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We report experimental measurements of a traveling-wave state in rotating Rayleigh-Bénard
convection. The fluid was water with a Prandtl number of 6.3 and a dimensionless rotation rate
of 274. The marginal and Eckhaus-Benjamin-Feir stability boundaries were determined and the
local amplitude and wave number were obtained from demodulation of shadowgraph images. The
phase-diffusion coefficient and group velocity were measured in the stable wave number band. This
system was found to be well described by the one-dimensional complex Ginzburg-Landau equation.
[S0031-9007(97)03394-2]

PACS numbers: 47.20.Bp, 47.32.–y, 47.54.+r
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The Ginzburg-Landau (GL) equation and its comple
generalization, the complex GL (CGL) equation, are th
generic model amplitude equations for pattern-formin
systems, and a great deal of attention has been devo
to understanding their properties [1]. In effectivel
one-dimensional systems for steady patterns, detai
quantitative comparisons of experimental results a
predictions of the GL equation have been made [2
On the other hand, quantitative comparisons betwe
traveling-wavesystems and the CGL equation are muc
rarer. The only system for which there is both a mappin
of experimental results onto the CGL equation, i.e
a determination of the CGL coefficients, and a stud
of the stability of traveling waves to long-wavelengt
perturbations is oscillatory convection in an annulus [3,4
This work did not determine the stability boundary in an
detail nor did it treat the phase dynamics in the stab
region. The stability of traveling waves was investigate
theoretically by Benjamin and Feir [5,6] and has man
features of the Eckhaus instability in stationary patter
[7]. Other experimental systems that have exhibite
features of the Eckhaus-Benjamin-Feir instability a
binary-mixture convection [8,9] and traveling finge
patterns [10] although neither could be fit quantitative
into the CGL framework. Because the CGL equatio
plays such a central role as a model for pattern-formi
traveling-wave systems, it is important to establish i
power toquantitativelypredict properties for a real, physi-
cal experiment including the stability of traveling wave
to the Eckhaus-Benjamin-Feir instability and extensio
to a phase-equation description.

The traveling-wave sidewall mode [11–15] in rotatin
Rayleigh-Bénard convection provides an excellent expe
mental system for a detailed comparison with theoretic
predictions derived from the one-dimensional CGL equ
tion [12]. The sidewall mode travels in one direction be
cause of the symmetry-breaking influence of rotation [16
The bifurcation is forward and the wall mode is effec
tively one-dimensional in the azimuthal direction with pe
riodic boundary conditions. A wide range of states wit
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discrete azimuthal wave number can be prepared, and
tailed measurements using local probes and global opt
shadowgraph are possible. Previously, the CGL coe
cients for this system were determined using a cylind
cal convection cell with a radius-to-height ratioG ­ 2.5
where R is the cell radius andd is the cell height.
Here, we use a cell withG ­ 5 and are able to make
much more extensive use of optical shadowgraph visu
ization because of the smaller cell depth. We have ma
quantitative measurements of the Eckhaus-Benjamin-F
(EBF) instability in this system which compare very we
with the theoretical predictions. We have also measu
the phase-diffusion coefficient and nonlinear group velo
ity in the stable region. Excellent agreement is fou
between the behavior of this system and phenom
predicted from the CGL amplitude equation formalism
Discrepancies can be understood by considering high
order terms in the amplitude equation.

The experimental apparatus is similar to the one us
previously for studies of rotating convection [11,12
In the new version, the whole apparatus including t
shadowgraph optics was in the rotating frame. T
convection cell consisted of an optically polished silico
bottom plate, a sapphire top plate, and a cylindric
Plexiglas sidewall. The cell height wasd ­ 1.000 6

0.005 cm with a corresponding vertical thermal diffusio
time ty ­ d2yk ­ 680 sec (k is the thermal diffusivity
of the fluid). Each plate’s average temperature w
measured with a set of three thermistors equally spa
around the azimuth of the Plexiglas sidewall and
contact with the respective plate. Heat was supplied
the cell using a film heater on the bottom plate a
the top-plate temperature was regulated at 24.1±C with
rms fluctuations of 0.0005±C. The Prandtl number,nyk

wheren is the kinematic viscosity of the fluid, for wate
at the cell mean temperature was 6.3. More details of
apparatus will be presented elsewhere.

The sidewall traveling wave is the first state that a
pears in rotating Rayleigh-Bénard convection as the te
perature differenceDT across the fluid layer is increase
© 1997 The American Physical Society 4391
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provided the dimensionless rotation rate2pfd2yn ( f is
the rotation frequency) is greater than about 70. Abo
the critical temperature differenceDTc, there is an interval
in DT in which the sidewall mode is the only convection
state and above which the bulk state grows in the interio
The width of this interval increases with dimensionless ro
tation rate and for the value of 274 reported here the ran
of reduced bifurcation parametere ; DTyDTc 2 1 is
about 0.4. The transition to the traveling-wave convectin
state is a supercritical Hopf bifurcation as determined b
heat transport and local-temperature measurements,
different branches exist which correspond to states w
different azimuthal mode numberm [11,12]. The Nusselt
number, the ratio of total heat transport to thermally di
fusive heat transport, for the different branches is line
in e with a common slope (67%) and withe2 corrections
of at most 3% ate ­ 0.25. The determination of the
mode number was accomplished using optical shado
graph imaging: an example image withm ­ 23 is shown
in Fig. 1(a). The traveling-wave nature of the mode
seen in Fig. 1(b) which is an angle-time plot of a serie
of azimuthal signals constructed by averaging over a r
dial width of 3–4 pixels near the outer boundary. A
additional probe of the wave dynamics is a thermisto
embedded into the lateral wall which measures the loc
temperature of the thermal wave. This probe provides
highly accurate measurement of wave frequencyV which
varies linearly withe with a finite value at onset. As op-
posed to the amplitude, the quadratic correction for th
frequency is substantial, about 25% ate ­ 0.25.

To put these and further measurements into perspecti
we now consider the theoretical framework for understan
ing nonlinear traveling waves of this type. To that end
we convert experimental quantities to dimensionless on
by normalizing space by the cell heightd and time by the
thermal diffusion timety. In particular, the dimensionless
azimuthal wave number is defined ask ­ 2pdyl ­ myG

wherel is the azimuthal wave length2pRym.
The generic envelope equation for pattern-forming no

linear traveling waves is the CGL equation,

t0sAt 1 sAxd ­ es1 1 ic0dA 1 j2
0s1 1 ic1dAxx

2 gs1 1 ic3d jAj2A , (1)
where A is a complex amplitude which is assumed t
be slowly varying in space and time relative to a fas
carrier wave characterized by a frequencyV and a wave
numberk. The fastest growing mode hasVc andkc and
one then defines small modulations about these critic
values, v ­ V 2 Vc and q ­ k 2 kc. Substituting
a spatially uniform traveling-wave solution of the form
Asx, td ­ jA0j expfisqx 1 vtdg into Eq. (1) yields equa-
tions for the magnitude (real part) and the frequenc
(imaginary part):e 2 j

2
0q2 ­ gjA0j

2 andt0sv 1 sqd ­
ec0 2 j

2
0c1q2 2 gc3jA0j

2. The equation for the
magnitude gives the parabolic marginal stability bound
ary, eM ­ j

2
0q2, and the square-root dependence o
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FIG. 1. Shadowgraph image of (a) traveling-wave wall sta
with m ­ 23 at e ­ 0.19 and (b) angle-time plot showing
EBF instability. In (b) the horizontal axis is angle, with
Du ­ p, and the vertical axis is time (increasing upward) wit
Dt ­ 5.0ty .

jA0j , se 2 eM d1y2. The frequency has a linear grou
velocity s, a term proportional toe, a linear dispersive
part proportional toq2, and the nonlinear dispersion
proportional tojAj2. We have determined by the method
described in [12] the following experimental values fo
the coefficients in Eq. (1):Vc ­ 21.95 6 0.05, kc ­
4.65 6 0.01, t0 ­ 0.018 6 0.005, s ­ 2.65 6 0.05,
j0 ­ 0.179 6 0.004, g ­ 0.84 6 0.01, c0 2 c1 ­ s5 6

1dt0 ­ 0.08 6 0.03, and c0 2 c3 ­ s20.4 6 0.4dt0 ­
0.37 6 0.07. The differences between these coefficien
and the ones determined previously [12] are attributa
to their different dimensionless rotation rates [14].
is necessary to use transient or modulation techniq
to determinec3 independently, and although our prese
measurements suggestc3 ø c0 we do not have a precise
value for c3. For evaluation purposes, we will us
c0 ­ 0.42, c1 ­ 0.34, andc3 ­ 0.05.
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The EBF boundary in the space ofe andq was deter-
mined experimentally by preparing anm-mode state and
quenchingDT into the unstable region. A series of suc
quenches provided a time between the start of the ju
and the appearance of a dislocation which signaled
creation or destruction of a roll pair. An example of th
dislocation signature of the EBF instability is shown i
the angle-time plot in Fig. 1(b). The time before appea
ance of a dislocation diverges as the EBF boundary
approached from below and linear extrapolation of se
eral runs is adequate to determine the boundary qu
accurately. The marginal stability boundary, determin
from linear extrapolation ofjA0j

2 to zero for fixedq, and
the EBF boundary are shown in Fig. 2. For compariso
the theoretical prediction for the EBF boundary,eE ­
hf2s1 1 c2

3d 1 1 1 c1c3gys1 1 c1c3djeM , evaluated using
the experimental coefficients with no free fitting param
ters, is shown as a dashed line. The solid line is a fit
the marginal stability boundaryeM which determines the
coefficient j0. The agreement between experiment a
theory is excellent. Note that the ratioeEyeM is 2.97,
quite close to the pure Eckhaus value of 3.

The image of the traveling wave in Fig. 1 can b
represented by the local amplitude and wave numbek
which is much closer to the theoretical CGL descriptio
An interesting example of this representation is show
in the angle-time plot of Fig. 3. There is a periodi
modulation of both fields with a spatial mode number
three leading up to the nucleation of two dislocations whi
takes the state fromm ­ 17 to m ­ 19. The number of
dislocations and the mode number of the prenucleat
distortion varies between 1 and 6 and is most likely
measure of the most unstable phase distortion. After
dislocation nucleations there is another periodic distorti
which slowly dies away. The presence of these period
distortions leads us to consider the phase equation for
CGL equation. Long-wavelength phase modulations w
wave numberp are governed by a phase-diffusion equatio
of the form [4]

FIG. 2. Stability diagram for traveling waves atV ­ 274
showing data for marginal stability (±) and EBF (≤) bound-
aries. Solid line is a parabolic fit to marginal stability data
Dashed line is prediction based on the CGL equation with e
perimentally determined coefficients.
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≠f

≠t
1 yg

≠f

≠x
­ D

≠2f

≠x2 , (2)

whereD ­ sj2
0yt0d f1 1 c1c3 2 2q̃2s1 1 c2

3dys1 2 q̃2dg
with q̃2 ­ j

2
0q2ye and yg ­ 2j

2
0sc3 2 c1dqyt0. D is

positive in the EBF stable region and goes to zero a
the EBF boundary. This equation is also subject to
periodic boundary conditions and thus there are onl
discrete values ofp corresponding to mode numbers
n ­ 1, 2, . . . , wherep ­ nyG. A solution of the form
f , exphispx 2 rtd 1 stj yields expressions for the
frequencyr ­ pyg and the growth rates ­ 2p2D of
the phase modulation. Because of thep2 dependence of
the decay and the discrete nature ofp, the only remaining
wave number component after a short time corresponds
n ­ 1. Using the local probe, we have measuredD and
yg for a range ofq within the EBF stable band and for
several different values ofe. In Fig. 4, a representative
plot shows the frequency and magnitude of the signal a
the probe fore ­ 0.26 after demodulation by the fast
frequency atq ­ 0.74. The decay rate of the envelopes
yields D and the oscillation frequency is proportional
to yg. The magnitude typically lags the frequency by
about 0.5 radians, consistent with the approximation tha
the magnitude which relaxes on a time scalet0ye ø
0.1 is slaved to the phase which has a much longe
decay rate of order 20. Figure 5 shows the values ofD
and yg determined by assumingp ­ 1yG ­ 0.2. The
solid and dashed curves in Fig. 5(a) show predictions o
Eq. (2) for e ­ 0.06 and 0.12, respectively, using the
parameters listed earlier except with a modified value o
t0 ­ 0.02 which is within its specified error bars. The
agreement is quite reasonable. For highere ­ 0.26, the

FIG. 3. Angle-time plots of (a) magnitude and (b) wave
number showing two dislocation events which indicate an
EBF transition from m ­ 17 to m ­ 19. Time increases
upward. The gray-scale coding is dark for low magnitude
(wave number) and white for high magnitude (wave number).
4393
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FIG. 4. Demodulated (a) frequency and (b) magnitude of t
spatial modulation form ­ 27 and e ­ 0.26. Solid (dashed)
curves show fits to a decaying periodic function (envelope).

curve deviates substantially from an inverted parabo
similar to the case for the pure Eckhaus instability fo
steady patterns [2]. It is actually remarkable that th
simple phase equation works so well given the restricti
limits under which it is derived [4]. The behavior ofyg

illustrated in Fig. 5 shows rather large discrepancies w
the simple theory which predictse independent values
of ygjq­0 ­ s and of dygydqjq­0 ­ 2sc3 2 c1dj2

0yt0.
Although the finitee values of these quantities appear t
converge to thee ­ 0 values shown in Fig. 5(b), thee
dependence ofygjq­0 is large and there is a big quadrati
q dependence ofyg which is particularly noticeable for

FIG. 5. (a)D vs q for e ­ 0.26 (n), e ­ 0.12 (h), and
e ­ 0.06 (±). Solid and long-dashed curves are fits consiste
with CGL predictions and experimental parameters. Sho
dashed line is guide to eye for data withe ­ 0.26. Points with
D ­ 0 are obtained from the EBF boundary shown in Fig. 2
(b) yg vs q for same data as (a) with addition ofe ­ 0.0 (≤).
Solid lines are fits to data discussed in the text.
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e ­ 0.26. These deviations suggest that higher-orde
corrections to the CGL amplitude equation are needed
describe the data more quantitatively.

The CGL equation is a perturbation expansion in pow
ers of small quantitiesq and e. Higher-order terms will
be important at some level, depending on the nonun
versal values of the parameters multiplying those term
In order to account for the behavior ofyg, we need
to include third-order terms proportional toAxxx and
Ax jAj2 and the fifth-order nonlinearityjAj4A. The im-
portance of the third-order derivative terms is not su
prising since rotation breaks thex ! 2x symmetry
which typically forbids them. The additional higher-orde
terms suggested here imply a form for the group velo
ity: yg ­ s 1 a1e 1 a2s1 2 a3edq 1 a4q2. The val-
ues s ­ 2.65, a1 ­ 25, a2 ­ 1, a3 ­ 2.5, and a4 ­
0.5 yield the solid curves in Fig. 5. Although these cor
rections are important, the excellent agreement betwe
the simple theory and the data indicates that the CG
equation yields a firm theoretical foundation for this sys
tem and sets the stage for a variety of further experimen
and theoretical investigations.
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