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Pseudospin as a Relativistic Symmetry
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We show that pseudospin symmetry in nuclei could arise from nucleons moving in a relativistic
mean field which has an attractive scalar and repulsive vector potential nearly equal in magnitude.
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Almost 30 years ago a quasidegeneracy was observetle nucleon in units of the nucleon mass?. First we
in heavy nuclei between single-nucleon doublets withshow that, in the limit of equality of the magnitude of
quantum numberdn,,f,j = € + %) and (n, — 1,£ + the vector and scalar potentidl(r) = 0, pseudospin is
2,j =4+ %) wheren,, €, and; are the single nucleon exact!y corjserved. To .dp this we solve fgr in (2') and '
radial, orbital, and total angular momentum quantumsubstl.tute into (1), obtaining the second order differential
numbers, respectively [1,2]. These authors define@duation forf,
a “pseudo” orbital angular momentuti= ¢ + 1; for d? 2 d i+ 1)
example, (n.s12(n, — dsp) will have € =1, [ﬁ e T T 2 [V(r) — 2+ E]} X
(nyp3j2, (n, — 1)fspp) will have € =2, etc. Then fe=0, (3
these doublets are almost degenerate with respect to
“pseudo” sping = 5, sincej = ¢ = 5 for the two states Wherex = VE r and
in the doublet. This symmetry has been used to explain {=xk—1, k>0 ¢=—-x k<0, 4)
a number of phenomena in nuclear structure [3] including ) o o
most recently the identical rotational bands observedvhich agrees with the original definition of the pseudo-
in nuclei [4]. Despite this long history of pseudospin Obital angular momentum [1,2]. For example, for
symmetry [5,6], the origin of this symmetry has eludedl”rs1/2, (7, — Dd3pa], k = =1 "and 2, respectively,
explanation. Recently it was shown [7] that relativistic9iving ¢ = 1 in both cases. Futhermore, the physical
mean field theories predict the correct spin-orbit splittingsignificance of¢ is revealed; it is the “orbital angular
[8]. In this paper we identify a possible reason for this;momentum” of the lower component of the Dirac wave
namely that the symmetry arises from the near equalitfunction. . . _ '
in magnitude of an attractive scalat,V,, and repulsive Eqg. (3) is a Schrodinger equation with an attractive
vector, V,,, relativistic mean fieldsy, ~ V,, in which ~ Potential vV and binding energy2 — E which depends
the nucleons move. Such a near equality of mean fieldgnly on the pseudo-orbital angular momentérthrough
follows from relativistic field theories with interacting the pseudo rotational kinetic energy(¢ + 1)/x*, and
nucleons and mesons [8], with nucleons interactindot on «. Hence the eigenenergies and eigenfunction
via Skyrme-type interactions [9], and from QCD sum componentf, do not depend o but only on¢. Thus

rules [10]. the doublets with the samiebut differentx (x = ¢ + 1

A nucleon moving in a spherical field has the totaland x = —{) will be degenerate, producing pseudospin
angular momentur, its projection on the axis,m, and ~Symmetry. _ _
k = —fB(6 - L + 1) conserved, where3 is the Dirac However, in this limit there will not be any bound Dirac
matrix [11]. The eigenvalues df arex = +(j + %). _ valence states, only Dirac sea states, which contradicts re-

for aligned spin(si 2, p3/2, etc) and + for unaligned spin ality. Is it_ possible that we can have bound valence states
(p1/2.d3/2.€tc). Hence we use the quantum number and qya&degeneracy for a small(r)? _To_answer tha’F

since it is sufficient to label the orbitals. The Dirac duestion we look at two examples. First is the spherical
equation for the single-nucleon radial wave functionCoulomb potential and the second is the spherical poten-

(g, f) in dimensionless units is given by [11] tial well. _ _ _
The spherical Coulomb potential for arbitrary scalar

[i + 1+ K}gk =[R2 —-E—-V(WMlfc, (@) and vector fieldsV,,(r) = ay,/r, can be solved ana-
dr Iytically [11]. The valence eigenenergies are given by
d 1 — « =
ol [P NS P C R

where r is the radial coordinate in units of length An + AP _\/(1__ (36)/(’1 ki /\)22] —25(a - 6),
he/me, V() = [Vo(r) + Vo(n)]/me, AG)=[Vi(r) - (e oy rant
V,(r)]/mc?, and E is the binding energyE > 0) of (5)
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where n is the principal quantum numberp
,2,...,a =a; + a,, § = a; — a,, and A = |«]|
(/1 + a8/«k% — 1). The allowed values ok are
+1,*2,...,x=(m — 1),—n. The dependence o is in
A. If the scalar and vector potential are equél= 0,
then the binding energy vanishes, ., = 0, and hence no
bound valence states as stated earlier. Femall,

. 5_2 ad2n?(lk] — 2) — a?)
- 2nz<1 * |k|n2(4n? + a?) )
(6)

X

En,K

Thus the pseudospin symmetry is broken in third order in

8. We notice that the breaking decreases:aacreases
and, for a giverm, the state with the largesk| (which
means the pseudospin partner with> 0) will have

Zj:1(Z) = 2€ + Dje(2) = Zji1(2);

Yk (Y) = (20 + Dkg(Y) + Ykz1(Y), (13)
we can eliminatej;_;,k;_; and rewrite these equations
as

_ZKjZH—l(ZK) _ YK(A B EK)kZ+1(YK)

J1(Zi) Eky(Y,)

k>0,

b}

(14)

_ZKjZH—l(ZK) _ YK(A — EK)kZ+1(YK)
it(Zy) Eckp(Y,)

- (2t + 1)EA,K<0, (15)

thereby displaying the fact that the equations become

the largest binding energy. Thus pseudospin quasidegefyentical forA = 0 producing the pseudospin degeneracy
eracy coexists with an infinite number of bound valenceout’ as we shall see, no Dirac valence bound states.

Dirac states.
However, the Coulomb potential is not realistic for

In Fig. 1 we plot the left-hand side (LHS) of (14), (15)
as a function ofZ. The LHS decreases from a value of

nuclei and, furthermore, the Coulomb potential has higheterg atz = 0 to negative infinity 3125022 where Z 0@ is
’ n

degeneracies than pseudospin since the energies dep
only onn, and notx in the lowest order. For these reason
we turn now to the spherical potential well:

Vs,v(r) = Vs,v >0,r < R;Vs,v(r) =0,r>R. (7)

The solution of the Dirac equation (1), (2) is given in
terms of spherical Bessel functions fo< R,

€Ak
= 13 - —_ - 3~ <
gx = Aji+e(2), f S g o ng(z), r<R (8)
and modified spherical Bessel functions for R [11],
- AK
gk = AKpye(y), fro = 5 Ekz(y), r>R, (9

wherez = kr, y = Kr, and the wave numbers are given
by
=(A-E)2Q-E-V)>0,K*=EQ—-E)>0,
(10)

where &€ = «/|«| is the pseudohelicity, sincg = ¢ +
é%, and the eigenvalues @fare *1.

The two solutions must match at the boundary=
R, leading to the two conditions which determine the
eigenvalues for the sante but differentx:

ZJju+1(Zi) _ _YK(A — E)kp1(Ye) K

wzg T By 70 0
ZKjZf—l(ZK) _ YK(A B EK)kZ—l(YK) K

iz By <=0 12

whereZ = kR andY = KR. Since there are two differ-
ent equations for the states with the safnleut different

k, the eigenenergies of these two different states will be

different in general.

ﬁﬂg nth zero of the spherical Bessel fuhctig')ﬂZ

(N
nt’ 0’

with Z = 0 corresponding ton = 0. The LHS then
becomes discontinuous at this point, and Zor> Ziozz it
decreases from positive infinity to zerozﬁgﬂ, and then

. . e 0 ’ .
negative infinity atZ,; and so on. We call the region
with Znoz; =Z< Z,(10+)1Z) the nth branch.

On the other hand, the right-hand side (RHS) of both
(14) and (15) increases monotonically, as illustrated in
Fig. 2. The eigenvalues are determined by the points of
intersections in thenth branchZ, z, giving the valence

2-V -

eigenenergies
\/ AN2 2
=)+ %)
2

2-V+HA
n=n—-—1«k>0 n,=n, kK <0, (16)
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FIG. 1. The LHS of (14), (15) plotted versu& Z.; is the
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Using the recurrence relations between Bessel functiongh zero of j@(fo%) =0.
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where the radial quantum number will become clear sublarge. We use the Bessel function identity [12]

sequently. The RHS of (14) increases from zer& at 21 (2) o | 1
0 (E = A) toinfinity at Z = Zmax = JAQ2 — V)R(E = J%L—=Z[ o+ (m} (17)
0) [see (16)]. However, the RHS of (15) is smaller by an W2 E=lz-z0 z+z)

amount(2¢ + 1)A/E, and increases from(2¢ + 1) at
Z=0(E = A)toaconstantaf = Zya (E = 0). This " . . . ©
means that fok < 0, there will be a bound state for each POS'IVe: (‘gf‘” bg appr-quated. asji+12)/ji(2) =
branch in Fig. 2 as long a8, , < Zma. Furthermore, 1/(Z = Z,7). I, in addition,Y, 7 is large,
the upper component fae < 0, j;—;, has a zero in each E, 1.0~ E", (18)
of these branches and thus the radial quantum number is t nié
thenn, = n = 0,1,.... However, fork > 0 there will  \yhere we have denotad®.. ¥') as the values of. Y for
not be a bound state far = 0 sinceA/E = 1 atZ = 0, © ot ’
and thus the two curves intersect only zat= 0, which Z = Zn,Zf’ ~ ©
meansk = 0, and hence there is no bound statefor 0 (2¢ + DAE
[see (8)]. However, there will be a bound state for all the En 160 = En k<0 = g ) o, -
other branches in Fig. 2 as long &5, < Zmax. FuUr- (Yn,f?) (A - E.
thermore, the upper component for> 0, j;.; does not Thus we see that the energy splitting decreases as the
have a zero in the = 0 branch but does have a zero in pinding energy decreases, which is consistent with the fact
the other branches so the radial quantum number is thefat pure pseudospin symmetry occurs when there are no
n, =n—1=0,1,.... This means that the orbit with bound Dirac valence states, and that the splitting decreases
n, = 0,k < 0 does not have pseudospin partner (in factas the radial quantum number increases. Furthermore, for
this orbital is the “intruder” orbital observed in heavy nu- states within the same major shell, the splitting decreases
clei), but the orbits withe,, x < 0,n, — 1,k > 0 are in  as the pseudo-orbital angular momentum decreases.
the same branch and are thus pseudospin partners, whichHence we have shown that pseudospin quasidegeneracy
agrees with experiment. Also we see from Fig. 2 Thatin heavy nuclei can be explained by the fact that nucleons
the RHS fork > 0 intersects the LHS at a smallér’ghan in a nucleus move in an attractive scalar)V,, and
k <0, and thusk,, -1 x>0 > En, «<o for the samef in  repulsive vectorV,, relativistic mean fields, which are
agreement with experiment. Furthermore, as the RHS fofiearly equal in magnitudd,, ~ V,.. The energy splitting
both k increases, they intersect the LHS at points in whichhetween states with the same pseudo-orbital angular
the LHS has a larger slope, and therefore the points of inmomentum? decreases as the binding energy decreases
tersectionZ, . are closer. Thus these pseudospin partnerand as¢ decreases. Although such a near equality of
become closer in energy as the radial quantum numbefiean fields has been derived in specific relativistic field
increases. theories [8,9], this result probably is a general feature of
These features can be seen in the limit of a large scalainy relativistic model which fits nuclear binding energies,
potential V; < 1. In this limit the RHS of (14), (15) is and hence very likely a general feature independent of any
one model [10]. In [9] it was shown th&t, ~ V, for the
isoscalar part of the nuclear mean field (the largest part)
but not for the isovector part, and the isovector potential

which, in the nth branch and for the LHS large and

and

(19)

M_(22+1)é . . . .
60 — B KY) B has a different shape than the isoscalar potential. This
: implies that pseudospin symmetry may be enhanced in
50 + , heavy proton-rich nuclei, witiv ~ Z; these nuclei shall
40+ S/ be measured in new radioactive beam facilities. .
Y (A E ) kpulY) g Pseudospln. symmetry ha_s been opserved also in de-
ZZ) 0~ FRO) fo_rmed nuc!el [4]; we are investigating the deformed
THZ) 99 £ \ Dirac equation as well. Also the explanation espoused
: in this paper implies a connection between the wave func-
10 + - j:, tions of the pseudospin doublets. This relationship is be-
o ez ing worked out.
— @+ ) ——> The author thanks B. Serot for discussions and N. Walet
-10 f r } r \ . for making the author aware of Ref. [10].
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FIG. 2. The LHS of (14), (15) (solid line), the RHS of (14)
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