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Pseudospin as a Relativistic Symmetry
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We show that pseudospin symmetry in nuclei could arise from nucleons moving in a relati
mean field which has an attractive scalar and repulsive vector potential nearly equal in magn
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Almost 30 years ago a quasidegeneracy was obser
in heavy nuclei between single-nucleon doublets w
quantum numberssnr , ,, j ­ , 1

1
2 d and snr 2 1, , 1

2, j ­ , 1
3
2 d wherenr , ,, andj are the single nucleon

radial, orbital, and total angular momentum quantu
numbers, respectively [1,2]. These authors defin
a “pseudo” orbital angular momentum̃, ­ , 1 1; for
example, sssnrs1y2snr 2 1dd3y2ddd will have ,̃ ­ 1,
sssnrp3y2, snr 2 1df5y2ddd will have ,̃ ­ 2, etc. Then
these doublets are almost degenerate with respec
“pseudo” spin,̃s ­

1
2 , sincej ­ ,̃ 6 s̃ for the two states

in the doublet. This symmetry has been used to expl
a number of phenomena in nuclear structure [3] includi
most recently the identical rotational bands observ
in nuclei [4]. Despite this long history of pseudospi
symmetry [5,6], the origin of this symmetry has elude
explanation. Recently it was shown [7] that relativist
mean field theories predict the correct spin-orbit splittin
[8]. In this paper we identify a possible reason for thi
namely that the symmetry arises from the near equa
in magnitude of an attractive scalar,2Vs, and repulsive
vector, Vy, relativistic mean fields,Vs , Vy , in which
the nucleons move. Such a near equality of mean fie
follows from relativistic field theories with interacting
nucleons and mesons [8], with nucleons interacti
via Skyrme-type interactions [9], and from QCD sum
rules [10].

A nucleon moving in a spherical field has the tot
angular momentumj, its projection on thez axis, m, and
k̂ ­ 2b̂sŝ ? L̂ 1 1d conserved, wherêb is the Dirac
matrix [11]. The eigenvalues of̂k arek ­ 6sj 1

1
2 d; 2

for aligned spinss1y2, p3y2, etc.d and1 for unaligned spin
sp1y2, d3y2, etc.d. Hence we use the quantum numberk

since it is sufficient to label the orbitals. The Dira
equation for the single-nucleon radial wave functio
sgk , fkd in dimensionless units is given by [11]∑

d
dr

1
1 1 k

r

∏
gk ­ f2 2 E 2 V srdgfk , (1)∑

d
dr

1
1 2 k

r

∏
fk ­ fE 2 Dsrdggk , (2)

where r is the radial coordinate in units of length
h̄cymc2, V srd ­ fVysrd 1 Vssrdgymc2, Dsrd ­ fVssrd 2

Vysrdgymc2, and E is the binding energysE . 0d of
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the nucleon in units of the nucleon massmc2. First we
show that, in the limit of equality of the magnitude of
the vector and scalar potentialDsrd ­ 0, pseudospin is
exactly conserved. To do this we solve forgk in (2) and
substitute into (1), obtaining the second order differenti
equation forfk,∑

d2

dx2
1

2
x

d
dx

2
,̃s,̃ 1 1d

x2
1 fV srd 2 2 1 Eg

∏
3

fk ­ 0 , (3)

wherex ­
p

E r and

,̃ ­ k 2 1, k . 0; ,̃ ­ 2k, k , 0 , (4)

which agrees with the original definition of the pseudo
orbital angular momentum [1,2]. For example, fo
fnrs1y2, snr 2 1dd3y2g, k ­ 21 and 2, respectively,
giving ,̃ ­ 1 in both cases. Futhermore, the physica
significance of,̃ is revealed; it is the “orbital angular
momentum” of the lower component of the Dirac wav
function.

Eq. (3) is a Schrödinger equation with an attractiv
potential V and binding energy2 2 E which depends
only on the pseudo-orbital angular momentum,̃ through
the pseudo rotational kinetic energỹ,s,̃ 1 1dyx2, and
not on k. Hence the eigenenergies and eigenfunctio
componentfk do not depend onk but only on,̃. Thus
the doublets with the samẽ, but differentk sk ­ ,̃ 1 1
and k ­ 2,̃d will be degenerate, producing pseudospi
symmetry.

However, in this limit there will not be any bound Dirac
valence states, only Dirac sea states, which contradicts
ality. Is it possible that we can have bound valence stat
and quasidegeneracy for a smallDsrd? To answer that
question we look at two examples. First is the spheric
Coulomb potential and the second is the spherical pote
tial well.

The spherical Coulomb potential for arbitrary scala
and vector fields,Vs,ysrd ­ as,yyr , can be solved ana-
lytically [11]. The valence eigenenergies are given by

En,k ­

4sn 1 ld2 f1 2
p

s1 2 saddysn 1 ld2g 2 2dsa 2 dd
sa 2 dd2 1 4sn 1 ld2

,

(5)
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where n is the principal quantum number,n ­
1, 2, . . . , a ­ as 1 ay , d ­ as 2 ay, and l ­ jkj 3

s
p

1 1 adyk2 2 1d. The allowed values ofk are k ­
61, 62, . . . , 6sn 2 1d, 2n. The dependence onk is in
l. If the scalar and vector potential are equal,d ­ 0,
then the binding energy vanishes,En,k ­ 0, and hence no
bound valence states as stated earlier. Ford small,

En,k ø
d2

2n2

√
1 1

ads2n2sjkj 2 2d 2 a2d
jkjn2s4n2 1 a2d

1 . . .

!
.

(6)

Thus the pseudospin symmetry is broken in third orde
d. We notice that the breaking decreases asn increases
and, for a givenn, the state with the largestjkj (which
means the pseudospin partner withk . 0) will have
the largest binding energy. Thus pseudospin quaside
eracy coexists with an infinite number of bound valen
Dirac states.

However, the Coulomb potential is not realistic f
nuclei and, furthermore, the Coulomb potential has hig
degeneracies than pseudospin since the energies de
only onn, and notk in the lowest order. For these reaso
we turn now to the spherical potential well:

Vs,ysrd ­ Vs,y . 0, r , R; Vs,ysrd ­ 0, r . R . (7)

The solution of the Dirac equation (1), (2) is given
terms of spherical Bessel functions forr , R,

gk ­ Aj,̃1ẽszd, fk ­
ẽAk

2 2 E 2 V
j,̃szd, r , R (8)

and modified spherical Bessel functions forr . R [11],

gk ­ A k,̃1ẽsyd, fk ­ 2
AK

2 2 E
k,̃syd, r . R , (9)

wherez ­ kr , y ­ Kr, and the wave numbers are give
by

k2 ­ sD 2 Ed s2 2 E 2 V d . 0, K2 ­ Es2 2 Ed . 0 ,

(10)

where ẽ ­ kyjkj is the pseudohelicity, sincej ­ ,̃ 1

ẽ
1
2 , and the eigenvalues ofẽ are61.
The two solutions must match at the boundaryr ­

R, leading to the two conditions which determine t
eigenvalues for the same,̃, but differentk:

Zkj,̃11sZkd
j,̃sZkd

­ 2
YksD 2 Ekdk,̃11sYkd

Ekk,̃sYkd
, k . 0 , (11)

Zkj,̃21sZkd
j,̃sZkd

­
YksD 2 Ekdk,̃21sYkd

Ekk,̃sYkd
, k , 0 , (12)

whereZ ­ kR andY ­ KR. Since there are two differ
ent equations for the states with the same,̃ but different
k̃, the eigenenergies of these two different states will
different in general.

Using the recurrence relations between Bessel funct
in

n-
e

er
end
s

e

ns

Zj,̃11sZd ­ s2,̃ 1 1dj,̃sZd 2 Zj,̃21sZd;

Yk,̃11sY d ­ s2,̃ 1 1dk,̃sY d 1 Yk,̃21sY d , (13)

we can eliminatej,̃21, k,̃21 and rewrite these equations
as

2
Zkj,̃11sZkd

j,̃sZkd
­

YksD 2 Ekdk,̃11sYkd
Ekk,̃sYkd

, k . 0 ,

(14)

2
Zkj,̃11sZkd

j,̃sZkd
­

YksD 2 Ekdk,̃11sYkd
Ekk,̃sYkd

2 s2,̃ 1 1d
D

Ek

, k , 0 , (15)

thereby displaying the fact that the equations becom
identical forD ­ 0 producing the pseudospin degenerac
but, as we shall see, no Dirac valence bound states.

In Fig. 1 we plot the left-hand side (LHS) of (14), (15)
as a function ofZ. The LHS decreases from a value of
zero atZ ­ 0 to negative infinity atZ

s0d
1,,̃, whereZ

s0d
n,,̃ is

thenth zero of the spherical Bessel functionj,̃sZs0d
n,,̃d ­ 0,

with Z ­ 0 corresponding ton ­ 0. The LHS then
becomes discontinuous at this point, and forZ . Z

s0d
1,,̃ it

decreases from positive infinity to zero atZ
s0d
1,,̃11, and then

negative infinity atZ
s0d
2,,̃ and so on. We call the region

with Z
s0d
n,,̃ # Z , Z

s0d
n11,,̃ thenth branch.

On the other hand, the right-hand side (RHS) of bot
(14) and (15) increases monotonically, as illustrated i
Fig. 2. The eigenvalues are determined by the points
intersections in thenth branchZn,k̃, giving the valence
eigenenergies

Enr ,k ­
2 2 V 1 D

2
2

sµ
2 2 V 2 D

2

∂2

1

µ
Zn,k

R

∂2

,

nr ­ n 2 1, k . 0, nr ­ n, k , 0 , (16)

FIG. 1. The LHS of (14), (15) plotted versusZ; Z
s0d
n,,̃ is the

nth zero ofj,̃sZs0d
n,,̃d ­ 0.
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where the radial quantum number will become clear s
sequently. The RHS of (14) increases from zero atZ ­
0 sE ­ Dd to infinity at Z ­ Zmax ­

p
Ds2 2 V dRsE ­

0d [see (16)]. However, the RHS of (15) is smaller by a
amounts2,̃ 1 1dDyE, and increases from2s2, 1 1d at
Z ­ 0 sE ­ Dd to a constant atZ ­ Zmax sE ­ 0d. This
means that fork , 0, there will be a bound state for eac
branch in Fig. 2 as long asZn,k , Zmax. Furthermore,
the upper component fork , 0, j,̃21, has a zero in each
of these branches and thus the radial quantum numbe
thennr ­ n ­ 0, 1, . . . . However, fork . 0 there will
not be a bound state forn ­ 0 sinceDyE ­ 1 at Z ­ 0,
and thus the two curves intersect only atZ ­ 0, which
meansk ­ 0, and hence there is no bound state forn ­ 0
[see (8)]. However, there will be a bound state for all t
other branches in Fig. 2 as long asZn,k , Zmax. Fur-
thermore, the upper component fork . 0, j,̃11 does not
have a zero in then ­ 0 branch but does have a zero
the other branches so the radial quantum number is t
nr ­ n 2 1 ­ 0, 1, . . . . This means that the orbit with
nr ­ 0, k , 0 does not have pseudospin partner (in fa
this orbital is the “intruder” orbital observed in heavy nu
clei), but the orbits withnr , k , 0, nr 2 1, k . 0 are in
the same branch and are thus pseudospin partners, w
agrees with experiment. Also we see from Fig. 2 Th
the RHS fork . 0 intersects the LHS at a smallerZ than
k , 0, and thusEnr 21,k.0 . Enr ,k,0 for the same,̃ in
agreement with experiment. Furthermore, as the RHS
bothk increases, they intersect the LHS at points in wh
the LHS has a larger slope, and therefore the points of
tersectionZn,k are closer. Thus these pseudospin partn
become closer in energy as the radial quantum num
increases.

These features can be seen in the limit of a large sc
potentialVs & 1. In this limit the RHS of (14), (15) is

FIG. 2. The LHS of (14), (15) (solid line), the RHS of (14
(dashed line), and the RHS of (15) (short dashed line) plot
versusZ for ,̃ ­ 1, V ­ 1.7, D ­ 0.3, R ­ 33.5, the radius of
208Pb in dimensionless units.
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large. We use the Bessel function identity [12]

2
j,̃11sZd
j,̃sZd

­
X̀
p­1

"
1

Z 2 Z
s0d
p,,̃

1
1

Z 1 Z
s0d
p,,̃

#
, (17)

which, in the nth branch and for the LHS large and
positive, can be approximated as2j,̃11sZdyj,̃sZd ø
1ysZ 2 Z

s0d
n,,̃d. If, in addition,Y

s0d
n,,̃ is large,

Enr 21,k.0 ø E
s0d
n,,̃ , (18)

where we have denotedE
s0d
n,,̃, Y

s0d
n,,̃ as the values ofE, Y for

Z ­ Z
s0d
n,,̃, and

Enr 21,k.0 2 Enr ,k,0 ø
s2,̃ 1 1dDE

s0d
n,,̃

sY s0d
n,,̃d2sD 2 E

s0d
n,,̃d

. (19)

Thus we see that the energy splitting decreases as
binding energy decreases, which is consistent with the fa
that pure pseudospin symmetry occurs when there are
bound Dirac valence states, and that the splitting decrea
as the radial quantum number increases. Furthermore,
states within the same major shell, the splitting decreas
as the pseudo-orbital angular momentum decreases.

Hence we have shown that pseudospin quasidegener
in heavy nuclei can be explained by the fact that nucleo
in a nucleus move in an attractive scalar,2Vs, and
repulsive vector,Vy , relativistic mean fields, which are
nearly equal in magnitude,Vs , Vy . The energy splitting
between states with the same pseudo-orbital angu
momentum,̃ decreases as the binding energy decreas
and as,̃ decreases. Although such a near equality o
mean fields has been derived in specific relativistic fie
theories [8,9], this result probably is a general feature
any relativistic model which fits nuclear binding energies
and hence very likely a general feature independent of a
one model [10]. In [9] it was shown thatVs , Vy for the
isoscalar part of the nuclear mean field (the largest pa
but not for the isovector part, and the isovector potenti
has a different shape than the isoscalar potential. Th
implies that pseudospin symmetry may be enhanced
heavy proton-rich nuclei, withN , Z; these nuclei shall
be measured in new radioactive beam facilities.

Pseudospin symmetry has been observed also in
formed nuclei [4]; we are investigating the deforme
Dirac equation as well. Also the explanation espouse
in this paper implies a connection between the wave fun
tions of the pseudospin doublets. This relationship is b
ing worked out.

The author thanks B. Serot for discussions and N. Wa
for making the author aware of Ref. [10].

[1] K. T. Hecht and A. Adler, Nucl. Phys.A137, 129 (1969).
[2] A. Arima, M. Harvey, and K. Shimizu, Phys. Lett.30B,

517 (1969).



VOLUME 78, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 20 JANUARY 1997

cr

t.

e

s

,

C

ev.
[3] A. Bohr, I. Hamamoto, and B. R. Mottelson, Phys. S
26, 267 (1982).

[4] B. Mottelson, Nucl. Phys.A522, 1 (1991).
[5] O. Castanos, M. Moshinsky, and C. Quesne, Phys. Let

277, 238 (1992).
[6] A. L. Blokhin, C. Bahri, and J. P. Draayer, J. Phys. A29,

2039 (1996).
[7] C. Bahri, J. P. Draayer, and S. A. Moszkowski, Phys. R

Lett. 68, 2133 (1992).
[8] B. D. Serot and J. D. Walecka,The Relativistic Nuclear

Many-Body Problem,in Advances in Nuclear Physic
.

B

v.

Vol. 16, edited by J. W. Negele and E. Vogt (Plenum
New York, 1986).

[9] B. A. Nikolaus, T. Hoch, and D. Madland, Phys. Rev.
46, 1757 (1992).

[10] T. D. Cohen, R. J. Furnstahl, and D. K. Griegel, Phys. R
Lett. 67, 961 (1991).

[11] W. Greiner, B. Müller, and J. Rafelski,Quantum Electro-
dynamics of Strong Fields(Springer-Verlag, New York,
1985).

[12] G. N. Watson,Theory of Bessel Functions(Cambridge
University Press, Cambridge, England, 1952).
439


