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Accurate Four-Body Response Function with Full Final State Interaction:
Application to Electron Scattering off 4He
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The longitudinal se, e0 d response function of4He is calculated precisely with full final state
interaction. The explicit calculation of the four-body continuum states is avoided by the metho
integral transforms. Precision tests of the response show the high level of accuracy. Nonrela
nuclear dynamics are used. The agreement with experimental data is very good over a
energy range for all considered momentum transfers (q ­ 300, 400, 500 MeVyc). Only at
higher q the theoretical response overestimates the experimental one beyond the quasi
peak. [S0031-9007(96)02200-4]
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A new method for the calculation of the inelas
response of anN-body system to an external prob
is proposed in Ref. [1]. It allows an exact calculati
without the knowledge of theN-body scattering state
The high level of accuracy of the method has been sh
for the longitudinal electron scattering responses of
nuclear two- and three-body systems [1,2]. The r
superiority of the approach, however, becomes evid
when applied to a four-body system. In fact, a solut
of the four-body medium energy continuum state probl
is presently out of reach, nonetheless four-body respo
functions can be reliably calculated as pointed out
the following. In this Letter we consider the importa
longitudinal electron scattering response functionRL

of 4He which is calculated for the transfer momen
q ­ 300, 400, and500 MeVyc. For q ­ 500 MeVyc
it is the first accurate calculation with the final sta
nuclear interaction fully taken into account. Our resu
are obtained within the framework of the nonrelativis
nuclear dynamics and using the single-particle form of
electromagnetic operator. Such studies allow establis
the limits of validity of this conventional framework fo
the lightest tightly bound nucleus. Particularly interest
is the higherq region. For more than a decade there h
been a lot of discussion for complex nuclei regarding t
region. An accurate calculation for4He will help to shed
some light in this range ofq values.

The idea of Ref. [1] is to calculate the response in
indirect way. First the Lorentz transform (LT)

Fss ­ 2sR 1 isI , qd ­
Z

dv
Rsv, qd

sv 2 sRd2 1 s
2
I

(1)
of the response function

Rsv, qd ­
X
n

jknjQsqdj0lj2dsv 2 En 1 E0d (2)

is calculated, wherej0l is the ground state of the system
E0 is the ground state energy,Qsqd is the excitation
0031-9007y97y78(3)y432(4)$10.00
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operator, andsR . 0, sI fi 0. The solution of the
following equation:

sH 2 E0 2 sR 1 isIdjCl ­ Qj0l , (3)

leads directly to the LT,

Fss, qd ­ kCjCl . (4)

In a second stepRsv, qd is obtained via the inversion of
the transform. The solution of Eq. (3) is unique. Indee
the homogenous equation has only the trivial soluti
because the HamiltonianH has only real eigenvalues
SinceC has to fall off exponentially one can use simila
techniques as for the solution of the ground state proble
Thus the complicated boundary condition of a four-bo
scattering state has not to be considered at all.

In the past other integral transforms were propos
namely, Stieltjes [3] and Laplace transforms [4,5]. Th
Laplace transforms of the4He longitudinal response
were obtained with a realistic force forq ­ 300 and
400 MeVyc via a Green function Monte Carlo calculatio
(GFMC) [4]. Also the Laplace transforms of the tran
verse response and the effects of two-body operators
the transforms in both longitudinal and transversal ca
were considered via a GFMC [5]. Good agreement w
the transforms of the experimental data is found. The
is, however, a fundamental problem in obtaining respon
functions themselves from these transforms. Unli
the LT they sample contributions over a large ener
range. This results in big problems for the inversio
[6]. Nevertheless the longitudinalRsv, qd of 4He has
been obtained by an inversion of the Laplace transfo
for q ­ 400 MeVyc [4]. The result is rather similar to
ours in Fig. 4. We are not able to fully interpret th
agreement since the statistical errors of a GFMC lead
an uncertainty in the inversion of the Laplace transfor
Unfortunately, the inversion error is not estimated
Ref. [4], which in general can be sizable [6]. On th
contrary, for the LT inversion problems are much le
© 1997 The American Physical Society
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we
important [1,2]. Moreover, the numerical effort for th
calculation of the LT seems to be much smaller than f
the Laplace transform. However, a fair comparison c
only be made when both calculations are performed
the same potential model.

Our Hamiltonian includes central even potentials

V sijd ­ V31srijdP1
s sijdP2

t sijd 1 V13srijdP2
s sijdP1

t sijd
(5)

plus Coulomb force providing realistic descriptions of th
S-wave phase shifts up to the pion threshold. We co
struct theV31 and V13 potentials by modifying the com-
pleteNN interaction of Ref. [7]. The disregarded tenso
force is effectively simulated via a dispersive correctio
(V ! V 2 V 2

tensor yconst). The potentials obtained lea
to almost the same phase shifts as in Ref. [7]. A full d
scription of the potential will be published elsewhere [8
It describes the static properties of4He rather well lead-
ing to a binding energy of 30.5 MeV and an rms radius
1.41 fm. Also the description of the elastic form factor
rather realistic up to its first minimum. The present ansa
for the potential will lead to results quite similar to thos
for more general nuclear forces. The three-nucleon st
ies undertaken so far testify to this opinion [9]. Althoug
more intensive the calculations with a completely realis
nuclear force are also quite feasible within our approac

In the following we describe the techniques we u
for solving the dynamic equation (3). We seek for th
solution in the form of an expansion over the correlat
hyperspherical basis first used in Ref. [10]. The expans
converges quickly in few-nucleon bound state problem
[10,11]. Our basis functions are of the form

JRN srd fY f fgm
KLM sVduf f̄gm̄

S­0,T ga. (6)

Herer is the hyperradius,r ­ sj2
1 1 j

2
2 1 j

2
3 d1y2, $ji are

the normalized Jacobi vectors, andV denotes collectively
eight hyperangular variables. The quantitiesY

ffgm
KLM are

hyperspherical harmonics (HH) with hyperangularK and
orbital L, M momentum quantum numbers. These H
are componentsm of irreducible representationsf fg of
the four-particle permutation group Ss4d. The spin-isospin
functionsu (see, e.g., [12]) enter Eq. (6) with the sam
spin and isospin valuesS ­ 0, T ­ 0, andT ­ 1 as in the
expansion of the right-hand side of Eq. (3). They belo
to the conjugate representationf f̄g of Ss4d. The square
brackets mean coupling to the function antisymmetric w
respect to permutations of both spatial and spin-isos
particle coordinates.RN are the hyperradial functions, and
J is the Jastrow correlation factor.

The system of equations for the expansion coefficients
obtained by projecting Eq. (3) onto the subset of functio
(6) with K up to someKmax andN up to someNmax. This
system is split with respect toL, M, andT values. Since
Ls4Hed ­ 0 in our model theL quantum number coincides
with the multipole order of the transition operator. Th
response, as well as Eq. (4), is independent of aq direction
that can be chosen along thez axis. Only theM ­ 0
r
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value gives a nonzero contribution in this case. The mat
elements are calculated with a Monte Carlo integration.

The HH entering Eq. (6) are constructed by applyin
the convenient form, see, e.g., [13], of the Young oper
tors to the simple Zernike-Brinkman–type HH. The mu
tiplicities of variousf fg representations at givenK andL
values are obtained as traces of the Young operators
culated in the Zernike-Brinkman basis [13,14].

The hyperradial functions of the form [13,15]RN srd ,
L8

N srybd exps2ry2bd are used. HereLa
N are Laguerre

polynomials, andb is a scale parameter which is kept th
same for all thes values considered and is chosen t
enable sufficiently fast overall convergence. The resu
are rather insensitive to theb values. The rate of the
hyperradial convergence in our case is lower than in t
bound state calculations (e.g., [13,15]), and betterRN can
perhaps be found.

The two-body correlation functionfsrd entering the
Jastrow factor is taken to be spin independent and
chosen in a conventional way. Atr # r0 it is a solution
to the Schrödinger equation with the potential taken
the half-sum of the triplet and singletNN forces. Ther0

point is chosen from the conditionf 0sr0d ­ 0. At r . r0
fsrd ­ fsr0d. The kinetic energy matrix elements with
the Jastrow factor are cast to a convenient form [10].

We calculate the LT ofRLsv, qd with sI ­ 20 MeV.
The quantities in Eqs. (2) and (3) pertain to the center
mass system, and

Qsqd ­
X

k

"
1 1 t3skd

2
1

Gn
Esq2d

G
p
E sq2d

1 2 t3skd
2

#
3 eiqsrk2Rc.m.d,

whereG
p,n
E are nucleon Sachs form factors. In order t

reach convergence we choose a sufficiently largeNmax
for the hyperradial functions (Nmax ­ 20, 25, and 30
for q ­ 300, 400, and500 MeVyc, respectively). The
multipole transitions of the charge operator are taken in
account up to a maximal orderLmax. From the evaluation
of the various multipole contributions to the Coulom
sum rule we find that the followingLmax values lead
to an exhaustion of the sum rule by more than 99%
Lmax ­ 4, 5, and 6 forq ­ 300, 400, and500 MeVyc,
respectively. TheseLmax values are adopted at solving
Eq. (3). The maximal hyperangular orderKmax is taken
equal to 7; only in the case ofLmax ­ 6 the value 8
is used. This is sufficient to completely exhaust th
various multipole strengths forq ­ 300 MeVyc. Even
for q ­ 500 MeVyc one misses only a small fraction o
the strength of the less important multipoles withL $ 4
(see also discussion below).

The results for the LT are shown in Fig. 1. Unlike
Stieltjes and Laplace transforms it is already obviou
directly from the LT that the response is governed b
the quasielastic peak. The inversion is performed w
the same sets of basis functions used in Refs. [1,
Contrary to the nuclear two- and three-body systems,
433
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FIG. 1. LT atq ­ 300, 400, and500 MeVyc.

cannot, of course, compare theRsv, qd obtained from
the inversion with a direct calculation of the respon
according to Eq. (2). Nonetheless it is possible to t
the precision of the response function results. A first t
is the separate inversion of all the various multipol
It serves as a very important sum rule check, since
a given multipole one can compare the sum rule fr
the evaluation as ground state expectation value with
obtained from an explicit integration of the response. T
check leads to very good results with relative errors
about 1% for most of the transitions (average errors: 1.1
1.0%, and 2.0% forq ­ 300, 400, and 500 MeVyc,
respectively). Somewhat larger errors are found o
for q ­ 500 MeVyc, where the less important highe
multipoles (L $ 4d are slightly underestimated by abo
3%–4%. As mentioned aboveKmax should be chosen
somewhat larger for a complete exhaustion of the stren
of these multipoles. Nonetheless we may say that the
rule results show the good accuracy of our method.
Fig. 2 the isoscalar and isovector parts of the respo
function obtained from the separate inversion are sho
for q ­ 500 MeVyc. One sees that almost all multipole
have the typical structure due to the quasielastic pe
The only exception is the isoscalar Coulomb monop
which exhibits a peak close to threshold. For the t
lower momentum transfers thisC0 peak is even more
pronounced. Forq ­ 300 MeVyc its height reaches
already one third of the quasielastic peak height. T
isovector strength is twice as large as the isoscalar on

Another very important check for the precision of th
method is obtained by the inversion of the total L
The resultingRsv, qd should not differ from that ob-
tained from the separate inversion discussed above.
fore discussing these results we should mention that
encounter at low energy forq ­ 400 and 500 MeVyc
similar inversion problems for the full LT as describe
in Ref. [1]. We solve this problem in a similar wa
as in Ref. [1], i.e., by separate inversions for the s
of isoscalarC0 and C1 and for the sum of all remain
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FIG. 2. Separate inversions of the various isoscalar (a) a
isovector (b) multipoles of the LT (q ­ 500 MeVyc). The
various curves correspond to successive addition of multip
contributions fromC0 to C6.

ing multipoles; nevertheless in the following it will be
called total inversion. The total response functions resu
ing from separate and total inversions are shown in Fig
for the three considered momentum transfers. From
good agreement of the various curves it is evident t
the inversion is very unproblematic. Differences betwe
the two inversion methods are only found at lower en
gies; however, they are quite unimportant. We consid
the inversion of the totalFss, qd as the more accurate re
sult, since we obtain a better fit to the calculated LT in t
low-energy region. The total Coulomb sum rule is repr
duced very precisely by the inversion of the total LT. W
find relative errors of 0.2%, 0.4%, and 1.6% forq ­ 300,
400, and500 MeVyc, respectively. The reason for th
somewhat larger error atq ­ 500 MeVyc has been al-
ready discussed above.

After having demonstrated the precision of the meth
we compare our results with experimental data. To t
end we have to consider that the response function
Eq. (1) is defined for point particles. In order to compa
with experiment we have to multiplyRsvlab, qd with the
square of the proton charge form factorG

p
E sq2 2 v

2
labd,

wherevlab ­ v 1 q2y2Ms4Hed. We take the dipole fit
to G

p
E with the usual relativistic correction [16]. In Fig. 4
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FIG. 3. Response functions from total (full curves) a
separate inversions (dotted curves).

we show our results in comparison with experimen
data [17,18]. It is readily evident that for the low
q value of 300 MeVyc the agreement between theo
and experiment is very good. The low-energy wings
the responses atq ­ 400 and 500 MeVyc are also in a

FIG. 4. Response functions from total inversions with inc
sion of proton charge form factor (see text) in comparison
experimental data.
d

l

f

-
to

very good agreement with experiment. In particular, th
rather complicated threshold structure of the experiment
RL at q ­ 400 and 500 MeVyc is described extremely
well. Beyond the quasielastic peak the theoretical resu
overestimates the experimental one somewhat atq ­
400 MeV/c and in a more pronounced way atq ­
500 MeVyc. If the experimental results are correct, the
theoretical formulation should include subnuclear and/o
relativistic effects in order to remove the discrepancy.

In conclusion, we may say that we have successful
applied the method of Ref. [1] to a four-body system
response to an external probe with full final state inte
action. This enabled us to calculate the accurate longit
dinal response function of4He. We have shown that the
results are very precise. We obtain an excellent agreeme
with experiment at the momentum transfer of300 MeVyc
as well as for the low-energy wings atq ­ 400 and
500 MeVyc. At the latterq values the theoretical results
overestimate the experimental ones beyond the quasiel
tic peak. The calculation of the transverse response w
the present potential model is in progress [8].
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