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Nonlinear m = 1 Mode and Fast Reconnection in Collisional Plasmas
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Time evolution of them = 1 resistive kink mode is shown to be comprised of two exponential
growth phases separated by a transition period during which the growth becomes temporarily algebraic.
A modified Sweet-Parker model that takes into account some of the changes in the geometry of the core
plasma and the growing island is offered to explain the departure from the algebraic growth of the early
nonlinear phase. [S0031-9007(97)03248-1]

PACS numbers: 52.30.Jb, 52.35.Py, 52.65.Kj

The m = 1 internal kink mode, modified by various the magnetic Reynolds number= 75 /7y,, although
nonideal effects that allow for changes in the magnetic fielchot unequivocal, certainly do give an impression of a
topology, not only provides a generic mechanism for fasmode that grows exponentially well into the nonlinear
reconnection in laboratory and astrophysical plasmas, bukegime [7]; the kinetic energy in the system, a global
also plays a crucial role in tokamak sawtooth oscillationameasure of the mode’s time evolution that will be
and highg disruptions. The goal of this work is to care- used throughout this paper, grows exponentially before
fully reexamine the nonlinear phase of the resistive= 1  gradually slowing down and saturating. A typical cal-
mode and challenge and extend some of the previous woitulation exhibiting this general behavior is shown in
on the subject. Our main conclusion will be that the= 1 Fig. 1(a), where we usedy = 1/S = 107>. The low-
mode, when the associated ideal internal kink is at or abovg equilibrium used throughout this paper is parametrized
marginal stability, grows exponentially until reconnectionby the following safety-factor profileg(r) = go{l +
is complete, thus providing a fast reconnection mechanism*[(q./q0)* — 1]}'/*. For Fig. 1(a), we had, = 0.9,
even in collisional plasmas. That it can do so in the semig, = 3, and A = 2. Here a single exponential growth
collisional and collisionless regimes was shown in earlieperiod in the linear phase of the mode gradually blends
works [1-4]. An extensive discussion of the linear theoryinto the nonlinear regime where the mode slows down for
of the m = 1 mode in various collisionality regimes can r = 250, with the growth terminating after complete re-
be found in the review article by Migliuolo [5]. connection around = 400.

Interest in the resistiver = 1 in the fusion community The numerical model used here is based on the fow-
started with Kadomtsev’s proposal [6] that its nonlinearreduced MHD equations, given in terms of the vortidity
evolution may proceed fast enough to completely recon-
nect the helical flux within thg = 1 rational surface in a
characteristic time of . = (74,78)"/> ~ 7~ /2, where
THp = a/upp, TR = poa>/mo, andug, = By, /.\/Pofko-
Herery, and 7y are the poloidal Alfvén time and the re-
sistive diffusion time, respectively, defined in terms of the
minor radiusa, a characteristic poloidal field strengsl,,
and resistivityny. Subsequent numerical calculations con-
firmed the basic features of Kadomtsev's conjecture [7,8], .
and, in fact, suggested that the resistive kink may continue ! 0 200 400
to grow nearly exponentially well into the nonlinear phase.

An analytic theory of the nonlinean = 1 island seemed 16°
to confirm these expectations of exponential growth [9].
More recently, however, a careful nonlinear analysis [10]
and a subsequent numerical calculation [11] seemed to find
a transition to an algebraic growth early in the nonlinear
development of the mode. Our calculations show that this
algebraic growth is only a temporary phase that separates 16"
two distinct periods of exponential growth, and that the re- , ,
sistivem = 1, although it lacks the explosive nature [1] 0 500 1000 1500 2000

of the semicollisional and collisionless = 1, does grow Time

exponentially urltll full recon_nectlon. o FIG. 1. Results from the nonlinear resistive MHD calcula-

Early numerical calculations of the resistive = 1 tions: (a) The kinetic energy in the mode for= 10°. (b) The
with modest resolution and at relatively small values ofenergy and the growth rate for= 107.
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and the flux function) as plete reconnection occurred) to discern a second exponen-
oU ) tial phase, Fig. 1(b) clearly shows, fo200 < ¢ < 2000,
T + [, Ul + VJ = uV1iU, (1) anonlinearly exponentiating mode before the growth ter-
minates with complete reconnection. The growth rate of
(44 + Vi = nJ ) the mode shown as a function of time in Fig. 1(b) dis-
at I e plays this transition from linear to the nonlinear phase,

where J = V24, and U = V2 6. The variables have with the nonlinear growth rate being approximately half

= 1y, = . . h . . .

been normalized as follows:t — ¢/74,.r — r/a of the linear oney,on = y;/2. Oscillations iny(¢) in

n = 7u,/7r. The brackets aré definedp’t{y/) Ul _ the nonlinear phase of Fig. 1(b) represent the ringing that
;. Vidf XV, U, wherel is a unit vector in the’toroidal is commonly observed during “phase transitions” in non-

L . o linear calculations; they become less pronounced with in-
direction, andV , is the 2D gradient in the plane perpen- : A . o

. o . creased viscous dissipation, which was kept to a minimum
dicular to the magnetic field. The parallel gradient operay . o
tor i d_efmed a¥)J = aJ/of + [J, ‘”1 for any scalaw. It is difficult to offer a rigorous theory of reconnection

At higher values ofS, the calculations become more

. . that would be valid in the deeply nonlinear regime of
challenging because of the well-known nearly singular be; o . ; e %
the m = 1 mode; however, a simple modification of

havior of the current density in the resistive layer (Fig. 2). .
; the Sweet-Parker argument that takes into account some
Formation of a current sheet here presents a number 9 .
e . . of the changes in the geometry at late stages of the
difficulties. Computationally, adequate resolution of the. ? -
X island evolution seems to capture the essential features
current sheet as it deepens and moves outward becomg . ; ) )
of the fully nonlinear calculation presented earlier. This

difficult and requires a mesh that dynamically evolvesmoolified Sweet-Parker argument is presented below.

with it. It is also susceptible to secondary instabilities . . : -
which tend to break it up, affecting the nonlinear behav- Assuming a rigid shift of the core plasma and helicity

. . . . .~ _conservation during reconnection [6,10], the island evolu-
ior of the_orlglngl mod_g in a rather complicated fashlontion can be presented as in Fig. 3(a). Figure 3(b) shows
[12]. While the instability of the current sheet cannot aI—hOW the helical fluxy™ = ¢ + r2./2 ch'anges during this
ways be av0|.ded, it is possible to dea}l successfully with rocess [see also Fig. 3 of Ref. [11]]. Here, the helical
the computational challt_engg of resol\{lng 'the layer at alﬁux is related to the auxiliary field; and thé equilib-
times. Such a calcula_tlon is s_hown in Fig. 1(b), Whererium safety factor profile/(r) throughBj) = —ay*/or —
we repeat the calculation of Fig. 1(a) &t= 10’. The 0

most significant feature of this figure is the appearancé[l/q(r) — 1]. The pointo denotes the location of the

) . griginal magnetic axis; the poir®@’, radially displaced
of two distinct exponential growth phases, separated by ﬁo?n 0 by agn amount (1), is ift)s location at gomeptime
relatively short transition period. The first ofre< 800), '

of course, represents the linear phase of the mode, whefa/ nd an island width of () ~ 2¢. The radius of the

X ) i L ... core plasma at this time is given by(r), as measured
the island width is less than the resistive layer width, p . . .
T (n/kﬂ)l/3- As the island becomes nonlinear from O’. The radius of the outer separatrix of the island,

as measured from the poidk, is given byr,(r). The ini-
(W = 68;), the mode slows down, as was also seen for. ] o -
S = 10°. However, whereas in Fig. 1(a) the time scalet"'le values for these quantities ag¢0) = 0, andr.(0) =

, . _rS(O) = ry0, Wherery is the radius of they = 1 surface
for the nonlinear period was not long enough (before com: e equilibrium state. The outer separatrix radiys)

is implicitly determined byy*(r,(r) — £(¢)) = ¢ (r (1)),

10 T T T which follows from the rigid shift and helicity conserva-
i : tion assumptions [see Fig. 3(b)].
0__/(*’—*’—7\ Mass conservation in the reconnection layer with
g i ] an incompressible flow leads to the usual relation
= u, ~ (8/L)ug, where u, is the inflow velocity at the
3> -0 1w .
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FIG. 3. (a) Them = 1 island geometry used in the modified
FIG. 2. The toroidal current and a magnified view of the Sweet-Parker model. (b) Evolution of the helical flux during
current sheet. reconnection.
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midplane, and, is the outflow velocity. The length8  where y, = k|’|2/3n1/3 is the linear growth rate. This
and L measure the layer's radial width and its poloidalexponential phase is valid fof < 8, whereas Eq. (3)
extent, respectively. Recognizing the lack of rigor in thishecomes applicable fo£ > §,. However, there is a
Sweet-Parker argument, we simply identify the inflowshort period corresponding t = 8, not described by
velocity with the rate of displacement of the core plasmathe linear physics giving rise to Eq. (4), or the nonlinear
and the outflow velocity with the upstream Alfvén speedphysics leading to Eq. (3). Ignoring this late linear (or very
and useu, = d&/dt, ug = By(r(t) — &(1)). early nonlinear) phase of the mode here, the exponentially
The layer lengthL is obviously proportional to the core growing linear phase [Eq. (4)] will be directly connected to
plasmaradius. Analyses of the early nonlinear phase hawfie nonlinear phase described by Eq. (3) using continuity
typically assumed. = ry [11,13]. However, inthe deep of d¢/ds, and d2&/di* at some pointt = o, &(1g) =
nonlinear phase, shrinking core plasma radius leads to & = ¢§, <« ry, wherec ~ @ (1) is some constant to be
corresponding decrease in the length This effect com-  chosen later. Thus, using Eq. (4) for= 7, and Eq. (3)
petes with the narrowing of the layer in determining thefor ; > ¢,, and lettingr, () = r,, + &/2for £ < ry, the
reconnection rate and will be seen below to account for theontinuity constraints can be shown to giwe= 2¢{l +
termination of the algebraic growth and reestablishment op (¢, /r,)}, andA = —¢&,/4{1 + O(&y/r)} in Eq. (3).
a new “exponential phase.” In earlier works, a decrease in |n general, Eq. (3) can be solved only numerically; but

L was shown to lead to an explosive growth in the semifor ¢ « r,, expandingB; aroundr = ry, we obtain a
collisional/collisionless regime [1—-4]; however, there thesimpler version

reconnection layer physics and the accompanying change ) ,
from a “Y point” to an “X point” geometry were the <ﬁ> _ 2emryoky < _ @) (5)
mechanisms responsible for the decrease, not the intrin- dt L(z) 2 )’
sic geometric changes in the shrinking core plasma that is
being considered here. These two separate effects are obhere we usedB} (ry ) = r‘v0k|l|(rs0)- For L(z) = ry,
viously additive in the semicollisional/collisionless case,Eq. (5) has an algebraic solution [11], valid in the
but the former does not exist in the collisional plasmasarly nonlinear phase of the mode(r) = &/2 +
considered here. [(£0/2)Y? + (cmky/2)V2(t — to)P for t =1, How-
Assuming that the flux surfaces remain circularever, as the displacement grows in time, this algebraic
in the core and ignoring multiplicative factors of behavior is modified whe#é > &g, and both Egs. (3) and
order unity, the layer length will be taken to be (5) predict a new exponential phase. General solutions of
L(t) = r.(t) = ry(t) — £(1). For small ¢ < ry, Egs. (3)and (4) are shownin Fig. 4 for various parameters
this assumption leads tb ~ ryg — £/2, indicating that and compared with results from the nonlinear resistive
L decreases at half the core displacement rate in the earHD calculations. Here the initial condition and the
nonlinear phase. The layer widéhis related to the infow growth rate for Eq. (4) are chosen to match the linear
velocity through the parallel Ohm’s law. Whereas all phase of the nonlinear MHD calculation. Thus, the only
three terms of the Ohm’s law in Eq. (2) are comparabld€ree parameter in the system is the constantwhich
within the resistive layer in the linear regime, the convec-determines the location of the beginning of the nonlinear
tive and diffusive terms become dominant in the nonlineaphase in the model equations. Figure 4(a) shows solu-
reconnection layer. Writing them in terms of the helicaltions to Egs. (3) and (4) for three different values of this
flux ¢* and usingu,By(r,(t) — &) ~ n[By]/5, we get parameter. Evidently; = 1, corresponding te, = 431,
8(t) = n{By(ry(1))/By(rs(t) — &) + 1}/(d€/dt), where &, = 8;, does not provide a very good match to the
By(ry(t) — &) and By (r,(1)) represent the auxiliary field result from the nonlinear MHD calculation shown by the
amplitudes on two sides of the neutral linerat= r;(r)  solid line. The case witle = 3 (¢ = 694, &y = 36)),
in Fig. 3(b). Substituting fod, L, andu, in the mass however, agrees quite well, not only with the position of
continuity equation finally leads to an equation governingthe knee in the kinetic energy but also with the subsequent
the nonlinear evolution of the core plasma displacement nonlinear development of the mode, as seen in Fig. 4(a).
Figure 4(b) compares the inflow velocit#¢/d: obtained

2
<ﬁ> =« L{BZ(rs(z‘) + A) + By(ry(2) from Egs. (3) and (4) for = 3 usingL = ry(¢) — £(¢)

dt L(1) (the solid line), andL = ry, (the dashed line). As ex-
— &(r) — A)}. (3)  pected, with the constant layer lendth= r,, the velocity

. grows only algebraicallyu, ~ ) in the nonlinear regime,
The extra degrees of freedom introduced by the constan{§hereas the variable length solution gradually departs
« andA are needed to satisfy the continuity constraints ofirom this algebraic behavior and becomes “exponential”

d&/dt andd? ¢ /dr? that will be discussed below. for £ > & = 36,
The displacement in the linear regime is simply deter- opyjously, the time evolution predicted by this simple
mined by model is not purely exponential in the nonlinear regime.
dé In fact, it terminates with a finite-time singularity when
PR (4)  L(t) = ry(t) — £ — 0. This singularity, however, is not

4408



VOLUME 78, NUMBER 23 PHYSICAL REVIEW LETTERS 9 UNE 1997

In summary, in the first part of the paper, careful numer-
ical calculations show that the resistive= 1 mode does
indeed grow exponentially until full reconnection. The ini-
tial linear phase, where the mode grows at the linear growth
rate, is separated from the nonlinear phase by a transition
period during which the growth becomes algebraic. Inthe
deeply nonlinear phase, the growth is again exponential;
this second period persists until all the flux within the orig-

. . ‘ - inal ¢ = 1 surface is reconnected. This continued expo-
0 500 1000 1500 2000 nential growth, albeit at a reduced rate in the nonlinear
Time . regime, implies a faster reconnection time for the resistive

i m = 1 than the simple Sweet-Parker scaling of Kadomt-
sev. Thus, even without invoking semicollisional or col-
lisionless physics [1—4] that is valid in high temperature
plasmas, the: = 1 mode may provide an adequate expla-
nation for fast magnetic reconnection and rapid sawtooth
crash times, especially in the more collisional regime. In
the second part of the paper, the conventional Sweet-Parker
argument is modified to take into account some of the geo-
metric changes in the core plasma, such as the shortening
of the reconnection layer with decreasing core radius, to
SIGh4d I(_61) Th?h50|id Zﬂf?idthg nontligeali MHD (;e|su]|ct' m‘e show that the algebraic phase is only temporary. Decreas-
e e ! Poce! o, Mefng layer lengih competes with the narrowng of th recon-
velocity predicted by the model. The dashed liner,, ~ Nection layer width and leads to a new exponential phase
(constant), the solid lineL = r,(r) — £(r). Also shown is in agreement with the nonlinear MHD calculations pre-
the time history of the displacement for this second casesented earlier. The geometric changes considered here are
(dotted line). independent of the linear layer physics and are expected to

i i i i contribute strongly to the nonlinear evolution of the semi-
physical and points to a failure of the modified Sweet-.qiisional and collisionless modes also.

Parker model towards the end of reconnection when the This work was supported by the U.S. Department of
displacement is of the order of the mixing radius. A MOr€Enargy under Grant No. DE-FG03-96ER-54346.
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