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A Dynamical Supersymmetry in the Hubbard Model
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The Hubbard model, in the limit of infinite on-site repulsion and with hopping of unlimited ran
between all sites, is shown to be exactly and analytically soluble in terms of a dynamical spl
supersymmetry. The complete spectrum is given. [S0031-9007(97)03223-7]

PACS numbers: 71.10.Fd, 02.20.Sv
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The Hubbard model has proved to be a fertile fram
work for the study of the behavior of strongly interac
ing electrons [1,2]. The one-dimensional model has be
solved exactly and completely by means of the Bet
ansatz together with an underlying SO(4) symmetry [3,
It has also been suggested that the superalgebra spl(
could be useful [5–7] in systematizing the study of th
model in the limit of infinite on-site repulsion, which will
be referred to as the Nagaoka limit. It is shown here th
there is a special form of the model which admits an exa
analytic solution by virtue of a dynamical supersymmet
of type spl(2, 1).

The usual form of the Hubbard Hamiltonian is

H ­ 2t
X

ki,jl,s
c

y
iscjs 1 U

X
i

n̂i"n̂i# ,

where the sum in the single-particle (hopping) term
over all nearest-neighbor pairs of sites and both sp
projections, while the sum in the two-body term is ove
all sites. The hopping term involves electron creation a
destruction operators at specific sites, while the interact
term involves electron number operators at each site.
most studies, the signs of the coefficientst and U are
positive, representing an attractive hopping effect and
repulsive on-site interaction. The Hamiltonian is a sp
scalar, so its eigenstates will have well-defined total sp
The form of the model to be investigated here has
infinitely repulsive on-site interaction, which effectively
forbids double occupancy of any site. (Of course, t
Pauli principle forbids two spin-up or two spin-down
electrons at a single site, but it permits one spin-up a
one spin-down electron at a given site, a spin-zero pa
This is ruled out by the infinite on-site repulsion.) I
addition, the restriction on the summation in the hoppin
term is relaxed, so that all pairs of distinct sites a
included. This infinite-range hopping is what admits th
dynamical supersymmetry.

The special form of the Hubbard model which display
the dynamical supersymmetry is then defined by t
Hamiltonian

H ­ 2
X

ifij,s

c
y
iscjs ­ 2

X
i,j,s

c
y
iscjs 1 n̂ ,

together with a prohibition on the double occupancy
any site. Herên ­

P
i,s n̂is is the total number operator
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for electrons. The value oft has been chosen equal to
unity, since it simply sets the energy scale. It shou
be noted that, in this form, the model is complete
independent of the details of the “lattice,” which coul
be in any number of dimensions and of any lattic
type, including totally random or disordered. All that i
required is a denumerable set of sites. The number
sites will be denoted byN . The Hamiltonian is still a
spin scalar.

The constraint prohibiting double occupancy of a si
can be implemented by introducing at each site the
of statesji0l, ji"l, ji#l, where the first index labels the
site and the second indicates a vacancy or a spin-up
spin-down electron at the site. There are nine Hubba
operators of the formX

sid
ab ­ jial kibj at each site, but the

“no double occupancy” constraint can be expressed by
completeness condition

X
sid
00 1 X

sid
"" 1 X

sid
## ­ 1 ,

reducing the number of independent Hubbard operators
each site to eight. These operators satisfy the self-evid
multiplication rule

X
sid
abX

sjd
cd ­ dijdbcX

sid
ad ,

from which can be deduced the commutators and an
commutators

fXsid
ab , X

sid
cd g6 ­ dijsdbcX

sid
ad 6 dadX

sid
cb d .

In terms of these operators, the infinite-range hoppi
Hubbard model with infinite on-site repulsion can b
transcribed as

H ­ 2
X

i,j,s

X
sid
s0X

sjd
0s 1 n̂ .

By a suitable selection of the commutators and an
commutators, the eight independent Hubbard operators
each site can be chosen to be the infinitesimal genera
of the algebra su(3) or of the graded algebra spl(2, 1) [
The former would be appropriate for the description o
a boson model. For the present model, involving ele
trons, the appropriate choice is the graded algebra. T
vacancy is a bosonic state; the spin-up and spin-do
electron states are fermionic states. The even sector
the graded algebra is defined by the operators
© 1997 The American Physical Society 4241
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S
sid
1 ­ X

sid
"# , Ssid

2 ­ X
sid
#" ­ S

sidy

1 ,

S
sid
0 ­ sXsid

"" 2 X
sid
## dy2 ,

n̂i ­ X
sid
"" 1 X

sid
## ,

which generate sus2d 3 us1d. Their commutators are

fSsid
0 , S

sid
6 g ­ 6S

sid
6 , fSsid

1 , Ssid
2 g ­ 2S

sid
0 , fn̂i, Ssid

a g ­ 0 .

The su(2) algebra is just the electron spin. The odd sec
includes the remaining independent Hubbard operat
X

sid
"0 , X

sid
#0 , X

sid
0" , andX

sid
0# , whose anticommutators are

hXsid
"0 , X

sid
0" j ­ 1 2 n̂iy2 1 S

sid
0 , hXsid

"0 , X
sid
0# j ­ S

sid
1 ,

hXsid
#0 , X

sid
0" j ­ Ssid

2 , hXsid
#0 , X

sid
0,#j ­ 1 2 n̂iy2 2 S

sid
0 .

All other anticommutators between odd-sector operat
vanish.

It is clearly more convenient to replace the operatorn̂i

by the operator

Ŷi ­ 1 2 n̂iy2 ,

which also commutes with all three spin operators. T
commutators between operators in the even and o
sectors are then

fSsid
0 , X

sid
"0 g ­ X

sid
"0 y2, fSsid

0 , X
sid
#0 g ­ 2X

sid
#0 y2 ,

fSsid
0 , X

sid
0" g ­ 2X

sid
0" y2, fSsid

0 , X
sid
0# g ­ X

sid
0# y2 ,

fSsid
1 , X

sid
#0 g ­ X

sid
"0 , fSsid

2 , X
sid
"0 g ­ X

sid
#0 ,

fSsid
1 , X

sid
0" g ­ 2X

sid
0# , fSsid

2 , X
sid
0# g ­ 2X

sid
0" ,

fŶi , X
sid
"0 g ­ 2X

sid
"0 y2, fŶi , X

sid
#0 g ­ 2X

sid
#0 y2 ,

fŶi , X
sid
0" g ­ X

sid
0" y2, fŶi , X

sid
0# g ­ X

sid
0# y2 ,

with the remaining commutators between odd and ev
operators vanishing. From these it is evident thatsXsid

"0 ,

X
sid
#0 d constitutes a spin doublet withY ­ 21y2 andsXsid

0# ,

2X
sid
0" d constitutes a spin doublet withY ­ 1y2.

The complete set of commutators and anticommutat
at a particular site defines the graded Lie algebra spl(2
[8]. This set can be generalized to pairs of sites
replacing the identical site indices in each commuta
or anticommutator bracket by two different indices an
including on the right-hand side of each relation
Kronecker delta between the two site indices. It is th
possible to define a total or resultant spl(2, 1) in terms
the operators

S6 ­
X

i

S
sid
6 , S0 ­

X
i

S
sid
0 ,

Ŷ ­
X

i

Ŷi ­ N 2 n̂iy2 , Xs0 ­
X

i

X
sid
s0 ,

X0s ­
X

i

X
sid
0s ,

which satisfy the same set of (anti) commutation relatio
as the single-site operators.
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The irreducible representations (irreps) of spl(2, 1) [
are identified by a pair of indices, denotedfY , Sg, where
Y , the eigenvalue of̂Y , can in general be any complex
number andS, the spin quantum number, can be a positiv
integer or half a positive odd integer, as usual. The irr
fY , Sg contains at most four sus2d 3 us1d multiplets of
the form sS0, Y 0d, namely, sS, Yd, sS 2 1y2, Y 1 1y2d,
sS 2 1y2, Y 2 1y2d, and sS 2 1, Y d. The special cases
in which an irrep contains less than four multiplets a
fS, Sg, which contains only the first two multiplets listed
andfY , 1y2g, which contains only the first three multiplets
listed. The dimension of the irrepfY , Sg is thus 8S in
general, and4S 1 1 for the special cases. There ar
Casimir operators of orders two and three, of which on
the former is of interest in the present application. Th
Casimir operator is

Ĉ2 ­ $S2 2 Ŷ 2 2 sX"0X0" 1 X#0X0# 2 X0"X"0

2 X0#X#0dy2
and has the eigenvalueS2 2 Y2 in the irrepfY , Sg.

The Hamiltonian of interest here can be rewritten
terms of the operators of the total spl(2, 1) superalgebra

H ­ 2sX"0X0" 1 X#0X0#d 1 2sN 2 Ŷ d ,
where N, it will be recalled, is the total number of
sites. Using the anticommutators of the algebra and
definition of the Casimir operator, this can be brought
the form

H ­ Ĉ2 2 $S2 1 Ŷs Ŷ 2 3d 1 2N ,
involving only the Casimir operators of the superalgeb
and of the even-sector algebra. Its eigenvalues
thus immediately known once the relevant irreps a
specified. When a Hamiltonian can be written as a line
combination of Casimir operators of a chain of algebra
there is said to be a dynamical symmetry. In this sen
the special limit of the Hubbard model here studie
exhibits a dynamical supersymmetry.

To complete the explicit solution of the model, it is
necessary to identify the relevant irreps of the spl(2,
superalgebra. In general, this algebra is not complet
reducible; there exist reducible representations whi
cannot be broken down entirely into irreps [8]. Howeve
the irreps of relevance to the Hubbard model turn out n
to have this pathology. As a first step, it is helpful t
identify the basic irrep which contains the fundament
single-site states. The three statesji0l, ji"l, andji#l,
when acted upon by the generators of the superalgeb
are found to span the irrepf1y2, 1y2g, as follows:

S0ji"l ­ 1y2ji"l, S1ji"l ­ 0, S2ji"l ­ ji#l ,

Ŷ ji"l ­ 1y2ji"l, S0ji#l ­ 21y2ji#l ,

S1ji#l ­ ji"l, S2ji#l ­ 0, Ŷ ji#l ­ 1y2ji#l ,

S0ji0l ­ 0, S1ji0l ­ 0, S2ji0l ­ 0 ,

Ŷ ji0l ­ 0, Xs0jis
0l ­ 0, Xs0ji0l ­ jisl ,

X0s jis0l ­ dss0 ji0l, X0sji0l ­ 0 .
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The multiparticle states of the model thus all belong
f1y2, 1y2gN . It is clear thatn, the number of electrons,
satisfies0 # n # N, since double occupancy of any sit
is excluded, so thatNy2 # Y # N and Y , like S, is
either an integer or half an odd integer, in this speci
application. SinceS is the total spin ofn spin-1y2
particles, it will be an integer for evenn and half an odd
integer for oddn. SinceN is always an integer,Y will be
an integer for evenn and half an odd integer for oddn.
So the sum ofS andY is an integer in any state.

Determination of the irreps included inf1y2, 1y2gN is
facilitated by the branching rule

fY , Sg ≠ f1y2, 1y2g ­ fY 1 1y2, S 1 1y2g © fY 1 1, Sg
© fY 1 1y2, S 2 1y2g ,

where the third irrep on the right hand side is omitte
if Y ­ S or S ­ 1y2. This rule is easily established by
combining the appropriate sus2d 3 us1d multiplets in the
two irreps being multiplied. It may be used to build up th
irreps relevant to theN-site model, starting fromN ­ 1
and increasingN by unity at each step by multiplying by
the basic irrep. In this way it is found that, for givenN ,
irreps occur for each value ofY from its minimum value
Ny2 to a maximum valueN 2 1y2, in steps of1y2. For
each value ofY , irreps occur for each value ofS from
its maximum valueN 2 Y to a minimum value1y2 or 1
(depending on whethern is odd or even), in unit steps
A given irrep fY , Sg may occur more than once in the
decomposition. The multiplicity of each irrep needs to b
determined.

For a givenS and Y , the multiplet sS, Yd can occur
in the irrepsfY , Sg, fY 2 1y2, S 1 1y2g, fY 1 1y2, S 1

1y2g, and fY , S 1 1g. (Note that for certain extreme
values ofY andS not all of these four irreps will in fact
exist.) From the expression for the Hamiltonian in term
of the Casimir operators of spl(2, 1) and sus2d 3 us1d, the
eigenvalue of the multiplet in each of these irreps can
written down immediately, and is2N 2 3Y 2 S, 2sN 2

Y d, 2s2Y 2 Nd, and2N 2 3Y 1 S 1 1, respectively. In
terms of the number of electronsn, these are2N 1

3ny2 2 S, n, 22sN 2 nd, and 2N 1 3ny2 1 S 1 1,
respectively.

A multiplet of the form sS, Y d has n ­ 2sN 2 Y d
electrons of total spinS. Since there areN sites available,
with at most one electron at each site, ann-electron state of
spin projectionM ­ sn" 2 n#dy2, using a self-explanatory
notation for the numbers of spin-up and spin-down ele
trons, can be made by distributing the electrons amo
the sites innsn, Md ­ s N

n"
d s N2n"

n#
d ­ s N

ny21M d s N2ny22M
ny22M d

ways. So ann-electron state of spinS can be made in
nsn, Sd 2 nsn, S 1 1d ­ s2S 1 1dN!ysN 2 nd! sny2 1

S 1 1d! sny2 2 Sd! ways. Restated in terms ofY andS,
the model containss2S 1 1dN!ys2Y 2 Nd! sN 2 Y 1

S 1 1d! sN 2 Y 2 Sd! multiplets sS, Yd, distributed
among the various irreps of spl(2, 1).
o

c

d

e

s
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-
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The multiplets0, Nd, with n ­ 0 andS ­ 0, occurs ex-
actly once, and belongs only to the irrepfN 2 1y2, 1y2g.
This irrep therefore has multiplicity one. It contains,
addition to the multiplets0, Nd, the multipletss1y2, N 2

1y2d and s0, N 2 1d. The former multiplet, withn ­ 1
and S ­ 1y2, occursN times, soN 2 1 of its occur-
rences must be in other irreps. It could belong to t
irreps fN 2 1y2, 1y2g or fN 2 1, 1g. So the irrepfN 2

1, 1g must have multiplicityN 2 1. Similar arguments
can be used to determine the multiplicities of oth
irreps, leading to a general formula for the multiplicit
of the irrep fY , Sg in the decomposition off1y2, 1y2gN ,
which can be established by mathematical inductio
The multiplicity is N! 2Sys2Y 2 N 2 1d! sN 2 Y 1

Sd! sN 2 Y 2 Sd! sY2 2 S2d, except for the caseY ­ S,
which occurs only in the exceptional irrepfNy2, Ny2g of
multiplicity one.

Collecting together the above results, it is possible
write down the complete spectrum of the Hubbard mod
in the Nagaoka limit with infinite-range hopping. Forn
electrons onN sites, the ground state is highly degenera
It occurs at energy22sN 2 nd (in units of the hopping
strength t) and accommodates all spins fromny2 2 1
down to 0 or1y2 (for n even or odd, respectively), the
multiplicity of the state of spinS beingN! s2S 1 1dysN 2

nd! sny2 1 Sd! sny2 2 S 2 1d! fsN 2 ny2d sN 2 ny2 1

1d 2 SsS 1 1dg. The ground state does not include th
maximum spinS ­ ny2, so it cannot be ferromagnetic.

Next, in order of increasing energy, is a band of states
energies2sN 2 3ny2 1 Sd, including states of spin from
ny2 down to 1 or1y2 (for n even or odd, respectively)
the multiplicity of the state of spinS beingN! 2SysN 2

n 2 1d! sny2 1 Sd! sny2 2 Sd! fsN 2 ny2d2 2 S2g. The
ferromagnetic state,S ­ ny2, occurs at precisely half the
ground-state energy. This band does not include a stat
spinS ­ 0, but all other spins occur. It is followed, at ye
higher energy, by another band of states at energies2sN 2

3ny2 2 S 2 1d, including states of spin fromny2 2 1
down to 0 or1y2 (for n even or odd, respectively), the
multiplicity of the state of spinS beingN! 2sS 1 1dysN 2

n 2 1d! sny2 1 S 1 1d! sny2 2 S 2 1d! fsN 2 ny2d2 2

sS 1 1d2g. This band does contain a state of spinS ­ 0,
but not a ferromagnetic state of spinS ­ ny2.

Finally, the state of highest energy is again high
degenerate. It occurs at energyn and accommodates
spins fromny2 down to 0 or1y2 (for n even or odd,
respectively), the multiplicity of the state of spinS being
N! s2S 1 1dysN 2 n 2 2d! sny2 1 S 1 1d! sny2 2 Sd! 3

fsN 2 ny2d sN 2 ny2 2 1d 2 SsS 1 1dg.
All the above results hold forn ­ 0 to n ­ N 2 2.

For n ­ N 2 1, the results are the same for the groun
state and the two bands above it, but the state at ene
n is a single state of spinny2. Finally, for n ­ N,
when all sites are occupied by electrons and there
be no hopping, all states occur at zero energy, th
are states of all spins fromNy2 down to 0 or 1y2
4243
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(for N even or odd, respectively) and the state of sp
S has multiplicityN! s2S 1 1dysNy2 1 Sd! sNy2 2 S 2

1d! fNy2sNy2 1 1d 2 SsS 1 1dg, except for the state of
spinNy2, which occurs only once.

For negativet, the spectrum described above wou
simply be inverted. The ground state would then al
accommodate ferromagnetism.

In the thermodynamic limit,N ! `, the quantity of in-
terest is the energy per site, expressed in terms of the fr
tion f ­ nyN of occupied sites. Note thatf takes values
between zero and one. Forf ­ 1, all states are degen-
erate at energy per site zero. For generalf, the ground
state has energy per site22s1 2 fd and the spin struc-
ture previously described. It is followed by a band o
states at energies per site from2s1 2 f d sS ­ ny2d to
2s1 2 3fy2d sS ­ 1y2 or 1d, then by a band of states
at energies per site of2s1 2 3fy2d sS ­ 0 or 1y2d to
2s1 2 2f d sS ­ ny2 2 1d. These two bands are sepa
rated by a gap in energy per site of2yN, twice the spacing
between different spin states in each of the two bands.
nally, there is a state at energy per sitef, with the spin
structure previously given.

To summarize, it has been demonstrated that
Hubbard model, in the Nagaoka limit of infinite on-site re
pulsion and with infinite-range hopping between all site
exhibits a dynamical supersymmetry of type spl(2,
which admits an exact, analytic solution. The spectru
has been given, with its spin structure and multiplicit
and holds for any form of lattice at all (or even no la
tice) and in any number of dimensions, provided the nu
ber of sites is denumerable. For attractive hopping, t
ground state has no ferromagnetic component, though
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highest state does. For repulsive hopping, the spectrum
inverted. This very unusual form of the model takes i
place as one of the small class of exactly soluble strong
interacting many-fermion models.
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