disorder field that
couples to the nematic director via

dHd ­ 2
Z

ddrsssgsrd ? nddd2, (1)

wheregsrd is a quenched random vector along the locall
preferred nematic alignment. Such preferences can ar
because, e.g., the nematogens may align with the loc
randomly oriented aerogel strands. Below the nemati
smectic-A transitionc can be written asjcjeiq0usrd, with
usrd describing the local displacement of the smect
layers from perfect periodic order. Furthermore, fa
below the nematic transition (i.e., inside the smect
phase) we can takên ø ẑ 1 dn, where ẑ is the mean
normal to the smectic layers, and' denotes directions
orthogonal toẑ. Integrating out the “massive”jcj and
dn fields, which has the effect of replacingdn ! ='u
(i.e., the Higg’s mechanism), and keeping only the mo
relevant terms, we obtain the elastic Hamiltonian tha
defines our model,

H ­
Z

r

∑
K
2

s=2
'ud2 1

B
2

µ
≠zu 2

1
2

s='ud2

∂2

1 hsrd ? ='u

∏
, (2)
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wherehsrd ; gzsrdgsrd is quenched random tilt disorder
that for simplicity we take to be Gaussian, zero mean, a
completely characterized by

hisrdhjsr0d ­ Dddsr 2 r0ddij . (3)

The use of short-ranged correlations, even though
densityof the (fractal) aerogel has long-ranged correl
tions, is justified, since theorientationsof its constituent
silica strands, beyond their microscopic persisten
length, are certainly short-range correlated [5,6]. W
will focus here on the behavior of the smectic in th
(large) window of length scales between the intrins
orientational correlation length of the aerogel and th
distance between disorder-induced smectic dislocations

The anharmonic terms included in Eq. (2) are requir
by the underlying global rotational invariance of th
smectic phase [7], hidden by thespontaneouschoice of
the layers to stack along thêz direction.

To compute self-averaging quantities, e.g., the disord
averaged free energy, it is convenient (but not necessa
to employ the replica “trick” [9] that relies on the identity

logZ ­ limn!0
Zn21

n . This allows us to work with a
translationally invariant field theory at the expense
introducingn replica fields (with then ! 0 limit to be
taken at the end of the calculation). After replicating an
integrating over the disorderhsrd utilizing Eq. (3), we
obtain

Hfuag ­
1
2

Z
r

nX
a­1

∑
Ks=2

'uad2 1 B

µ
≠zua 2

1
2

s='uad2

∂2∏
2

D

2T

Z
r

nX
a,b­1

='ua ? ='ub , (4)

from which the noninteracting propagatorGabsqd ;
V 21kuasqdubs2qdl0 can be easily obtained,

Gabsqd ­ TGsqddab 1 Dq2
'Gsqd2, (5)

with Gsqd ­ 1ysKq4
' 1 Bq2

z d. The fluctuations associ-
ated with the disorder [the term in Eq. (5) proportional t
D] are much larger asq ! 0 than those associated with
thermal fluctuations (the term proportional toT ).

We first attempt to assess the effects of the anh
monicities, disorder, and thermal fluctuations by perform
ing a simple perturbation expansion in the nonlineariti
of Hfuag. The lowest order correctiondB to the bare
elastic compressional modulusB comes from a part of the
diagram in Fig. 1.

FIG. 1. Feynman graph that renormalizes the elastic mod
K, B, and the disorder varianceD.
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A simple analysis gives

dB ­ 2
B2

2

Z .

q
fTGsqd2 1 2Dq2

'Gsqd3gq4
' , (6)

ø 2B2D
Z `

2`

dqz

2p

Z . dd21q'

s2pdd21

q6
'

sKq4
' 1 Bq2

z d3
,

(7)

ø 2
3

16
Cd21

5 2 d
D

µ
B

K5

∂1y2

L52d , (8)

where the constantCd ­ 2pdy2yfs2pddGsdy2dg, we have
dropped the thermal contribution that is subdominant
the disorder part, shown only the dominant contributio
for d , 5, and introduced a long wavelength cutoffL
(defined by restricting the wave vector integral toq' .

1yL). The divergence of this correction asL ! ` signals
the breakdown of conventional harmonic elastic theory o
length scales longer thanj'

NL, which we define as the
value ofL at whichjdBsj'

NLdj ­ B. This definition gives

j'
NL ­

µ
16s5 2 ddK5y2

3Cd21B1y2D

∂1ys52dd
, (9)

which for physical 3D smectics is given byj'
NL ­

s64pK5y2y3B1y2Dd1y2. We can also obtain a nonlinear
crossover length in thez direction j

z
NL ­ sj'

NLd2yl ,
K2yD, where l ; sKyBd1y2, by imposing the infrared
cutoff in thez direction.

To understand the physics beyond this crossover sca
i.e., to make sense of the apparent infrared divergenc
found in Eq. (8), we employ the standard momentum she
renormalization group (RG) transformation. We separa
the displacement field into high and low wave vecto
components:uasrd ­ u,

a srd 1 u.
a srd, where u.

a sqd has
support in the wave vector rangeLe2, , q' , L and
L is an ultraviolet cutoff of order1yj

'
NL, integrate

out the high wave vector partu.
a srd, and rescale the

lengths and long wavelength part of the fields wit
r' ­ r 0

'e,, z ­ z0ev,, andu,
a srd ­ ex,u0

asr0d, so as to
restore the uv cutoff back toL. The underlying rotational
invariance insures that the graphical corrections preser
the rotationally invariant operatorf≠zua 2

1
2 s='uad2g,

renormalizing it as a whole. It is therefore convenien
(but not necessary) to choose the dimensional rescal
that also preserves this operator; the appropriate choice
x ­ 2 2 v. This rescaling then leads to the zeroth orde
RG flows of the effective couplingsKs,d ­ Kesd212vd,,
Bs,d ­ Besd1323vd,, and sDyTds,d ­ sDyT desd112vd,.
From these dimensional couplings one can constru
two dimensionless couplings̃g1 ; sByK3d1y2 and g̃2 ;
DsByK5d1y2, whose flow is given byg̃1s,d ­ g̃1es32dd,

and g̃2s,d ­ g̃2es52dd,. g̃1 is just the coupling that
becomes relevant ind , 3 and was discovered in Ref. [7]
to lead to anomalous elasticity in pure smectics.
is, however, only marginally irrelevant ind ­ 3 and
therefore only leads to a weak anomalous elasticity
4415
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physical 3D smectics. In contrast, the upper critic
dimensionduc below whichg̃2 becomes relevant isduc ­
5, and leads to much stronger anomalous elasticity t
should be experimentally observable in disordered 3
smectics. These observations imply that temperature
a strongly irrelevant variable near the disorder dominat
fixed point. We will therefore setT ­ 0 in all subsequent
calculations.

The integration over the high wave vector componen
of ua can only be accomplished perturbatively in non
linearities ofHfug. This perturbation theory can be rep
resented graphically; the graph giving the leading ord
correctionsdB, dK, and dD (with the part diagonal in
the replica indicesa, b renormalizingK and B, and the
part independent ofa, b correctingD) is shown in Fig. 1
[10]. Evaluating it, and performing the rescalings d
scribed above, we obtain the following RG flow equation

dBs,d
d,

­ sd 1 3 2 3v 2
3

16
g2dB , (10)

dKs,d
d,

­ sd 2 1 2 v 1
1

32
g2dK, (11)

dsDyTd s,d
d,

­ sd 1 1 2 v 1
1
64

g2d sDyT d , (12)

where we have defined a dimensionless coupling cons
g2 ; DsByK5d1y2Cd21Ld25, which obeys

dg2s,d
d,

­ eg2 2
5
32

g2
2 , (13)

with e ; 5 2 d. As required the flow ofg2 is indepen-
dent of the arbitrary choice of the anisotropy rescaling e
ponentv. The RG flow Eq. (13) shows that the Gaussia
gp

2 ­ 0 fixed point becomes unstable ford , 5, and the
low temperature phase is controlled by a stable, nontriv
glassyT ­ 0 fixed point atgp

2 ­ 32ey5.
The existence of this nontrivial fixed point leads t

the anomalous elasticity, which we can calculate usi
the following matching approach. For this purpose
is convenient to use our RG results to evaluate t
connected disordered averaged two-pointuskd correlation
function Gskd ~ kjuskdj2l 2 kuskdlkus2kdl. The power
of the renormalization group is that it establishes
connection between a correlation function at a small wa
vector (which is impossible to calculate in perturbatio
theory due to the infrared divergences) to the sam
correlation function at large wave vectors, which can
easily calculated in a controlled perturbation theory. Th
relation forGskd is

Gsk', kz , K ,B, g2d ­

es31d2vd,Gsssk'e,, kzev,, Ks,d, Bs,d, g2s,dddd ,

(14)

where the prefactor on the right hand side comes fro
the dimensional rescaling using the exact Ward ident
x ­ 2 2 v, and we have traded in the disorder variab
4416
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D for the dimensionless couplingg2. To establish the
anomalous behavior ofK, we look atkz ­ 0. We then
choose the rescaling variable,p such thatk'e,p

­ L.
We also choosek' sufficiently small such thatg2s,pd has
reached our nontrivial fixed pointgp

2. Eliminating ,p in
favor of k', we then obtain

Gsk', 0, K,B, g2d ­µ
L

k'

∂31d2v

GsssL, 0, Ks,pd, Bs,pd, gp
2ddd . (15)

Since the right hand side is evaluated at the Brillouin zon
boundary, it can be calculated perturbatively in the fixe
point couplinggp

2. To lowest order we obtain

Gsk', 0, K , B, g2d ø
sLyk'd31d2v

L4KsLyk'dsd212v1gp
2y32d ,

(16)

;
1

Ksk'dk4
'

, (17)

where we integrated Eq. (11) to obtainKs,pd, and defined
the anomalous tilt modulus which diverges at long leng
scales

Ksk'd ­ Ksk'yLd2hK , (18)

with an anomalous exponent

hK ­
1
32 gp

2 ­
1
5 e , (19)

hK ­
2
5 , for d ­ 3 . (20)

Similar calculations for the other coupling constant
and other directions ofk show that, in general,

Kskd ­ Ksk'j'
NLd2hK fK ssskzjz

NLysk'j'
NLdz ddd , (21)

Bskd ­ Bsk'j'
NLdhB fBssskzjz

NLysk'j'
NLdz ddd , (22)

Dskd ­ Dsk'j'
NLd2hD fDssskzjz

NLysk'j'
NLdz ddd , (23)

with the anisotropy exponentz ; 2 2 shB 1 hK dy2,
which would be 2 in the absence of anharmonic e
fects, hB ­ 3gp

2y16 ­ 6ey5 ­ 12y5 in d ­ 3, and
hD ­ gp

2y64 ­ ey10 ­ 1y5 in d ­ 3.
Of course, we do not completely trust the extrapolatio

of these smalle results down toe ­ 2 (d ­ 3). How-
ever, since by definitiondg2yd, ­ 0 at the nontrivial
fixed point, this condition implies anexact relation be-
tween the anomalous exponents

5 2 d 1 hD ­
hB

2
1

5
2

hK , (24)
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which is obviously satisfied by the anomalous exponen
computed here to first order ine. This Ward identity
between the anomalous exponents can be equally ea
obtained from a self-consistent integral equation for th
u 2 u correlations functions, using renormalized wav
vector dependent elastic moduli and disorder variance [

At length scales beyondj'
NL and j

z
NL, the elasticity

and fluctuations of the disordered smectic are controll
by our new glassy fixed point. One of the importan
consequences can be seen in the layer fluctuations that
be observed in x-ray scattering experiments. For instan
layer displacement fluctuations alongz are described by

Cszd ; kfus0', zd 2 us0', 0dg2l,

­
Z ddk

s2pdd

2f1 2 cosskzzdgDskdk2
'

fKskdk4
' 1 Bskdk2

z g2
. (25)

One can then naturally define the x-ray translation
correlation lengthjX

z as the length alongz at which
Csz ­ jX

z d ; a2, wherea is the smectic layer spacing
A simple calculation, using Eqs. (21)–(23) leads in 3D

jX
z ­ sayld2ygK2yD ­ sayld2ygjz

NL , (26)

whereg ; shB 1 hKdyz . Note that this x-ray correla-
tion length is finite even asT ! 0. This result is consis-
tent with the experimental observation [5] that the x-ra
correlation length for smectics in aerogel saturates at so
finite value at low temperatures. Note also that this leng
should be different for different smectics in the same aer
gel, sinceB, K, andD will change from smectic to smec-
tic. Since we expectD ~ rA, the aerogel density [6], the
aerogel density dependence ofjX

z could test the predic-
tion of Eq. (26). Likewise, thetemperaturedependence
of jX

z could be used to determineg, since thebulk KsT d
andBsT d that implicitly appear in Eq. (26) have tempera
ture dependence that can be extracted from measurem
on bulk materials.

Note also that this correlation length is longer than th
nonlinear crossover length forl , a (i.e., for largeB).
For l ¿ a (small B), Cszd reachesa2 beforez reaches
j

z
NL, and hence anharmonic effects are unimportant.

this case, the correlation lengthjX
z can be determined in a

harmonic theory [which amounts to evaluating the integr
in Eq. (25) withKskd, Bskd, andDskd replaced by their
constant (bare) valuesK , B, and D]. This givesjX

z ­
a2BKyD ­ sayld2j

z
NL, which is, reassuringly, much less

thanj
z
NL in the limit a ø l in which we have asserted it

applies.
Although our entire discussion so far has focused on

on the effects oforientational disorder, we have shown
[6] that translational disorder (i.e., random pinning of
the positions of the layers), isless important, at long
wavelengths (ind , 5) than the orientational disorder.
Thus, the results described herein are directly applica
to real smectics, where both kinds of disorder are prese
ts,
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We have also ignored dislocations so far. Further d
tailed analysis [6] shows that in a harmonic theory dis
locations unbind for arbitrarily weak disorder. However
their effects are felt only on length scales greater tha
jdisl ­ sa2yldet0lyD, wheret0 is a parameter of orderBK,
which is much longer, in the weak disorder (D ! 0) limit,
than the translational correlation lengthjX

z found here. In-
cluding anomalous elasticity, we find [6] a shorterjdisl that
nonetheless remains much longer thanjX

z . Hence our pre-
dictions forjX

z and the anomalous elasticity studied her
remain valid.

In summary, we have found that the addition of disorde
to a smectic liquid crystal phase leads to anomalo
elasticity that is much stronger than in the pure system
This elasticity is controlled by a zero temperature glass
fixed point, perturbative ine ­ 5 2 d. We expect that in
contrast to marginally weak anomalous elasticity of pur
smectics, the strong anomaly in the elasticity of disordere
smectics, described here, should be readily observable.

Note added.—After this work was completed we
learned of earlier work [11] on the model Eq. (4) in the
context of spin glasses. However, this earlier work miss
the essential physics of the nontrivial renormalization o
disorder, and therefore makesquantitatively and quali-
tatively wrongpredictions of nearly all results; e.g., the
anomalous exponents, disorder correlations, scaling exp
nent relations, etc., correct versions of which are given
our Eqs. (12)–(24).
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