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Accurate Four-Body Response Function with Full Final State Interaction:
Application to Electron Scattering off *He
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The longitudinal (e, e’) response function of'He is calculated precisely with full final state
interaction. The explicit calculation of the four-body continuum states is avoided by the method of
integral transforms. Precision tests of the response show the high level of accuracy. Nonrelativistic
nuclear dynamics are used. The agreement with experimental data is very good over a large
energy range for all considered momentum transfegs=(300, 400, 500 MeV/c). Only at
higher ¢ the theoretical response overestimates the experimental one beyond the quasielastic
peak. [S0031-9007(96)02200-4]
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A new method for the calculation of the inelastic operator, andog > 0, o; # 0. The solution of the
response of anN-body system to an external probe following equation:
is proposed in Ref. [1]. It allows an exact calculation .
without the knowledge of theV-body scattering state. (H = Eo — og + iop|¥) = 6]0), (3)
The high level of accuracy of the method has been showpads directly to the LT,
for the longitudinal electron scattering responses of the
nuclear two- and three-body systems [1,2]. The real O(o,q) = (V|VP). (4)
superiority of the approach, however, becomes evu:_le% a second ste(w, ¢) is obtained via the inversion of
when applied to a fo_ur-body system. In fact, a SOIUtlor"[he transform. The solution of Eq. (3) is unique. Indeed,
of the four-body medium energy continuum state proble

) he homogenous equation has only the trivial solution
is presently out of reach, nonetheless four-body reSPONSfecause the Hamiltonia®l has only real eigenvalues.

Iﬁnc;lcilns can ?e t;l?“alfjlilt calculated .S‘S %?'nt.ed Ol:t 'tnSince‘lf has to fall off exponentially one can use similar

| © .? (;)_er:g. | nt IS Le t?r we consider ? |mFor an techniques as for the solution of the ground state problem.
0”9' udinal electron scattering response functin 1 o e complicated boundary condition of a four-body
of *He which is calculated for the transfer momentaScattering state has not to be considered at all

g = 300, 400, and500 MeV/c. For ¢ = 500 MeV/c In the past other integral transforms were proposed,

I ISI the_ ft'rSt z?_ccu][a][le tca:(lculgtlton with t?e gnal sta;[te namely, Stieltjes [3] and Laplace transforms [4,5]. The
nuc efg: In e(;ac.ltcr)]r.] ltjhy fa enn oka(;ctc;]un. ulr {??“t. SLaplace transforms of théHe longitudinal response
are obtained within the framework ot the NONre1alVISIC e optained with a realistic force fay = 300 and

nuclear dynamics and using the single-particle form of th@100 MeV/c via a Green function Monte Carlo calculation
electromagnetic operator. Such studies allow establishin&BFMC) [4]. Also the Laplace transforms of the trans-
the limits of validity of this conventional framework for verse respdnse and the effects of two-body operators on
the lightest tightly bound nucleus. Particularly interesting,[he transforms in both longitudinal and transversal cases
is the higherg region. For more than a decade there ha?/vere considered via a GFMC [5]. Good agreement with
bee_n a lot of discussion for c_omplex nug:lei regarding thisthe transforms of the experimenfal data is found. There
region. An_ accurate calculation féHe will help to shed is, however, a fundamental problem in obtaining response
Ssome I'.ght in this range_ai values. . functions themselves from these transforms. Unlike
. The idea of Ref. [1] s to calculate the response in AMhe LT they sample contributions over a large energy
indirect way. First the Lorentz transform (LT) range. This results in big problems for the inversion
O(o = —op + io),q) = f dw R(w,q) 5 [6]. Nevertheless the longitudinat(w,q) of *He has
(w — or)? + o7 been obtained by an inversion of the Laplace transform
(1) for ¢ = 400 MeV/c [4]. The result is rather similar to
ours in Fig. 4. We are not able to fully interpret this
agreement since the statistical errors of a GFMC lead to
R(w,q) = Z l(n|©®(q)|0)?8(w — E, + E;) (2) @n uncertainty in the inversion of the Laplace transform.
P Unfortunately, the inversion error is not estimated in
is calculated, wher@D) is the ground state of the system, Ref. [4], which in general can be sizable [6]. On the
Ey is the ground state energ¥)(q) is the excitation contrary, for the LT inversion problems are much less

of the response function
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important [1,2]. Moreover, the numerical effort for the value gives a nonzero contribution in this case. The matrix
calculation of the LT seems to be much smaller than forelements are calculated with a Monte Carlo integration.
the Laplace transform. However, a fair comparison can The HH entering Eq. (6) are constructed by applying
only be made when both calculations are performed fothe convenient form, see, e.g., [13], of the Young opera-
the same potential model. tors to the simple Zernike-Brinkman—type HH. The mul-
Our Hamiltonian includes central even potentials tiplicities of various[ f] representations at givefi andLL
o APFGNP— (i AP (i \Pt(i values are obtained as traces of the Young operators cal-
V(i) = Vailrij)Po (P (i) + Via(ri) Py (PP (1) e in the Zernike-Brinkman basis [13,14].
) The hyperradial functions of the form [13,1B}(p) ~
plus Coulomb force providing realistic descriptions of theL%,(p /b) exp(—p/2b) are used. Herd$§ are Laguerre
S-wave phase shifts up to the pion threshold. We conpolynomials, and is a scale parameter which is kept the
struct theVs; and Vi3 potentials by modifying the com- same for all thes values considered and is chosen to
plete NN interaction of Ref. [7]. The disregarded tensorenable sufficiently fast overall convergence. The results
force is effectively simulated via a dispersive correctionare rather insensitive to the values. The rate of the
(V—V — V&, /const). The potentials obtained lead hyperradial convergence in our case is lower than in the
to almost the same phase shifts as in Ref. [7]. A full de-bound state calculations (e.g., [13,15]), and beRercan
scription of the potential will be published elsewhere [8]. perhaps be found.
It describes the static properties tle rather well lead- The two-body correlation functiorf(r) entering the
ing to a binding energy of 30.5 MeV and an rms radius ofJastrow factor is taken to be spin independent and is
1.41 fm. Also the description of the elastic form factor ischosen in a conventional way. At=< ry it is a solution
rather realistic up to its first minimum. The present ansatzo the Schrodinger equation with the potential taken as
for the potential will lead to results quite similar to thosethe half-sum of the triplet and singlatV forces. Ther
for more general nuclear forces. The three-nucleon studsoint is chosen from the conditiofi(rq) = 0. Atr > r
ies undertaken so far testify to this opinion [9]. Although £(r) = f(r¢). The kinetic energy matrix elements with
more intensive the calculations with a completely realistiache Jastrow factor are cast to a convenient form [10].
nuclear force are also quite feasible within our approach. We calculate the LT oRR; (w, g) with o; = 20 MeV.
In the following we describe the techniques we useThe quantities in Egs. (2) and (3) pertain to the center of
for solving the dynamic equation (3). We seek for themass system, and
solution in the form of an expansion over the correlated
hyperspherical basis first used in Ref. [10]. The expansion 0(q) — Z|:l + 73(k) N Gig) 1 — T3(k):|

converges quickly in few-nucleon bound state problems T 2 Gr(g?) 2
[10,11]. Our basis functions are of the form X i —Ren)
[f] [F12 1a ’
JRx(p) (Vi (055071, (6)

. . 5 5 i/ 3 whereG;" are nucleon Sachs form factors. In order to
Herep is the hyperradiugy = (é1 + & + €)' £;are  reach convergence we choose a sufficiently lakggs
the normalized Jacobi vectors, afiddenotes collectively  for the hyperradial functionsNu.x = 20, 25, and 30
eight hyperangular variables. The quantiti}égz]ﬂ’j are for ¢ = 300, 400, and500 MeV/c, respectively). The
hyperspherical harmonics (HH) with hyperangutaand  multipole transitions of the charge operator are taken into
orbital L, M momentum quantum numbers. These HHaccount up to a maximal ordér,,,. From the evaluation
are componentg: of irreducible representatiorisf] of  of the various multipole contributions to the Coulomb
the four-particle permutation grouf43. The spin-isospin  sum rule we find that the followind.,.x values lead
functions 6 (see, e.g., [12]) enter Eq. (6) with the sameto an exhaustion of the sum rule by more than 99%:
spin and isospinvaluegs = 0,7 = 0,andT = 1asinthe L.« = 4, 5, and 6 forg = 300, 400, and500 MeV/c,
expansion of the right-hand side of Eq. (3). They belongespectively. Thesd..x values are adopted at solving
to the conjugate representatipi] of S(4). The square Eq. (3). The maximal hyperangular ord&f,., is taken
brackets mean coupling to the function antisymmetric withequal to 7; only in the case df,.x = 6 the value 8
respect to permutations of both spatial and spin-isospiis used. This is sufficient to completely exhaust the
particle coordinatesRy are the hyperradial functions, and various multipole strengths faj = 300 MeV/c. Even
J is the Jastrow correlation factor. for ¢ = 500 MeV/c one misses only a small fraction of
The system of equations for the expansion coefficients ithe strength of the less important multipoles with= 4
obtained by projecting Eq. (3) onto the subset of functiongsee also discussion below).
(6) with K up to someK,,,,, andN up to someV,,.x. This The results for the LT are shown in Fig. 1. Unlike
system is split with respect tb, M, andT values. Since Stielties and Laplace transforms it is already obvious
L(*He) = 0in our model the. quantum number coincides directly from the LT that the response is governed by
with the multipole order of the transition operator. Thethe quasielastic peak. The inversion is performed with
response, as well as Eq. (4), is independentgtlaection the same sets of basis functions used in Refs. [1,6].
that can be chosen along theaxis. Only theM =0  Contrary to the nuclear two- and three-body systems, we
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FIG. 1. LT atg = 300, 400, and500 MeV/c.
. — 0.006 - ]
cannot, of course, compare thiw, g) obtained from o
the inversion with a direct calculation of the response 2
according to Eq. (2). Nonetheless it is possible to test -+« o0.004 | .
the precision of the response function results. A first test
is the separate inversion of all the various multipoles.
It serves as a very important sum rule check, since for 0.002 1 I
a given multipole one can compare the sum rule from
the evaluation as ground state expectation value with that 0.000 . J .
obtained from an explicit integration of the response. This 0 %0 9% o 1\/5]0 210 270
(0] (]

check leads to very good results with relative errors of
about 1% for most of the transitions (average errors: 1.1%f!G. 2. Separate inversions of the various isoscalar (a) and
1.0%, and 2.0% forg = 300, 400, and 500 MeV/c, isovector (b) multipoles of the LTq(=_ 500 M(_ey/c). The_
. various curves correspond to successive addition of multipole

respectively). Somewhat larger errors are found only.gniributions fromco to C6.
for ¢ = 500 MeV/c, where the less important higher
multipoles { = 4) are slightly underestimated by about
3%-4%. As mentioned abovE,,x should be chosen ing multipoles; nevertheless in the following it will be
somewhat larger for a complete exhaustion of the strengtballed total inversion. The total response functions result-
of these multipoles. Nonetheless we may say that the suing from separate and total inversions are shown in Fig. 3
rule results show the good accuracy of our method. Iror the three considered momentum transfers. From the
Fig. 2 the isoscalar and isovector parts of the responsgood agreement of the various curves it is evident that
function obtained from the separate inversion are showthe inversion is very unproblematic. Differences between
for ¢ = 500 MeV/c. One sees that almost all multipoles the two inversion methods are only found at lower ener-
have the typical structure due to the quasielastic pealgies; however, they are quite unimportant. We consider
The only exception is the isoscalar Coulomb monopoléghe inversion of the tota® (o, ¢) as the more accurate re-
which exhibits a peak close to threshold. For the twosult, since we obtain a better fit to the calculated LT in the
lower momentum transfers thi€0 peak is even more low-energy region. The total Coulomb sum rule is repro-
pronounced. Forg = 300 MeV/c its height reaches duced very precisely by the inversion of the total LT. We
already one third of the quasielastic peak height. Thdind relative errors of 0.2%, 0.4%, and 1.6% tpr= 300,
isovector strength is twice as large as the isoscalar one. 400, and500 MeV/c, respectively. The reason for the

Another very important check for the precision of the somewhat larger error af = 500 MeV/c¢ has been al-
method is obtained by the inversion of the total LT.ready discussed above.
The resultingR(w, g) should not differ from that ob- After having demonstrated the precision of the method
tained from the separate inversion discussed above. B&e compare our results with experimental data. To this
fore discussing these results we should mention that wend we have to consider that the response function of
encounter at low energy fog = 400 and 500 MeV/c  Eg. (1) is defined for point particles. In order to compare
similar inversion problems for the full LT as described with experiment we have to multiplR (w,p, ¢) with the
in Ref. [1]. We solve this problem in a similar way square of the proton charge form facGf(¢2 — wiyp),
as in Ref. [1], i.e., by separate inversions for the sunwherew;,, = o + ¢*>/2M(*He). We take the dipole fit
of isoscalarCO andC1 and for the sum of all remain- to G with the usual relativistic correction [16]. In Fig. 4
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0.020

~ ' ' ' very good agreement with experiment. In particular, the
=300 MeVie rather complicated threshold structure of the experimental
R; at ¢ = 400 and 500 MeV/c is described extremely
well. Beyond the quasielastic peak the theoretical result
overestimates the experimental one somewhay at
o 400 MeV/c and in a more pronounced way agt=

T separae Mversion 500 MeV/c. If the experimental results are correct, the
| theoretical formulation should include subnuclear and/or
relativistic effects in order to remove the discrepancy.

In conclusion, we may say that we have successfully
applied the method of Ref. [1] to a four-body system
response to an external probe with full final state inter-
action. This enabled us to calculate the accurate longitu-
dinal response function dHe. We have shown that the
results are very precise. We obtain an excellent agreement
with experiment at the momentum transfer36f) MeV/c
as well as for the low-energy wings at= 400 and
500 MeV/c. At the latterg values the theoretical results
overestimate the experimental ones beyond the quasielas-

we show our res_ults In comparison with experlmental[ic peak. The calculation of the transverse response with
data [17,18]. It is readily evident that for the lower the present potential model is in progress [8].

g value of 300 MeV/c the agreement between theory The authors thank INFN for having provided a dedi-

and experiment is very good. The low-energy wings of . ] .
the responses at = 400 and 500 MeV/c are also in a cated workstation (SUN SPARC-20) for the numerical

calculations. One of us (V.D.E.) thanks INFN for the
financial support over the period during which this work
was carried out.

0.015 - ™, q=500 MeVic

0.010

R" [MeV"]

0.005

0.000 . . . ;
-30 30 90 150 210 270
® [MeV]
FIG. 3. Response functions from total (full curves) and
separate inversions (dotted curves).
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