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Transverse-Wake Wave Breaking
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A finite-width laser pulse of high intensity propagating in an underdense plasma excites a transv
inhomogeneous, finite amplitude wakefield. This wake wave undergoes a transverse wave break
to the increase of the wake front curvature, followed by the self-intersection of electron traject
Transverse break occurs at much lower wave amplitudes than the conventional one-dimensiona
break. The resulting structures have generic forms that can be described by modified curves p
to a parabola. Simulations with the particle-in-cell electromagnetic relativistic codeVLPL2D show such
structures appearing. [S0031-9007(97)03285-7]
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Charged particle accelerators that use the ultrastr
electric field of a plasma wave driven in an underden
plasma by modern tabletop multiterawatt lasers [1] ha
been studied theoretically [2], experimentally [3], and n
merically [4–6]. The wave is excited in the wake behi
a short pulse [2] or develops as a result of laser-plas
instabilities [5,7]. The main goal of all such accelerato
is to reach the largest possible accelerating field. A nat
limit is given by wave breaking which, in a cold plasm
and in the one-dimensional (1D) approximation, giv
[8] Em ­ smcvpeyed f2sgph 2 1dg1y2, with gph ; s1 2

b
2
phd21y2 ø vyvpe, bph ; yphyc, and yph the plasma

wave phase velocity which is equal to the pulse group
locity. The break appears when the electron displacem
in the wave is of the order of its wavelength. Even
a 1D geometry, the wave break takes different forms
appears either as a crash similar to that of a gravity w
at the sea shore, in which case the wave disappears,
it occurs adiabatically, as a sharp crest on the wave
The latter regime in the plasma case means that only r
tively few electrons leave the plasma wave. These
electrons can enter the acceleration phase of the wake
[9,10]. The breaking of the plasma wave, generated
forward stimulated Raman scattering of the laser radiat
leads to effective electron acceleration, as seen in part
in-cell (PIC) simulations [5–7], and is thought to be th
basic mechanism of fast electron production in the exp
ments presented in Ref. [3] (see discussion in Ref. [1
Since the largest accelerating fields occur in strongly n
linear plasma waves, the wave-breaking conditions and
typical structure of the break are of great interest for wa
field accelerators. In addition, the study of the wave-bre
structure is of general interest for nonlinear physics.

The process of wave breaking in 2D and 3D plas
waves is expected to exhibit more complicated proper
[12]. A 2D wakefield plasma wave excited by a fini
width, short laser pulse, or by a pulse with a sharp lead
edge in an underdense plasma has a specific “horses
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[6] (or “D shape”) structure where the curvature of th
constant phase surfaces increases with the distance
the pulse. The curvature radiusR decreases until it is
comparable to the electron displacementj in the nonlinear
plasma wave leading to a new type of self-intersection
the electron trajectories. The resulting destruction of t
regular structure of the wave can be invoked to expla
the decay of the wakefield plasma wave observed in
simulations.

The goal of the present Letter is to describe the mec
nism and the structure of a 2D break and to derive fro
it an estimate of the number of regular (i.e., not broke
wakefield periods behind the laser pulse. We consi
a wakefield plasma wave excited by a laser pulse of
nite width S driven “resonantly” by a pulse with length
equal to or shorter than the plasma wavelength or b
pulse with a sharp leading front. The resonance co
dition gives vlykl ­ yg, where yg is the pulse group
velocity andvl and kl are the local plasma wave fre
quency and wave vector that can be transversely inhom
geneous. The transverse nonuniformity ofvl is caused
by the inhomogeneity of the plasma density, if the las
pulse is guided in a plasma channel [13], by the re
tivistic dependence ofvl on the plasma wave amplitude
which is determined by the pulse transverse shape,
by the pulse generated magnetic field, the magnitude
which vanishes along the axis and increases in the tra
verse direction as shown in the simulations presented
Refs. [4,14–16]. In the presence of a transverse magn
field the frequency of the longitudinal plasma oscillatio
vl ­ sv2

pe 1 v
2
Bed1y2, with vpe the plasma frequency and

vBe the cyclotron frequency. The general dependen
of the plasma wave frequency on the transverse coo
nate y can be approximated in the vicinity of the ax
by the parabolic formvls yd ø vls0d 1 Dvls yySd2. For
a pulse guided in a channel,Dvl is the difference be-
tween the plasma frequency outside and inside the ch
nel. For an ultrahigh intensity pulse,a ; eA'ymc2 ¿ 1,
© 1997 The American Physical Society 4205



VOLUME 78, NUMBER 22 P H Y S I C A L R E V I E W L E T T E R S 2 JUNE 1997

e
c

e
la

v
l

g

i
e
w

h

h

e
v
a

-

c
g

n-

f

va-

k

s-
i-
is

n

on-
ty

e

of
of
ng
n
d

e-
p
ed
i-
ff-
ses

its
with transverse profileas yd ­ as0d s1 2 y2yS2d, we have
Dvl ø vls0d ­ pvpyf2as0dg. Herevp is the nonrela-
tivistic plasma frequency andA' is the radiation vector
potential. The transverse nonuniformityvl means that
also the plasma wake wavelengthll ­ 2pykl depends
on y and that the phase surfaces are curved. The exp
sion of the constant phase surfaces,csx, yd ­ vls yd st 2

xyyphd ­ const, shows that their curvature1yR increases
linearly with the distanceL from the laser pulse,1yR ­
2LDvlyvls0dS2, where L ; cyphyvls0d. Integer val-
ues ofLvls0dy2pyph correspond to the number of wak
plasma wave periods behind the pulse. Thus we
write the constant phase surfaces asx0 ; x 2 ypht 1

cyphyvls0d ­ y2
0y2R.

In a nonlinear plasma wave the real position of the co
stant phase surfaces is shifted from the surface given ab
by the oscillation amplitudejs y0d. Thus, when curvature
radius R becomes of the order of the electron displac
mentj, the wake plasma wave starts to break transvers
From these considerations, the distance between the
pulse and the first place of breaking can be estimated
vls0dS2y2Dvlj, and the number of the regular wake wa
periods asv2

l S2y4pcDvlj. The exact form and spatia
dependence of the displacementj in a 2D (or 3D) configu-
ration depends on the specific laser plasma regime un
consideration. In addition, the presence of an inhomo
neous quasistatic magnetic field influences the oscillatio
In the following, for the sake of simplicity, we supposej to
be perpendicular to the parabolic phase surfaces derive
the linear approximation. As noted below, this assumpt
is not critical as long as the orientation of the displacem
does not deviate too strongly from the normal. Then
can write the shifted surface as

x ­ x0 1 js y0dRysR2 1 y2
0d1y2,

y ­ y0 2 js y0dy0ysR2 1 y2
0 d1y2, (1)

x0 ­ y2
0y2R .

If we simply neglect the dependence of the displac
ment js y0d on the coordinatey0 along the wave front,
Eq. (1) defines a curve parallel to a parabola [17]. T
singularity which is formed forR # j corresponds to the
self-intersection of the electron trajectories. Near this s
gularity the dependence ofx on y is of the form y ø
jxj3y4 (see, e.g., [18]). ForR , j a multivalued struc-
ture appears, i.e., the wave breaks. The constant p
curvesysxd for three different values of the ratiojyR are
shown in Fig. 1(a). The curve on the right of the figur
jyR ­ 0.84, still resembles a parabola, the central cur
is taken close to the transverse wave-break condition
shows a sharp joint atx ­ 0, while the curve on the left,
jyR ­ 2.1, is known as the “swallowtail” [18] in catas
trophe theory. We notice here that catastrophe theory s
gests which structurally stable wave-breaking regimes
occur [18], i.e., which structures are robust against chan
in the exact form of the displacementj. Near the breaking
4206
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FIG. 1. Development of the transverse wave breaking. Co
stant phase curvesy ­ ysxd are shown for increasingjyR
from left to right and for differenty dependences of the dis-
placementj, with R the curvature radius: (a) Formation o
the swallowtail whenj does not depend ony (jyR ­ 0.84,
1.05, 2.1); (b) formation of the loop whenj has a Lorentzian
form [js0dyR ­ 0.8, 1, 1.3, d ­ 1.5, 1, 0.6]; (c) change
of the type of singularity asjyR increases above threshold
[js0dyR ­ 1.25, 2.5, 5]; (d) evolution of the butterfly into a
swallowtail-type structure whenj has a sharp off-axis maxi-
mum [js0dyR ­ ny2, n ­ 1, . . . , 6].

threshold, the displacement is close in value to the cur
ture radius,jyR 2 1 ­ ´ ø 1, and the size of the swal-
lowtail is of order´2R alongx and ´3y2R alongy. The
typical portion of the initial parabola affected by the brea
is given byj y0j , ´1y2R.

In a more realistic analysis, the amplitude of the di
placement is not constant and in the most likely cond
tions it has its maximum at the axis. We describe th
dependence with the Lorentzian form:js y0d ­ js0dyf1 1

ds y0yRd2g, whered ø sRySd2. Close to the threshold,
when´ , 4d, the type of the singularity changes as show
in Fig. 1(b) for values, from right to left, ofjyR below,
at and, respectively, above the transverse wave-break c
dition. At the wave-breaking threshold, the singulari
is described by the generic semicubic formx ø j yj2y3,
which corresponds to the cusp catastrophe [18]. For´ ­
js0dyR 2 1 well above the breaking threshold, we hav
´ ø 4pjDvlyvls0dklS2 ¿ 1 while d ø sjySd2. Then
´ . 4d and from Eq. (1) it follows that the singularity
shown in Fig. 1(a) is realized. For these large values
j we see the formation of a loop on the inner side
the parabola changing into the swallowtail-type breaki
as the ratiojyR increases. This transition is shown i
Fig. 1(c). An additional structure of interest, the so-calle
“butterfly” shown in Fig. 1(d), corresponds to a displac
mentj with a local minimum on the axis and two shar
off-axis maxima. Such a displacement could be realiz
in cylindrical geometry in an annular pulse with its max
mum amplitude at a distance from its axis. In addition, o
axis structures can be relevant to large amplitude pul
propagating in a plasma withvpeyv approaching unity,
in which case a large quasistatic magnetic field that has
maximum amplitude off axis is generated.
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In all these model representations of the transve
wave break, the displacementj is much smaller than the
wavelength of the wakefieldll , and electron trajectorie
self-intersect mainly in the transverse direction. Nev
theless, whenj . s2llRd1y2 some electrons can enter th
accelerating electric field region from the transverse dir
tion and can be accelerated along the direction of the la
pulse. This provides an effective mechanism for inject
a relatively small fraction of electrons into the accele
tion region.

The occurrence of transverse wave breaking
been observed in a series of simulations with the tw

FIG. 2. Structure of the break in thesx, yd plane behind
a pulse with amplitudea ­ 2.5, width 26l, and length
20l in a plasma with vyvpe ­ 13 for vty2p ­ 175:
(a) Electromagnetic energy density; (b) electron dens
marking the constant phase surfaces of the wake wa
(c) longitudinal electric field on the axis versusx; (d) spx , xd
phase space integrated alongy.
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dimensional version of the PIC electromagnetic relativis
code VLPL (Virtual Laser-Plasma Laboratory) develope
at MPQ, Garching. Linearly polarized pulses with d
mensionless amplitudes in the rangea ­ 4 to 1.5 have
been considered propagating, alongx, in an underdense
plasma withvpeyv in the range 0.009 to 0.15. The
pulse length has been varied accordingly, from8l to 60l,
and different width to length ratios have been conside
in order to verify the scaling of the number of period
with the square of the transverse sizeS. These runs
have explored different values of the ratio betweenj

and R (and 2pykl) corresponding to different regime
of transverse wave break, all characterized by the f
mation of structures of the type described above. T
numerical results obtained fora ­ 2.5, vpe ­ 0.075v,
length20l, and width26l are shown in Figs. 2 and 3 a
vty2p ­ 175. The plasma wave closest to the pulse
not broken while the second wake plasma wave has
dergone transverse wave break (alongy). As can be seen
from py , y phase space in Fig. 3(a), some electrons
quire large transverse momentapy , 10mc. They move
toward the axis, where their trajectories self-interse
and cause the multistream motion shown in Fig. 3
(see also the discussion in Ref. [11] of the observation
electrons moving transversely to the laser pulse axis in
laser wake field accelerator experiments). A numeri
reconstruction of the spatial structure of the plasma d
placement (not presented here) shows that the assump
that the displacement is nearly perpendicular to the ph
surfaces is essentially correct before multistream mot
appears after the wave break. The inward breaking
the transverse direction explains why the formation
evacuated channels was not observed in our simulation
the relativistic self-focusing [6]. In Fig. 2(b) the electro
density distribution, which marks the position of th
constant phase surfaces, displays, in correspondence

FIG. 3. (a) spy , yd phase space, and (b)spx , yd phase space
integrated alongx.
4207
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the second wake, a swallowtail structure that becom
more blurred in the third wave as a consequence of
intersection of the electron trajectories. The depende
of the longitudinal electric field onx in Fig. 2(c) shows
that transverse wave break decreases its value and p
spoils its regular structure. By comparing the pha
spacesspx , xd in Fig. 2(d) andspx , yd in Fig. 3(b) we see
that the fast electrons, localized inside a narrow reg
on the axis, are accelerated in the swallowtail up
px , 20mc.

In conclusion, a new scenario for the plasma wave br
has been presented that predicts both the location an
structure of the break. These features are generic
thus are relevant to a broad range of regimes of nonlin
wave evolution. In the wakefield plasma wave, only
relatively small part of the wave is involved in the 2D wa
break, some electrons are injected into the accelera
portion of phase space and move in the longitudi
direction, while others are thrown aside. This regi
can lead to the acceleration of fast particles, altho
in an uncontrolled way. The results of this Letter a
also relevant to plasma wakefield accelerators driven
relativistic electron bunches, as the field excited by a fin
size bunch exhibits similar properties.

*On leave from Moscow Institute for Physics and Tec
nology, Dolgoprudny, 141700, Russia.
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