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Scattering of Surface Plasmon Polaritons by a Circularly Symmetric Surface Defect
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By the use of the method of reduced Rayleigh equations, we develop a theory of the scattering
of a surface plasmon polariton from a cirularly symmetric defect on a metal surface. We derive
and solve one-dimensional integral equations for the scattering amplitudes corresponding to different
rotational numbersn. We calculate the differential cross sections for scattering into the vacuum
and into other surface waves, and the field intensity near the surface. The results show agreement
with recent experimental data. We also consider resonant scattering due to surface shape resonances.
[S0031-9007(97)03269-9]

PACS numbers: 73.20.Mf, 03.80.+r, 61.16.Ch, 61.72.Dd

A surface plasmon polariton (SPP) is japolarized we consider a circularly symmetri¢(x)) that depends
electromagnetic wave that propagates along a vacuunon x| only through its magnitude). This assumption
metal interface with amplitudes that decay exponentiallysimplifies the calculation significantly without sacrificing
with increasing distance into each medium from thea great deal of generality. In this work we will use the
interface. Many properties of SPP have now been studieGaussian profilef(x)) = A exp(—xﬁ/R2). The surface
theoretically and experimentally. Descriptions of much ofdefect described by this function is a protuberance for
this work can be found in Refs. [1] and [2]. A > 0; it is an indentation fod < 0.

An aspect of SPP that has been little studied up to now We consider a SPP of frequeney propagating in
is their interaction with point defects on an otherwisethe x; direction fromx; = —, scattered by the surface
planar metal surface, which leads to their scatteringlefect. The total electric field is given bE(x;?) =
into other SPP as well as their conversion into volumeE(x|w)e ~i®!, where the functiorE(x|w) in the vacuum
electromagnetic waves in the vacuum. In a recent papeegionxs; > {(x)) has the form
Smolyaninovet al. [3] have investigated the scattering of
SPP by localized defects by the methods of near-field E(x|w) = £[ifclﬁo(k”) — Rk et~ Polkixs
optical microscopy. In this work the authors note that w
at the present time there exists no theory of the scattering d%q
of a surface polariton from a single point defect on an f Q)2
otherwise planar metal surface. In this paper we present . .

a nonperturbative theory of this scattering process that + (&3 X ‘Ill)As(‘Ill)}' (1)

is based on the method of reduced Rayleigh equations

[4], which is known to be exact for defects whose ratioThe ﬁrSt, nonintegral, term describes the field of the
of height to width is of the order of unity or smaller incident SPP. The wave vector of the incident wave
[5], and which yields accurate results for larger values o = (k. 0,0) is directed along ther; axis, and its
this ratio. In addition, we examine resonance effects thamagnitude iskj(o) = (w/c){e(w)/[e(w) + 1T}/2 [1].
occur when the frequency of the SPP matches that of onEhe second term in Eq. (1) represents the scattered
of the electromagnetic surface shape resonances supporfégld determined by the scattering amplitudgs(¢;) and

by the surface defect [6]. As(q) for its p- and s-polarized components, respec-

The physical system we study consists of vacuum ifively. In Eq. (1), gy = (41,42.0), a hat over a vec-
the regionx; > {(x), wherex) = (x1,x,,0), and of a tor indicates that it is a unit vector, e.gy = qj/q|
metal in the region; < {(xj). The mean free path of Bolqy) = [gj — @?/c?]"/2 for q > w/c and Bo(q)) =
SPP excited by a He-Ne laser on a planar silver surface-i[w?/c? — ¢i]'/? for ¢ < w/c. We note that the
is approximately 6Qum, which is at least two orders function By(k) is always real sincé|(w) > w/c.
of magnitude larger than the diameters of the defects An expression analogous to Eg. (1) can be written
we study. Therefore taking into account ohmic lossedor E(x|w) in the metal and then used together with
is not essential, and we will characterize the metal by &q. (1) in satisfying the boundary conditions & =
real frequency-dependent dielectric functiefw) < —1.  {(x)). However, it has been shown in Ref. [4] that the
We assume that the surface profile functiffx) is a field in the medium can be eliminated from the problem.
single-valued function ok, which essentially vanishes The amplitudesA, (g;) then satisfy a matrix integral
for |x)| larger than some characteristic lendgth Finally,  equation, called the reduced Rayleigh equation,

{i [iguBolqy) — %3q11A,(q))
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FDAoD) + (dzq)uzx gsp(P1-qn) = J(pi.q1) (iw /) Bolqn) (Bi X q1)s.
! 2T
S eu(on s = —gi(pn kD) gss(p1-qn) = J(pi.q1) (@*/)py - G,
ij s Jj - ~ &ip P P
J=ps 2) __
i=p,s, /et qn) B(p1) — Bolaqy)
where % jd2x” e iPi—a)x

fo(p1) = [e(w)Bo(py) + B(pP])/[1 — e(w)],

fs(pi) = [Bo(pn) + B(p)/[1 — e(w)], ) o _
andB(qy) = [gj — e(w)w?/c*]"/2. Within the Rayleigh
gpp(Pi-qn) = J(pi.q) Lpigr — B(pi)Bolapy - qil.  hypothesis, Eq. (2) is the exact equation for the scattering
amplitudesA, 5(¢)) for an arbitrary surface profile. From
gps(pi-q1) = —J(pi,q) Giw/c)B(py) (P X q1)s this point we will exploit the circular symmetry af(x)).
We factor out the dependence on the azimuthal angle
| ¢, = tan '(q2/¢1) by means of the expansion

X [elBr=Bola)letx) — 17,

(°>(qu) S o i
+ D [by)(q1) codmey) + ci)(qy) sinme,)], (3)

m=1

Apslgq)) =

After substitution of Eqg. (3) into Eq. (2) the equatlons for differeris decouple, reducing the problem to solving
one-dimensional integral equations. The amphtu{hé@ (qn), c(’")(q”)} satisfy a pair of homogeneous equations and,
therefore, vanish. This simplification occurs due to the fact that the incident field is an even functien @he
functlons{b(m)(q”) c™(q))} satisfy the pair of integral equations

= g

£ (py) + fo %qn[hﬁ,”,?(pu,61||)b§,’")(c1||) + B (i, g™ (@] = =20 (py. ky) (4a)
dq|

£s(ped™ (py) + fo o AL B oy, qb e (qp) + B (pps ae™ (gl = =20 (py, k) - (4b)

I
We note that a single integral equation fbf?)(q”) is  this work, N,, can be represented in a form of a rapidly
obtained by setting”(¢;) = 0in Eq. (4a). In Egs. (4a) converging series [6].

and (4b) we have used the notations Since the unperturbed system (without the defect) sup-
(m) B ports surface excitations of polarization, the scattering
hyy (Pl q1) = PI4INm amplitudeA ,(¢)) and, hence{b ™ (¢y)}, must have a pole
atq| = kj(w) + in, where the positive imaginary infini-
Y BpBoa) [Nm-1 + N1l tesimal in is added to ensure that the scattered surface
waves are outgoing. Therefore, in solving Egs. (4) we
B (i gp) = —(i@/20)B(py) [Nm—1 — Nus1], will seek the fu(n():tioné,bl(,’")((q)”)} in the form
b’ = p" , 6
h"(pi,qn) = —(i@/2¢)Bo(q)) [Nm—1 — Nu+1], ) plan = by )/ fplan ©
where {6\"(g))} are nonsingular, and the denomina-
R (pran) = (0%/2¢3) [Np—1 + Nps1], tor f,(qy) vanishes atgq) = kj(@). In substituting

Eq. (6) into Egs. (4), we use the identity/f,(q)) =
P[1/fp(qp)] + {imBky)/kyle(w) + 1]}8(q) — ky).
2 We solve the resulting equations fd" (¢)), ¢! (q))}
NP1 qn) = _ numerically by discretizing the range’ of integration and
B(pi) = Bolq) y by g g g
w0 transforming the integral equations into matrix equations
X [ dx) xy[eBPO=Folaet) — 1] thereby [6]. After computingd, (¢y) in Eqg. (1) using
0 Egs. (3) and (6), we apply the technique described in
X TP T (@) » (5) Ref. [7] to calculate the scattered field in the far zone.
If x = x(sind, cose,, sind, sing,, cosd,) is the obser-
where J,,(z) is a Bessel function. For the Gaussianvation pointinthe vacuum, then the far field scattered away
surface {(x)) = Aexp(— x||/R2) which we consider in from the surface is given by the outgoing spherical wave

HereN,, stands for the function
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 w COSH . . .
ES) (x|w) = — ”"27" e’(“’/c)x{éI,Ap<fc ﬁsm@) + ésAs<fc ﬂsm@)}, (w/c)x > 1, )
ac C C

where &, = (cosf, cose,, cosd, sing,, —sind,), and
é; = (—sing,, cosep,,0) are polarization vectors. The ¢, = 0°. The total cross section for the waves radiated
far field scattered into other surface waves measured atto the vacuumg % in this case is onlg.7 X 1073 um,

x| = xj(cosey, sing,,0) has the form of an outgoing which is not a surprising result for such a shallow defect.

cylindrical wave, The result fora® is of the same order of magnitude
(s0) etkmtitm/A=Bokixs ¢ B(ky) aSU(StSQ = 2.6 X 107° um. The angular dependence of
Egpp(x|w) = Qakyp) /2 w ospp(@,) is shown in Fig. 2. We see that the scattering of
o R SPP in the forward and backward directions is suppressed.
% [i%)Boky) — x3k||]A ®kp). The main portion of the scattered energy goes into two
glw) + 1 P (8) SPP beams separated by approximatel§. 7Dhis result
kyx > 1, is even better illustrated by Fig. 3, which shows the field

. . Y - intensity |E(x|w)|?> at 5 nm above the surface profile
where A,(qy) = 6P (q)/2 + 3521 55" (q1) c0Smeq).  [x3 = £(x) + 5 nm], which corresponds to the quantity
We define the differential cross sections, measured ifeasured in Ref. [3]. Both Figs. 2 and 3 confirm the
units of length, for scattering into the vacuum and intoexperimental data [3], especially the shadow behind the
other surface waves as defect [see Fig. 3(b) of Ref. [3]]. Although the authors
Puac (0, @x) of Ref. [3] mentioned that these rather large “angle values
—p . cannot be accounted for by diffraction,” we believe that
e @) theycanbe. Sinceitis difficult to understand the origin of
Pspe(py) this phenomenon from the exact calculation, we invoke the

O first Born approximation which corresponds to neglecting

whereP,,.(6,, ¢,) is the power scattered into the vacuum the integral term on the left-hand side of Eqg. (2) and
away from the surface in the directidn Pspp(,) is the keep_mg only thg linear term in the profile’s amplitude on
power scattered into the surface waves in the directjon the right-hand side. Althoughy|A] = 0.53 for the defect

and P, is the incident power per unit length in the ~ We consider, this approximation should give the leading

direction. contribution toospp(¢,):

We present numerical results for a Gaussian indentation o307 (¢, ) = 27 R(A/R)*(kyR)*{le(w)|/[e(w) + 117}
characterized byA = —0.05 um and R = 0.25 um on - 202 i
a silver surface withe(w) = —17.8, which parameters X sin’(¢./2) exd —2kjR”sin(¢,/2)].
correspond approximately to one of the cases considered (10)
experimentally [3]. This value of(w) corresponds to We have compared results of exact numerical calculations
the wavelength in vacuum = 0.6328 um for the He-Ne  with those obtained on the basis of Eq. (10), and find
laser. that ospp(¢,) is very well approximated byrsﬁﬁﬁn(gox)

In Fig. 1 we present a contour plot of..(6,, ¢,). The for kj|A|] < 1 ande(w) not close to—1, whenogpp' (¢x)
maximum of the scattering intensity occurséat= 28°,  diverges. Scattering in the forward direction is absent in

Ovac (0,\: s Qox) =

O'SPP(%) =

90°

9=180
X

80° 00

0.00

0=270
X

FIG. 1. A contour plot ofo..(6., ¢.). The concentric circles 3700

are the lines of constan®,, with 8, = 0° in the center,

0. = 90° at the border. The azimuthal angle varies from  FIG. 2. A polar plot of ospp(¢,) for A = —0.05 um and
0°to 360°. A = —0.05 um andR = 0.25 um. R =025 um.
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FIG. 3. The field intensity E(x|w)|> as a function ofr; for
x3 = {(x)) + 5nm,A = —0.05 um, andR = 0.25 um. o B
o
0.24 0.36 0.48 0.60 0.72
the first Born approximation. lkyR is small as well as W/ wp

kjlAl, then the scattering is close to isotropic (ihe= 0
channel is dominant), and the frequency dependesnte
represents the Rayleigh scattering law. k@R > 1 the
function (10) has two maxima atmax = *2sin(1/k|R).
For example, for the defect we considgfR = 2.63,

FIG. 4. The cross sections's and o as functions of

w/w, forA = -0.05 um andR = 0.25 pum.

] ! , Rayleigh equations proves to be a simple, computationally
which would give an angular separation of°8®r the  feasible approach that yields nonperturbative solutions for
maxima if the conditionk|A] < 1 were well satisfied. 5 wide class of surface defects for which the Rayleigh
Thus, large diffraction angles even for small defects ar§yypothesis is valid. For surface profiles that can be
not surprising. Smolyaninogt al. [3] also point out that 5 proximated by a cylindrically symmetric function, we
the shadow source appears to be too large for the actuglgyce the problem to solving one-dimensional integral
size of the scatterer, suggesting quite a large value for thgqyations. The results show a good agreement with recent
cross section. We believe that this is not so, since evegyperimental data [3]. In many experimental situations
the Born approximation (10) can give large diffraction ot vertical and lateral sizes of the defect are small
angles for very small values @fg‘;’{B compared tak. We  compared to the wavelength of the incident SPP. For this
also note that some features one sees in Fig. 3 (additionghse, we have derived an analytical formula (10) in the
weaker diffraction maxima, etc.) but does not see in theBorn approximation for the cross section for scattering
experimental image are due to the fact that the tip used fdnto other SPP. Finally, we have shown that when the
measuring the intensity in Ref. [3] is not a point detectorfrequency of the SPP matches that of one of the surface
in both the vertical and lateral directions. Its actualshape resonances supported by the surface defect, the cross
lateral resolution is around 0.1-02m [8]. Therefore, section for the scattering of SPP into SPP is enhanced.
the comparison can be performed only on average. The authors would like to thank I. Smolyaninov for
We conclude our analysis by considering resonant scahelpful discussions concerning the results presented in
tering of SPP. Maradudin and Visscher [6] showed that @&Ref. [3]. This research was supported in part by Army

localized surface defect supports electromagnetic surfadResearch Office Grant No. DAAH 04—96—1-0187.
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vac
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