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A Dynamical Supersymmetry in the Hubbard Model
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The Hubbard model, in the limit of infinite on-site repulsion and with hopping of unlimited range

between all sites, is shown to be exactly and analytically soluble in terms of a dynamical spl(2,1)
supersymmetry. The complete spectrum is given. [S0031-9007(97)03223-7]

PACS numbers: 71.10.Fd, 02.20.Sv

The Hubbard model has proved to be a fertile framefor electrons. The value of has been chosen equal to
work for the study of the behavior of strongly interact- unity, since it simply sets the energy scale. It should
ing electrons [1,2]. The one-dimensional model has beebe noted that, in this form, the model is completely
solved exactly and completely by means of the Bethendependent of the details of the “lattice,” which could
ansatz together with an underlying SO(4) symmetry [3,4]be in any number of dimensions and of any lattice
It has also been suggested that the superalgebra spl(2,t¥pe, including totally random or disordered. All that is
could be useful [5-7] in systematizing the study of therequired is a denumerable set of sites. The number of
model in the limit of infinite on-site repulsion, which will sites will be denoted byw. The Hamiltonian is still a
be referred to as the Nagaoka limit. It is shown here thaspin scalar.
there is a special form of the model which admits an exact The constraint prohibiting double occupancy of a site
analytic solution by virtue of a dynamical supersymmetrycan be implemented by introducing at each site the set

of type spl(2, 1). of states|i0), [i1),]il), where the first index labels the
The usual form of the Hubbard Hamiltonian is site and the second indicates a vacancy or a spin-up or
+ spin-down electron at the site. There are nine Hubbard

H=-t Z CigCjo T UZ”iT"il’ operators of the foranfb) = |ia) (ib| at each site, but the
(i ' “no double occupancy” constraint can be expressed by the

where the sum in the single-particle (hopping) term iscompleteness condition
over all nearest-neighbor pairs of sites and both spin o o 0
projections, while the sum in the two-body term is over Xoo + X + X" =1,

all sites. The hopping term involves electron creation a”Qeducing the number of independent Hubbard operators at

destruction operators at specific sites, while the interactiog -, site to eight. These operators satisfy the self-evident
term involves electron number operators at each site. Iﬂﬁultiplication rulé

most studies, the signs of the coefficientand U are ) -.G) 0

positive, representing an attractive hopping effect and a XavXed = 0ijSpcXad »

repulsive on-site interaction. The Hamiltonian is a spinfrom which can be deduced the commutators and anti-
scalar, so its eigenstates will have well-defined total SpinCOmmutators

The form of the model to be investigated here has an N _ _

infinitely repulsive on-site interaction, which effectively [Xff;,)Xgld) + = 5,;,-(6;,CX5(,2 + 5adX£’,,) .

forbids double occupancy of any site. (Of course, theIn terms of these operators, the infinite-range hopping

Pauli principle forbids two Spin-up or two Spin-down oy model with infinite on-site repulsion can be
electrons at a single site, but it permits one spin-up an L anscribed as

one spin-down electron at a given site, a spin-zero pair.

This is ruled out by the infinite on-site repulsion.) In @O o) .
. I . . H=— Z x5 s

addition, the restriction on the summation in the hopping 00200 :

term is relaxed, so that all pairs of distinct sites are

included. This infinite-range hopping is what admits the ot

dynamical supersymmetry. commutators, the eight independent Hubbard operators at

The special form of the Hubbard model which displayseaCh site can be chosen to be the infinitesimal generators
the dynamical supersymmetry is then defined by th&f the algebra su(3) or of the graded algebra spi(2, 1) [7].
Hamiltonian The former would be appropriate for the description of

a boson model. For the present model, involving elec-
H = — Z Cjocja S Z CZTUC].U + 7, trons, the appropriate choice is the graded algebra. The
ith0 ' ij.o ' vacancy is a bosonic state; the spin-up and spin-down
together with a prohibition on the double occupancy ofelectron states are fermionic states. The even sector of
any site. Heret = ), , 7;, is the total number operator the graded algebra is defined by the operators

i,j,o

By a suitable selection of the commutators and anti-

0031-900797/78(22)/4241(4)$10.00 © 1997 The American Physical Society 4241



VOLUME 78, NUMBER 22 PHYSICAL REVIEW LETTERS 2UNE 1997

s — Xﬁ” sl — Xl(Tl) — S@*, The irreducible representations (irreps) of spl(2, 1) [8]
) ) ) are identified by a pair of indices, denotgxd, S], where

So’ = (X" — X)/2, Y, the eigenvalue of’, can in general be any complex
A= XT(Ti) + Xl(li)’ number and, the spin quantum number, can be a positive

. . integer or half a positive odd integer, as usual. The irrep
which generate $0) X u(1). Their commutators are [Y,S] contains at most four €2) X u(1) multiplets of
(s, 897 = +5¥ sV, 507 = 255" [4:, 59 = 0. the form (S',Y'), namely, (S,Y), (S — 1/2,Y + 1/2),
- 1/2,Y — 1/2), and(S — 1,Y). The special cases
which an irrep contains less than four multiplets are
6) ) S, S, which contains only the first two multiplets listed,
Xio» Xlo ’ XOT > and X, Whose' antlcommutators are and[ Y, 1/2], which contains only the first three multiplets
{XT((’)),X(()'T)} —1— a2+ SY, {XT((')),X(()?} = s listed. The dimension of the irrepY, S] is thus8S in
) - ) iy _ R () general, and4S + 1 for the special cases. There are
P Xor} = U (X Xogk =1 = #i/2 = Sy Casimir operators of orders two and three, of which only
All other anticommutators between odd-sector operatorghe former is of interest in the present application. This
vanish. Casimir operator is
It is clearly more convenient to replace the operaior Cy =8 — 72 — (XpXor + XioXo, — XorXto
by the operator
= XoiX10)/2

Yi=1-n/2, and has the eigenvall® — Y? in the irrep[Y, S].
which also commutes with all three spin operators. The The Hamiltonian of interest here can be rewritten in
commutators between operators in the even and odrms of the operators of the total spl(2, 1) superalgebra,

The su(2) algebra is just the electron spin. The odd sectéfg

includes the remaining independent Hubbard operato
(1) () )

sectors are then H = —(X1oXo1 + Xj0Xo) + 2(N — ),

So s X0 ] = X0 /2 So X0 ]l=—X10/2 where N, it will be recalled, is the total nhumber o
[ss) X101 = X728 x(3)] w2, here N, it will b lled, is the total number of
0 xO1— _x® s 0 xD7— x© s sites. Using the anticommutators of the algebra and the
[So™ Xor 1 = =Xor /2, [So", Xor] = Xo /2, definition of the Casimir operator, this can be brought to
[V X1 = Xi0. [59. X301 = Xy . the form

. . . . . . _ A _ ->2 A A .
89 x5 T = =X 9.x51 = —xq) o H =G S ) 2N

. ) 0 . ) 0 involving only the Casimir operators of the superalgebra
[Yi, Xp0 ] = —Xp0 /2, [Yi.Xj0] = =X /2, and of the even-sector algebra. Its eigenvalues are
[?,-,X(()?] - X(()?/z, [f/l-,X(()?] - X(()i)/Z, thus immediately known once the relevant irreps are

specified. When a Hamiltonian can be written as a linear

with the remaining commutators between odd and) €V€Rombination of Casimir operators of a chain of algebras,
operators vanishing. From these it is evident t‘%\% . there is said to be a dynamical symmetry. In this sense,
Xl%)) constitutes a spin doublet with = —1/2 and(X((ﬁ), the special limit of the Hubbard model here studied
—X(()})) constitutes a spin doublet with = 1/2. exhibits a dynamical supersymmetry.

The complete set of commutators and anticommutators To completgdthe. exr;licit Tolution_ of thefmrc])del, litzisl
at a particular site defines the graded Lie algebra spl(2, 1 ecessary to identify the re evant irreps of the spl(2,1)
[8]. This set can be generalized to pairs of sites b uperglgebra. In 9?””&'1 th|§ algebra is not_complet_ely
replacing the identical site indices in each commutatofeduc'bf’ k;[hekre EX'St redpc:blg re_presenéatu:{ns which
or anticommutator bracket by two different indices and¢@nnot be broken down entirely into irreps [8]. However,
including on the right-hand side of each relation athe irreps of relevance to the Hubbard model turn out not

Kronecker delta between the two site indices. It is ther‘}0 have this pathology. As a first step, it is helpful to

possible to define a total or resultant spl(2, 1) in terms ofqlentlfy the basic irrep which contains the fundamental

the operators single-site states. The three statgg), |if), and|il),
when acted upon by the generators of the superalgebra,

5. = ZS@ So = ZS(()i) are found to span the irrdp/2,1/2], as follows:
I i Solity = 1/2[iT),  S+lit) =0, S_[iT) = lil),
P=S0=N-a/2, Xeo=D XN, Plity = 121, Solil) = —1/2lil),
Xow = > Xy Soli0) = 0, S, 1i0) =0, §_|i0) =0,

S N N1
which satisfy the same set of (anti) commutation relations Y[i0) = 0, Xoolio’) =0, Xg0li0) = lio),
as the single-site operators. Xoslio') = 6541i0),  Xos1i0) = 0.
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The multiparticle states of the model thus all belong to The multiplet(0, N), with » = 0 andS = 0, occurs ex-
[1/2,1/2]V. It is clear thatn, the number of electrons, actly once, and belongs only to the irrfgg — 1/2,1/2].
satisfies) = n = N, since double occupancy of any site This irrep therefore has multiplicity one. It contains, in
is excluded, so thaiv/2 =Y = N and Y, like S, is addition to the multiple{0, N), the multiplets(1/2, N —
either an integer or half an odd integer, in this specificl/2) and (0,N — 1). The former multiplet, withn = 1
application. SinceS is the total spin ofn spin-1/2 and S = 1/2, occursN times, soN — 1 of its occur-
particles, it will be an integer for evem and half an odd rences must be in other irreps. It could belong to the
integer for oddz. SinceN is always an integety willbe  irreps[N — 1/2,1/2] or [N — 1,1]. So the irredN —

an integer for evem and half an odd integer for odel. 1, 1] must have multiplicityN — 1. Similar arguments

So the sum of andY is an integer in any state. can be used to determine the multiplicities of other
Determination of the irreps included [1/2,1/2]¥ is  irreps, leading to a general formula for the multiplicity
facilitated by the branching rule of the irrep[Y, S] in the decomposition of1/2,1/2]",

which can be established by mathematical induction.

[Y.s]e[1/2,1/2] =[Y + 1/2,S + 1/2]®[Y + 1,S]  The multiplicity is N!2S/Q2Y — N — D!(N — Y +
oY +1/2,5 — 1/2], SN — Y — S)!I(Y? — §?), except for the casiE = S,

which occurs only in the exceptional irr¢y /2, N/2] of
where the third irrep on the right hand side is omittedmultiplicity one.
if Y =S5 orS =1/2. This rule is easily established by  Collecting together the above results, it is possible to
combining the appropriate &) X u(1) multiplets in the  write down the complete spectrum of the Hubbard model
two irreps being multiplied. It may be used to build up thein the Nagaoka limit with infinite-range hopping. Fer
irreps relevant to thev-site model, starting froorW = 1  electrons onV sites, the ground state is highly degenerate.
and increasingV by unity at each step by multiplying by It occurs at energy-2(N — n) (in units of the hopping
the basic irrep. In this way it is found that, for givéy  strengtht) and accommodates all spins frony2 — 1
irreps occur for each value df from its minimum value down to 0 or1/2 (for n even or odd, respectively), the
N/2 to a maximum value&v — 1/2, in steps ofl /2. For  multiplicity of the state of spii§ beingN! (25 + 1)/(N —
each value ofY, irreps occur for each value o from  n)!(n/2 + S)!(n/2 — S — D![(N — n/2)(N — n/2 +
its maximum valueV — Y to a minimum valuel/2or1 1) — S(S + 1)]. The ground state does not include the
(depending on whether is odd or even), in unit steps. maximum spinS = n/2, so it cannot be ferromagnetic.
A given irrep [Y,S] may occur more than once in the  Next, in order of increasing energy, is a band of states at
decomposition. The multiplicity of each irrep needs to beenergies-(N — 3n/2 + S), including states of spin from
determined. n/2 down to 1 or1/2 (for n even or odd, respectively),

For a givensS and Y, the multiplet(S,Y) can occur the multiplicity of the state of spils beingN!2S/(N —
inthe irepd Y, S], [¥Y — 1/2,8 + 1/2],[Y + 1/2,S + n — D)!'(n/2 + ) (n/2 — H'[(N — n/2)* — S2]. The
1/2], and[Y,S + 1]. (Note that for certain extreme ferromagnetic state§ = n/2, occurs at precisely half the
values ofY andS not all of these four irreps will in fact ground-state energy. This band does not include a state of
exist.) From the expression for the Hamiltonian in termsspin S = 0, but all other spins occur. It is followed, at yet
of the Casimir operators of spl(2, 1) and®ux u(1), the  higher energy, by another band of states at energids —
eigenvalue of the multiplet in each of these irreps can bgn/2 — S — 1), including states of spin from/2 — 1
written down immediately, and @V — 3Y — S, 2(N —  down to 0 or1/2 (for n even or odd, respectively), the
Y),2(2Y — N),and2N — 3Y + § + 1, respectively. In  multiplicity of the state of spii§ beingN!2(S + 1)/(N —
terms of the number of electrons, these are—=N + n — )!(n/2+ S + D) (n/2 — S — DI[(N — n/2)? —
3n/2 — 8, n, =2(N —n), and =N + 3n/2 + S + 1, (S + 1)*]. This band does contain a state of sfir= 0,
respectively. but not a ferromagnetic state of sgfin= n/2.

A multiplet of the form (S,Y) hasn = 2(N — Y) Finally, the state of highest energy is again highly
electrons of total spiy. Since there ar&/ sites available, degenerate. It occurs at energy and accommodates
with at most one electron at each site;aalectron state of spins fromn/2 down to 0 or1/2 (for n even or odd,
spin projection = (n; — ny)/2, using a self-explanatory respectively), the multiplicity of the state of spthbeing
notation for the numbers of spin-up and spin-down elecN!(2S + 1)/(N — n — 2)!(n/2 + S + D! (n/2 — S)! X
trons, can be made by distributing the electrons amonf§(N — n/2) (N — n/2 — 1) — S(S + 1)].
the sites inv(n, M) = () (V") = (n/zﬁM)(N;/”z/f&M) All the above results hold for = 0ton = N — 2.
ways. So am-electron state of spi§ can be made in Forn = N — 1, the results are the same for the ground
v(n,S) — v(n,S + 1) =2 + )N!/(N — n)! (n/2 + state and the two bands above it, but the state at energy
S+ 1)!'(n/2 — S)! ways. Restated in terms &fandS, n is a single state of spim/2. Finally, for n = N,
the model containg2S + 1)N!/2Y — N)!(N — Y +  when all sites are occupied by electrons and there can
S+ DIV —Y —8)! multplets (S,Y), distributed be no hopping, all states occur at zero energy, there
among the various irreps of spl(2, 1). are states of all spins froov/2 down to O or1/2
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(for N even or odd, respectively) and the state of spirhighest state does. For repulsive hopping, the spectrum is

S has multiplicityN! 2§ + 1)/(N/2 + S)!(N/2 — S — inverted. This very unusual form of the model takes its
D'IN/2(N/2 + 1) — S(S + 1)], except for the state of place as one of the small class of exactly soluble strongly
spin N /2, which occurs only once. interacting many-fermion models.

For negativer, the spectrum described above would The author is deeply indebted to Eytan Domany, who
simply be inverted. The ground state would then alsaconceived of the special limit of the Hubbard model
accommodate ferromagnetism. here discussed and brought it to the author’'s attention;
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erate at energy per site zero. For gengtathe ground connection with the Hubbard model triggered the above
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