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Nonlinear m 5 1 Mode and Fast Reconnection in Collisional Plasmas
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Time evolution of them ­ 1 resistive kink mode is shown to be comprised of two exponentia
growth phases separated by a transition period during which the growth becomes temporarily algeb
A modified Sweet-Parker model that takes into account some of the changes in the geometry of the
plasma and the growing island is offered to explain the departure from the algebraic growth of the e
nonlinear phase. [S0031-9007(97)03248-1]

PACS numbers: 52.30.Jb, 52.35.Py, 52.65.Kj
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The m ­ 1 internal kink mode, modified by various
nonideal effects that allow for changes in the magnetic fie
topology, not only provides a generic mechanism for fa
reconnection in laboratory and astrophysical plasmas, b
also plays a crucial role in tokamak sawtooth oscillation
and high-b disruptions. The goal of this work is to care
fully reexamine the nonlinear phase of the resistivem ­ 1
mode and challenge and extend some of the previous w
on the subject. Our main conclusion will be that them ­ 1
mode, when the associated ideal internal kink is at or abo
marginal stability, grows exponentially until reconnectio
is complete, thus providing a fast reconnection mechanis
even in collisional plasmas. That it can do so in the sem
collisional and collisionless regimes was shown in earli
works [1–4]. An extensive discussion of the linear theor
of the m ­ 1 mode in various collisionality regimes can
be found in the review article by Migliuolo [5].

Interest in the resistivem ­ 1 in the fusion community
started with Kadomtsev’s proposal [6] that its nonlinea
evolution may proceed fast enough to completely reco
nect the helical flux within theq ­ 1 rational surface in a
characteristic time oftrec ­ stHptRd1y2 , h21y2, where
tHp ­ ayuHp , tR ­ m0a2yh0, anduHp ­ B2

poyp
r0m0.

HeretHp andtR are the poloidal Alfvén time and the re-
sistive diffusion time, respectively, defined in terms of th
minor radiusa, a characteristic poloidal field strengthBpo,
and resistivityh0. Subsequent numerical calculations con
firmed the basic features of Kadomtsev’s conjecture [7,8
and, in fact, suggested that the resistive kink may contin
to grow nearly exponentially well into the nonlinear phas
An analytic theory of the nonlinearm ­ 1 island seemed
to confirm these expectations of exponential growth [9
More recently, however, a careful nonlinear analysis [1
and a subsequent numerical calculation [11] seemed to fi
a transition to an algebraic growth early in the nonline
development of the mode. Our calculations show that th
algebraic growth is only a temporary phase that separa
two distinct periods of exponential growth, and that the r
sistive m ­ 1, although it lacks the explosive nature [1
of the semicollisional and collisionlessm ­ 1, does grow
exponentially until full reconnection.

Early numerical calculations of the resistivem ­ 1
with modest resolution and at relatively small values o
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the magnetic Reynolds numberS ­ tRytHp, although
not unequivocal, certainly do give an impression of
mode that grows exponentially well into the nonlinea
regime [7]; the kinetic energy in the system, a glob
measure of the mode’s time evolution that will b
used throughout this paper, grows exponentially befo
gradually slowing down and saturating. A typical ca
culation exhibiting this general behavior is shown i
Fig. 1(a), where we usedh ; 1yS ­ 1025. The low-
b equilibrium used throughout this paper is parametriz
by the following safety-factor profile:qsrd ­ q0h1 1

r2lfsqayq0dl 2 1gj1yl. For Fig. 1(a), we hadq0 ­ 0.9,
qa ­ 3, and l ­ 2. Here a single exponential growth
period in the linear phase of the mode gradually blen
into the nonlinear regime where the mode slows down f
t * 250, with the growth terminating after complete re
connection aroundt . 400.

The numerical model used here is based on the lowb

reduced MHD equations, given in terms of the vorticityU,

FIG. 1. Results from the nonlinear resistive MHD calcula
tions: (a) The kinetic energy in the mode forS ­ 105. (b) The
energy and the growth rate forS ­ 107.
© 1997 The American Physical Society
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and the flux functionc as

≠U
≠t

1 ff, Ug 1 =kJ ­ m=2
'U , (1)

≠c

≠t
1 =kf ­ hJ , (2)

where J ­ =
2
'c , and U ­ =

2
'f. The variables have

been normalized as follows:t ! tytHp , r ! rya,
h ­ tHpytR. The brackets are defined byff, Ug ­
ẑ ? ='f 3 ='U, whereẑ is a unit vector in the toroidal
direction, and=' is the 2D gradient in the plane perpen
dicular to the magnetic field. The parallel gradient oper
tor is defined as=kJ ­ ≠Jy≠z 1 fJ, cg for any scalarJ.

At higher values ofS, the calculations become more
challenging because of the well-known nearly singular b
havior of the current density in the resistive layer (Fig. 2
Formation of a current sheet here presents a numbe
difficulties. Computationally, adequate resolution of th
current sheet as it deepens and moves outward beco
difficult and requires a mesh that dynamically evolve
with it. It is also susceptible to secondary instabilitie
which tend to break it up, affecting the nonlinear beha
ior of the original mode in a rather complicated fashio
[12]. While the instability of the current sheet cannot a
ways be avoided, it is possible to deal successfully w
the computational challenge of resolving the layer at
times. Such a calculation is shown in Fig. 1(b), whe
we repeat the calculation of Fig. 1(a) atS ­ 107. The
most significant feature of this figure is the appearan
of two distinct exponential growth phases, separated b
relatively short transition period. The first onest & 800d,
of course, represents the linear phase of the mode, wh
the island width is less than the resistive layer widt
W & dl ­ shyk0

kd1y3. As the island becomes nonlinea
sW * dld, the mode slows down, as was also seen
S ­ 105. However, whereas in Fig. 1(a) the time sca
for the nonlinear period was not long enough (before co

FIG. 2. The toroidal current and a magnified view of th
current sheet.
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plete reconnection occurred) to discern a second expone
tial phase, Fig. 1(b) clearly shows, for1200 & t & 2000,
a nonlinearly exponentiating mode before the growth te
minates with complete reconnection. The growth rate o
the mode shown as a function of time in Fig. 1(b) dis
plays this transition from linear to the nonlinear phase
with the nonlinear growth rate being approximately hal
of the linear one,gnon . gly2. Oscillations ingstd in
the nonlinear phase of Fig. 1(b) represent the ringing th
is commonly observed during “phase transitions” in non
linear calculations; they become less pronounced with i
creased viscous dissipation, which was kept to a minimu
here.

It is difficult to offer a rigorous theory of reconnection
that would be valid in the deeply nonlinear regime o
the m ­ 1 mode; however, a simple modification of
the Sweet-Parker argument that takes into account so
of the changes in the geometry at late stages of th
island evolution seems to capture the essential featur
of the fully nonlinear calculation presented earlier. Thi
modified Sweet-Parker argument is presented below.

Assuming a rigid shift of the core plasma and helicity
conservation during reconnection [6,10], the island evolu
tion can be presented as in Fig. 3(a). Figure 3(b) show
how the helical fluxcp ­ c 1 r2y2 changes during this
process [see also Fig. 3 of Ref. [11]]. Here, the helica
flux is related to the auxiliary fieldBp

u and the equilib-
rium safety factor profileqsrd throughBp

u ­ 2≠cpy≠r ­
rf1yqsrd 2 1g. The pointO denotes the location of the
original magnetic axis; the pointO0, radially displaced
from O by an amountjstd, is its location at some timet,
giving an island width ofW std . 2j. The radius of the
core plasma at this time is given byrcstd, as measured
from O0. The radius of the outer separatrix of the island
as measured from the pointO, is given byrsstd. The ini-
tial values for these quantities arejs0d ­ 0, andrcs0d ­
rss0d ­ rs0, wherers0 is the radius of theq ­ 1 surface
in the equilibrium state. The outer separatrix radiusrsstd
is implicitly determined bycpsssrsstd 2 jstdddd ­ cpsssrsstdddd,
which follows from the rigid shift and helicity conserva-
tion assumptions [see Fig. 3(b)].

Mass conservation in the reconnection layer wit
an incompressible flow leads to the usual relatio
ur , sdyLduu, where ur is the inflow velocity at the

FIG. 3. (a) Them ­ 1 island geometry used in the modified
Sweet-Parker model. (b) Evolution of the helical flux during
reconnection.
4407
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midplane, anduu is the outflow velocity. The lengthsd
and L measure the layer’s radial width and its poloida
extent, respectively. Recognizing the lack of rigor in thi
Sweet-Parker argument, we simply identify the inflow
velocity with the rate of displacement of the core plasm
and the outflow velocity with the upstream Alfvén spee
and useur ­ djydt, uu . Bp

usssrsstd 2 jstdddd.
The layer lengthL is obviously proportional to the core

plasma radius. Analyses of the early nonlinear phase ha
typically assumedL . rs0 [11,13]. However, in the deep
nonlinear phase, shrinking core plasma radius leads to
corresponding decrease in the lengthL. This effect com-
petes with the narrowing of the layer in determining th
reconnection rate and will be seen below to account for t
termination of the algebraic growth and reestablishment
a new “exponential phase.” In earlier works, a decrease
L was shown to lead to an explosive growth in the sem
collisional /collisionless regime [1–4]; however, there th
reconnection layer physics and the accompanying chan
from a “Y point” to an “X point” geometry were the
mechanisms responsible for the decrease, not the intr
sic geometric changes in the shrinking core plasma that
being considered here. These two separate effects are
viously additive in the semicollisional/collisionless case
but the former does not exist in the collisional plasma
considered here.

Assuming that the flux surfaces remain circula
in the core and ignoring multiplicative factors of
order unity, the layer length will be taken to be
Lstd ; rcstd ­ rsstd 2 jstd. For small j ø rs0,
this assumption leads toL , rs0 2 jy2, indicating that
L decreases at half the core displacement rate in the ea
nonlinear phase. The layer widthd is related to the inflow
velocity through the parallel Ohm’s law. Whereas a
three terms of the Ohm’s law in Eq. (2) are comparab
within the resistive layer in the linear regime, the convec
tive and diffusive terms become dominant in the nonline
reconnection layer. Writing them in terms of the helica
flux cp and usingurBp

usssrsstd 2 jddd , hfBp
ugyd, we get

dstd ­ hhBp
u sssrsstddddyBp

usssrsstd 2 jddd 1 1jysdjydtd, where
Bp

usssrsstd 2 jddd and Bp
usssrsstdddd represent the auxiliary field

amplitudes on two sides of the neutral line atr ­ rsstd
in Fig. 3(b). Substituting ford, L, and uu in the mass
continuity equation finally leads to an equation governin
the nonlinear evolution of the core plasma displacemenµ

dj

dt

∂2

­ a
h

Lstd
hBp

usssrsstd 1 Dddd 1 Bp
usssrsstd

2 jstd 2 Ddddj . (3)

The extra degrees of freedom introduced by the consta
a andD are needed to satisfy the continuity constraints o
djydt andd2jydt2 that will be discussed below.

The displacement in the linear regime is simply dete
mined by

dj

dt
­ glj , (4)
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where gl ­ k
02y3
k h1y3 is the linear growth rate. This

exponential phase is valid forj , dl whereas Eq. (3)
becomes applicable forj . dl. However, there is a
short period corresponding toj . dl not described by
the linear physics giving rise to Eq. (4), or the nonlinea
physics leading to Eq. (3). Ignoring this late linear (or ver
early nonlinear) phase of the mode here, the exponentia
growing linear phase [Eq. (4)] will be directly connected to
the nonlinear phase described by Eq. (3) using continu
of djydt, and d2jydt2 at some pointt ­ t0, jst0d ­
j0 ; cdl ø rs0, wherec , O s1d is some constant to be
chosen later. Thus, using Eq. (4) fort # t0 and Eq. (3)
for t . t0, and lettingrsstd . rs0 1 jy2 for j ø rs0, the
continuity constraints can be shown to givea ­ 2ch1 1

O sj0yrs0dj, andD ­ 2j0y4h1 1 O sj0yrs0dj in Eq. (3).
In general, Eq. (3) can be solved only numerically; bu

for j ø rs0, expandingBp
u aroundr ­ rs0, we obtain a

simpler versionµ
dj

dt

∂2

­
2chrs0k0

k

Lstd

µ
j 2

j0

2

∂
, (5)

where we usedBp0
u srs0d ­ rs0k0

ksrs0d. For Lstd . rs0,
Eq. (5) has an algebraic solution [11], valid in the
early nonlinear phase of the mode:jstd ­ j0y2 1

fsj0y2d1y2 1 schk0
ky2d1y2st 2 t0dg2 for t $ t0. How-

ever, as the displacement grows in time, this algebra
behavior is modified whenj ¿ j0, and both Eqs. (3) and
(5) predict a new exponential phase. General solutions
Eqs. (3) and (4) are shown in Fig. 4 for various paramete
and compared with results from the nonlinear resistiv
MHD calculations. Here the initial condition and the
growth rate for Eq. (4) are chosen to match the linea
phase of the nonlinear MHD calculation. Thus, the onl
free parameter in the system is the constantc, which
determines the location of the beginning of the nonline
phase in the model equations. Figure 4(a) shows so
tions to Eqs. (3) and (4) for three different values of thi
parameter. Evidently,c ­ 1, corresponding tot0 ­ 431,
j0 ­ dl, does not provide a very good match to th
result from the nonlinear MHD calculation shown by the
solid line. The case withc ­ 3 st0 ­ 694, j0 ­ 3dld,
however, agrees quite well, not only with the position o
the knee in the kinetic energy but also with the subseque
nonlinear development of the mode, as seen in Fig. 4(
Figure 4(b) compares the inflow velocitydjydt obtained
from Eqs. (3) and (4) forc ­ 3 using L ­ rsstd 2 jstd
(the solid line), andL ­ rs0 (the dashed line). As ex-
pected, with the constant layer lengthL ­ rs0, the velocity
grows only algebraicallysur , td in the nonlinear regime,
whereas the variable length solution gradually depar
from this algebraic behavior and becomes “exponentia
for j ¿ j0 ­ 3dl.

Obviously, the time evolution predicted by this simple
model is not purely exponential in the nonlinear regime
In fact, it terminates with a finite-time singularity when
Lstd ­ rsstd 2 j ! 0. This singularity, however, is not
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FIG. 4. (a) The solid line: the nonlinear MHD result. The
dashed lines: the modified Sweet-Parker model for thr
different values of the parameterc ­ j0ydl. (b) The inflow
velocity predicted by the model. The dashed line:Lrs0
(constant), the solid line:L ­ rsstd 2 jstd. Also shown is
the time history of the displacement for this second ca
(dotted line).

physical and points to a failure of the modified Swee
Parker model towards the end of reconnection when t
displacement is of the order of the mixing radius. A mor
complete model would have to take into account, amo
other factors, diminishing of the instability drive as th
flux in the core is exhausted through reconnection, a
the elliptical deformation of the core flux surfaces and
more physical estimate of the reconnection layer leng
for largej. These corrections are left for future work
With these shortcomings in mind, one can neverthele
obtain a quantitative estimate for the nonlinear growth ra
predicted by this modified Sweet-Parker model, startin
with Eq. (5). Defining a nonlinear growth rate bygnon ;
Minhsd2jydt2d ysdjydtdj leads to

gnon

gl
­

8
p

c

3
p

3

Ω
dl

rs0

æ1y2

. (6)

The minimum occurs atj ­ rs0y2. Using the parameters
of the nonlinear MHD calculation shown in Fig. 1(b)
gives gnonygl . 0.31 for c ­ 3, which is somewhat
lower than the average growth rate obtained from th
MHD calculation,gnonygl . 0.5. However, the average
nonlinear growth rate of the model is closer to tha
of the nonlinear MHD calculation, as seen in Fig. 4(a
Note that sgnonygld , h1y6, indicating a very weak
dependence on resistivity.
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In summary, in the first part of the paper, careful numer
ical calculations show that the resistivem ­ 1 mode does
indeed grow exponentially until full reconnection. The ini-
tial linear phase, where the mode grows at the linear grow
rate, is separated from the nonlinear phase by a transiti
period during which the growth becomes algebraic. In th
deeply nonlinear phase, the growth is again exponentia
this second period persists until all the flux within the orig
inal q ­ 1 surface is reconnected. This continued expo
nential growth, albeit at a reduced rate in the nonlinea
regime, implies a faster reconnection time for the resistiv
m ­ 1 than the simple Sweet-Parker scaling of Kadomt
sev. Thus, even without invoking semicollisional or col-
lisionless physics [1–4] that is valid in high temperature
plasmas, them ­ 1 mode may provide an adequate expla
nation for fast magnetic reconnection and rapid sawtoo
crash times, especially in the more collisional regime. I
the second part of the paper, the conventional Sweet-Park
argument is modified to take into account some of the ge
metric changes in the core plasma, such as the shorten
of the reconnection layer with decreasing core radius,
show that the algebraic phase is only temporary. Decrea
ing layer length competes with the narrowing of the recon
nection layer width and leads to a new exponential phas
in agreement with the nonlinear MHD calculations pre
sented earlier. The geometric changes considered here
independent of the linear layer physics and are expected
contribute strongly to the nonlinear evolution of the semi
collisional and collisionless modes also.
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