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Eckhaus-Benjamin-Feir Instability in Rotating Convection
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We report experimental measurements of a traveling-wave state in rotating Rayleigh-Bénard
convection. The fluid was water with a Prandtl number of 6.3 and a dimensionless rotation rate
of 274. The marginal and Eckhaus-Benjamin-Feir stability boundaries were determined and the
local amplitude and wave number were obtained from demodulation of shadowgraph images. The
phase-diffusion coefficient and group velocity were measured in the stable wave number band. This
system was found to be well described by the one-dimensional complex Ginzburg-Landau equation.
[S0031-9007(97)03394-2]

PACS numbers: 47.20.Bp, 47.32.—y, 47.54.+r

The Ginzburg-Landau (GL) equation and its complexdiscrete azimuthal wave number can be prepared, and de-
generalization, the complex GL (CGL) equation, are theailed measurements using local probes and global optical
generic model amplitude equations for pattern-formingshadowgraph are possible. Previously, the CGL coeffi-
systems, and a great deal of attention has been devotetnts for this system were determined using a cylindri-
to understanding their properties [1]. In effectively cal convection cell with a radius-to-height rafibo= 2.5
one-dimensional systems for steady patterns, detailedhere R is the cell radius andd is the cell height.
guantitative comparisons of experimental results andHere, we use a cell witH” = 5 and are able to make
predictions of the GL equation have been made [2]much more extensive use of optical shadowgraph visual-
On the other hand, quantitative comparisons betweerization because of the smaller cell depth. We have made
traveling-wavesystems and the CGL equation are muchquantitative measurements of the Eckhaus-Benjamin-Feir
rarer. The only system for which there is both a mappingd EBF) instability in this system which compare very well
of experimental results onto the CGL equation, i.e.with the theoretical predictions. We have also measured
a determination of the CGL coefficients, and a studythe phase-diffusion coefficient and nonlinear group veloc-
of the stability of traveling waves to long-wavelength ity in the stable region. Excellent agreement is found
perturbations is oscillatory convection in an annulus [3,4]between the behavior of this system and phenomena
This work did not determine the stability boundary in anypredicted from the CGL amplitude equation formalism.
detail nor did it treat the phase dynamics in the stablédiscrepancies can be understood by considering higher-
region. The stability of traveling waves was investigatedorder terms in the amplitude equation.
theoretically by Benjamin and Feir [5,6] and has many The experimental apparatus is similar to the one used
features of the Eckhaus instability in stationary patterngreviously for studies of rotating convection [11,12].
[7]. Other experimental systems that have exhibitedn the new version, the whole apparatus including the
features of the Eckhaus-Benjamin-Feir instability areshadowgraph optics was in the rotating frame. The
binary-mixture convection [8,9] and traveling finger convection cell consisted of an optically polished silicon
patterns [10] although neither could be fit quantitativelybottom plate, a sapphire top plate, and a cylindrical
into the CGL framework. Because the CGL equationPlexiglas sidewall. The cell height was = 1.000 =
plays such a central role as a model for pattern-forming.005 cm with a corresponding vertical thermal diffusion
traveling-wave systems, it is important to establish itstime 7, = d?/«x = 680 sec ( is the thermal diffusivity
power toquantitativelypredict properties for a real, physi- of the fluid). Each plate’'s average temperature was
cal experiment including the stability of traveling waves measured with a set of three thermistors equally spaced
to the Eckhaus-Benjamin-Feir instability and extensionsaround the azimuth of the Plexiglas sidewall and in
to a phase-equation description. contact with the respective plate. Heat was supplied to

The traveling-wave sidewall mode [11-15] in rotating the cell using a film heater on the bottom plate and
Rayleigh-Bénard convection provides an excellent experithe top-plate temperature was regulated at 2@.1with
mental system for a detailed comparison with theoreticatms fluctuations of 0.000%C. The Prandtl numbe;/«
predictions derived from the one-dimensional CGL equawherev is the kinematic viscosity of the fluid, for water
tion [12]. The sidewall mode travels in one direction be-at the cell mean temperature was 6.3. More details of the
cause of the symmetry-breaking influence of rotation [16]apparatus will be presented elsewhere.

The bifurcation is forward and the wall mode is effec- The sidewall traveling wave is the first state that ap-
tively one-dimensional in the azimuthal direction with pe- pears in rotating Rayleigh-Bénard convection as the tem-
riodic boundary conditions. A wide range of states withperature differenc&T across the fluid layer is increased
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provided the dimensionless rotation ra&te fd>/v (f is

the rotation frequency) is greater than about 70. Above
the critical temperature differencer’., there is an interval

in AT in which the sidewall mode is the only convection
state and above which the bulk state grows in the interior.
The width of this interval increases with dimensionless ro-
tation rate and for the value of 274 reported here the range
of reduced bifurcation parameter= AT/AT, — 1 is
about 0.4. The transition to the traveling-wave convecting
state is a supercritical Hopf bifurcation as determined by
heat transport and local-temperature measurements, and
different branches exist which correspond to states with
different azimuthal mode number [11,12]. The Nusselt
number, the ratio of total heat transport to thermally dif-
fusive heat transport, for the different branches is linear
in € with a common slope¥£7%) and withe? corrections

of at most 3% ate = 0.25. The determination of the
mode number was accomplished using optical shadow-
graph imaging: an example image with= 23 is shown

in Fig. 1(a). The traveling-wave nature of the mode is
seen in Fig. 1(b) which is an angle-time plot of a series
of azimuthal signals constructed by averaging over a ra-
dial width of 3—4 pixels near the outer boundary. An
additional probe of the wave dynamics is a thermistor
embedded into the lateral wall which measures the local
temperature of the thermal wave. This probe provides a
highly accurate measurement of wave frequeficwhich
varies linearly withe with a finite value at onset. As op-
posed to the amplitude, the quadratic correction for the
frequency is substantial, about 25%eat= 0.25.

To put these and further measurements into perspective,
we now consider the theoretical framework for understand-
ing nonlinear traveling waves of this type. To that end,
we convert experimental quantities to dimensionless oneBIG. 1. Shadowgraph image of (a) traveling-wave wall state
by normalizing space by the cell heigltand time by the Wwith m =23 at e = 0.19 and (b) angle-time plot showing
thermal diffusion timer,.. In particular, the dimensionless i'Z’F_'"Stab'gt%’H In t(b)lth‘? hotr.'zont‘f"' axis 1s angle'd Wlt'tt]h
azimuthal wave number is definedias= 27d/A = m/T’ At =—5770,Tan € vertical axis is time (increasing upward) wi
where is the azimuthal wave lengwR /m. o

The generic envelope equation for pattern-forming non-

linear traveling waves is the CGL equation, |Aol ~ (¢ — ey)'/?. The frequency has a linear group
T0(A; + sAy) = e(1 + ico)A + £2(1 + ic))Ay velocity s, a term proportional ta, a linear dispersive

. 5 part proportional tog?, and the nonlinear dispersion

— gl + ic3) |AIA, (1) proportional to|A|>. We have determined by the methods

where A is a complex amplitude which is assumed todescribed in [12] the following experimental values for
be slowly varying in space and time relative to a fastthe coefficients in Eq. (1):Q. = 21.95 = 0.05, k. =
carrier wave characterized by a frequerfeéyand a wave 4.65 = 0.01, 7, = 0.018 = 0.005, s = 2.65 = 0.05,
numberk. The fastest growing mode h&k. andk. and &, = 0.179 + 0.004, g = 0.84 = 0.01,¢co — ¢; = (5 =

one then defines small modulations about these critical)7y = 0.08 = 0.03, and ¢y — ¢z = (20.4 * 0.4)1y =
values, w = Q — Q. and ¢ = k — k.. Substituting 0.37 = 0.07. The differences between these coefficients
a spatially uniform traveling-wave solution of the form and the ones determined previously [12] are attributable
A(x, 1) = |Aolexdi(gx + wt)] into Eq. (1) yields equa- to their different dimensionless rotation rates [14]. It
tions for the magnitude (real part) and the frequencyis necessary to use transient or modulation techniques
(imaginary part)e — &3¢ = glAol> andro(w + sq) =  to determinec; independently, and although our present
€cy — §§c1q2 — gc3lAgl?. The equation for the measurements suggest< co we do not have a precise
magnitude gives the parabolic marginal stability boundvalue for ¢3. For evaluation purposes, we will use
ary, ey = fng, and the square-root dependence ofcy = 0.42,c; = 0.34, andcs = 0.05.
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mined experimentally by preparing ammode state and ot Ve oy ax2’ )

quenchingAT into the unstable region. A series of such _ (2 P 2 )
quenches provided a time between the start of the jumw:re]ri:]?_ g;;;z) Eiln;rvcw_s ) ‘f%(‘fc 3(1_+Clc)3q)//7(_(1) Dq E
— S0 g = 0 .

and the appearance of a dislocation which signaled theositive in the EBE stable reaion and goes to zero at
creation or destruction of a roll pair. An example of this P 9 9

. . . . S .—the EBF boundary. This equation is also subject to
dislocation signature of the EBF instability is shown in_"". dic bound diti d th h |
the angle-time plot in Fig. 1(b). The time before appear-'o.erlo Ic_boundary conditions and thus there are only

. . 2 ) .discrete values ofp corresponding to mode numbers
ance of a dislocation diverges as the EBF boundary is ™" 12 where p = n/T. A solution of the form
approached from below and linear extrapolation of sev’ I p="n/t- ;

f ~ expli(px — rt) + ot} yields expressions for the

The EBF boundary in the space efand ¢ was deter- b n id ¢

eral runs is adequate to determine the boundary quit tequencyr = pv, and the growth rater = —p2D of

accurgtely. The marglnal Sta?'“ty boundar'y, determine he phase modulation. Because of fivedependence of
from linear extrapolation ofAy|* to zero for fixedg, and X o
the decay and the discrete naturepothe only remaining

the EBF boundary are shown in Fig. 2. For comparison b ; hort ti d
the theoretical prediction for the EBF boundaes = Wa_ve number Cﬁmlpon?nt ageras hort time corresdp;og sto
{201+ )+ 1+ i/ + crcsey, evaluated using ) "o ST WU R L ISR TEERIRT G
the experimental coefficients with no free fitting parame-_¢ a

ters, is shown as a dashed line. The solid line is a fit tdc,everal different values of. In Fig. 4, a representative

the marginal stability boundary,, which determines the plot shows the frequency and magnitude of the signal at

coefficient&y. The agreement between experiment an he probe fore = 0.26 after demodulation by the fast
0- =
theory is excellent. Note that the ratig: /€y is 2.97, requency aig = 0.74. The decay rate of the envelopes

. yields D and the oscillation frequency is proportional
quite close to the pure Eckhaus value of 3. . )
; ; A to v,. The magnitude typically lags the frequency by
The image of the traveling wave in Fig. 1 can be . . 4 S
. about 0.5 radians, consistent with the approximation that
represented by the local amplitude and wave nuniber

Lo i ..~ the magnitude which relaxes on a time scalg'e =
Wh'(?h IS ml.JCh closer to the theoretlcal CGL. de'scrlpnon.o.l is slaved to the phase which has a much longer
An interesting example of t.h'S representation Is S.hO\.Nndecay rate of order 20. Figure 5 shows the value® of
in the angle-time plot of Fig. 3. There is a periodic '

. . . . and v, determined by assuming = 1/I" = 0.2. The
modulation of both fields with a spatial mode number Ofsolid and dashed curves in Fig. 5(a) show predictions of

three leading up to the nucleation of two dislocations Whicl']Eq (2) for € = 0.06 and 0.12, respectively, using the

takes the state fromm = 17 to m = 19. The number of listed i it dified val ;
dislocations and the mode number of the prenucleatior?arameters Isted earlier except with a moditied value o
70 = 0.02 which is within its specified error bars. The

distortion varies between 1 and 6 and is most likely & : . :
measure of the most unstable phase distortion. After thggreement Is quite reasonable. For higaer 0.26, the
dislocation nucleations there is another periodic distortion
which slowly dies away. The presence of these periodic
distortions leads us to consider the phase equation for the
CGL equation. Long-wavelength phase modulations with
wave numbep are governed by a phase-diffusion equation
of the form [4]

0.20

0.10

0.00 t ) . ]
2.0 -1.0 0.0 1.0 2.0 2x 0 2n

q 0

FIG. 2. Stability diagram for traveling waves & = 274 FIG. 3. Angle-time plots of (a) magnitude and (b) wave
showing data for marginal stabilitycY and EBF @) bound- number showing two dislocation events which indicate an
aries. Solid line is a parabolic fit to marginal stability data. EBF transition fromm = 17 to m = 19. Time increases
Dashed line is prediction based on the CGL equation with exupward. The gray-scale coding is dark for low magnitude
perimentally determined coefficients. (wave number) and white for high magnitude (wave number).
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e = 0.26. These deviations suggest that higher-order
corrections to the CGL amplitude equation are needed to
describe the data more quantitatively.

The CGL equation is a perturbation expansion in pow-
ers of small quantitieg ande. Higher-order terms will
be important at some level, depending on the nonuni-
versal values of the parameters multiplying those terms.
In order to account for the behavior af,, we need
to include third-order terms proportional t4,,. and
A.|A|? and the fifth-order nonlinearityA|*A. The im-
portance of the third-order derivative terms is not sur-
prising since rotation breaks the — —x symmetry
FIG. 4. Demodulated (a) frequency and (b) magnitude of theyhich typically forbids them. The additional higher-order
spatial modulation for: = 27 and e = 0.26. Solid (dashed) o guggested here imply a form for the group veloc-
curves show fits to a decaying periodic function (envelope). ..~ o 2

ity: v =15 + aje + ax(1 — aze)q + asq”. The val-

) ) ) ues s =265, a; = =5 a, =1, a3 = 2.5, and a4 =
curve deviates substantially from an inverted parabolg s yield the solid curves in Fig. 5. Although these cor-
similar to the case for the pure Eckhaus instability forections are important, the excellent agreement between
steady patterns [2]. It is actually remarkable that thehe simple theory and the data indicates that the CGL
simple phase equation works so well given the restrictive,gyation yields a firm theoretical foundation for this sys-

[arb. units]

50

limits under which it is derived [4]. The behavior of,

tem and sets the stage for a variety of further experiments

illustrated in Fig. 5 shows rather large discrepancies withyq theoretical investigations.

the simple theory which predicte independent values
of vely=0 = s and of dv,/dgl,=0 = 2(c3 — c1)&3/7o.

We acknowledge useful discussions with G. Ahlers,
R. Camassa, E. Knobloch, D. Prasad, and H. Riecke. This

Although the finitee values of these quantities appear to\ork was funded by the U.S. Department of Energy.

converge to thee = 0 values shown in Fig. 5(b), the
dependence af,|,— is large and there is a big quadratic
g dependence ob, which is particularly noticeable for

2.0

00

30}

2.0 p

0.0 1.0

q
(@)D vs g for € =0.26 (A), € = 0.12 (O), and

-1.0

FIG. 5.

€ = 0.06 (o). Solid and long-dashed curves are fits consisten
Shori

with CGL predictions and experimental parameters.
dashed line is guide to eye for data with= 0.26. Points with

D = 0 are obtained from the EBF boundary shown in Fig. 2.

(b) v, vs q for same data as (a) with addition ef= 0.0 (e).
Solid lines are fits to data discussed in the text.
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