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From Phase to Lag Synchronization in Coupled Chaotic Oscillators
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We study synchronization transitions in a system of two coupled self-sustained chaotic oscillators.
We demonstrate that with the increase of coupling strength the system first undergoes the transition to
phase synchronization. With a further increase of coupling, a new synchronous regime is observed,
where the states of two oscillators are nearly identical, but one system lags in time to the other. We
describe this regime as a state with correlated amplitudes and a constant phase shift. These transitions
are traced in the Lyapunov spectrum. [S0031-9007(97)03271-7]

PACS numbers: 05.45.+b

Synchronization phenomena in coupled chaotic systemsherea = 0.165, f = 0.2, andc = 10. The parameters
have been extensively studied in the context of laser dyw,, = wo = A ande determine the mismatch of natural
namics [1], electronic circuits [2,3], chemical and biologi- frequencies and the coupling, respectively. These equa-
cal systems [4], and secure communication [5]. Completejons serve as a good model for real systems having a
generalized, and phase synchronizations of chaotic oscillatrange attractor that appears via period-doubling cascade,
tors have been described theoretically and observed expeg-g., for electronic circuits [2,3] or chemical systems [17].
mentally. Complete (full) synchronization (CS) implies To describe the phase and the lag synchronization,
coincidence of states of interacting systemg7) = x,(r)  we need to introduce corresponding quantities. For the
[6—8]; it appears only if interacting systems are identi-Rdssler attractor the phase and the amplitude can be
cal. Otherwise, if the parameters of coupled oscillatorconveniently introduced as [13,15,17]
slightly mismatch, the states are cldse(r) — x,(7)] = 0
but remain different [7,9]. A generalized synchronization ¢ = arctanX, A= (2 + )2, (2)
(GS) [10], introduced for drive-response systems, is de- X

fined as the presence of some functional relation betweefhe phase can be easily calculated for each subsystem,

the states of response and drive, i®i(r) = F[xi1(1)]  thus allowing one to determine mean frequendias =
[11]. The phase synchronization (PS) described in [12,13] ; |

) X . and relations of locking between them. To charac-
and experimentally observed in [14] means entrainme $12) g

. i . . rize LS, we introduce a similarity functiof as a time
of phases of chaotic oscillators, whereas their amplltudeaveraged difference between the variableand.x, (with
remain chaotic and noncorrelated; the notion of phase i

th I bei btracted) tak ith the time shift
discussed in details in [15]. The relation between thes ean values being subtracted) taken wi e time sh

fig),

different types of synchronization and the scenarios of tran-

sitions to or between them have not been addressed yet. [x2(t + 7) — x1() )
In this Letter we stgdy synchronlzatlon of symmetri- [P ()Y (3 ()2

cally couplednonidentical oscillators. We demonstrate

that, with the increase of coupling, first the transition fromand search for its minimurmr = min, S(7). If the signals

nonsynchronous state to PS occurs. For larger couplings andx, are independent, the difference between them is

a new regime which we call lag synchronization (LS) isof the same order as the signals themselves; respectively,

observed. LS appears as a coincidencshifted in time  S(7) ~ 1 for all 7. If x1(¢#) = x,(¢), as in the case of CS,

states of two systems, (r + 79) = x,(¢). Finally, with  S(7) reaches its minimuna- = 0 for + = 0. Below, we

a further increase of coupling, the time shift decreases andemonstrate a nontrivial case, when the similarity function

this regime tends to CS. We show that these transition§(7) has a minimum for nonzero time shift meaning a

are related to the changes in the spectrum of Lyapunotime lag exists between the two processes.

exponents (LE). First, we describe the transition to PS in the system
Synchronization is a universal nonlinear phenomenon(l) (see also [12]). The parametasg = 0.97 andA =

and its main features are typically independent of particu6.02 are chosen by trial in such a way that appearance

lar properties of a model. As a first example, we studyof large windows of periodic behavior is avoided. The

S*(r) = ®3)

two coupled Rossler systems [16], calculation of the average frequenci@s, allows us to
follow the transition at = &, =~ 0.036 to the frequency
X1 = —wioyi2 — 212 + elxa — x12), entrainment); = Q, =  (see Fig. 1). Because of high
. coherence of the Rossler attractor, the phase difference in
Yi2 = @12%12 F a1z, @ the synchronous regime is bounded and oscillates around
Zi2=f + 212012 — ©), some mean valué¢ = (¢ (1) — ¢1(1)) # 0.
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' e <¢g, (curves 1 and 2),S ~ 1 and practically does
not depend onr, as can be expected for independent
] signals. For intermediate coupling strength< ¢ < g,
‘ ’ s a minimum of S(7) appears (curves 3 and 4) indicating
the existence of some characteristic time shifbetween
x; and x;. This shift is related to the phase difference
as7y = 6¢/Q. Note that in this regime the amplitudes
are uncorrelated, so the value 6f(r) is relatively
large. Further increase of coupling makes,eat= ¢,
this minimum very sharp (curves 5 and 6) and practically
equal to zero. It means that the states of the systems
become identical, but shifted in time with respect to
each other. The regime of LS is clearly demonstrated
in Fig. 3 by plottingx;(t + 7¢) VS x2(¢). It is important
~0.2 : s . that calculations of(0), i.e., the comparison of; andx;
0.00 0.05 ogo 0.15 0.20 without time shift, reveal no transition at = ¢;. For
larger couplingse > ¢;, the time lagr, continuously
FIG. 1. The frequency differencé}, — (,, the minimum  decreases, but no qualitative transitions are observed.
of the similarity functione, and the four largest Lyapunov e yransitions between different types of synchroniza-
exponentss of two coupled Réssler oscillators vs the coupling . .
e. Three different regions are clearly seen on thevs ¢ tion can be _related to the changes_ln the Lyapunov spec-
plot correspondent to a nonsynchronous state, phase, and 1&m (see Fig. 1). For small coupling < &,, there are
synchronization, respectively. The transitions between thesavo positive LE (corresponding to chaotic amplitudes)
regimes are reflected in the spectrum of Lyapunov exponentgind two nearly zero LE (corresponding to independently

At _the first transition, one of the zero LE becomes nega_ltlverptating phases). At the phase locking transitior: at
while the second transition corresponds to the zero crossing o0

one of the positive LE. The dashed line shows the dependencgr+ ONne€ of the zero LEs becomes negative, correspond-
of S(0) on the coupling; from this plot one can see thating to a definite stable relation between phases (one zero

comparison of states of interacting systems without time shifLE, corresponding to a simultaneous phase shift of both
does not reveal the transition to LS. Two “outbursts” on thergssler oscillators, remains for all couplings, as it should

o |r\1/§ ;ng(’t ate ~ 0.06 ande ~ 0.145 correspond to period iy 41 autonomous system) [12]. The second transition to

0.04

0.02

Qz_gl

For stronger couplinge = ¢; = 0.14 we observe a

new transition to lag synchronization (see thevs ¢ 15 [ i I(CI) ‘ -
curve in Fig. 1). In Fig. 2 we show numerically obtained i I
similarity functions in system (1) for relatively weak, =
. . . . - o [ L -
intermediate, and strong coupling. For weak coupling Ny
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FIG. 3. Projections of the attractor of the coupled system on
0.0 the plane(x; (), x,(¢)) and delayed-coordinate plats(s + 7)

00 03 1,‘3 8 20 vs x(¢) for different values of coupling. (a),(bd = 0.05, a

regime with phase synchronization, (c),(e)= 0.2, a regime
FIG. 2. Similarity functionS(7) for different values of cou- with lag synchronization. The qualitative difference between
pling strengthe (1: ¢ = 0.01, 2: ¢ = 0.015, 3: ¢ = 0.05, 4: PS and LS is clearly seen from (b),(d), where time shifgs=
e = 0.075, 5: £ = 0.15, 6: ¢ = 0.2). With the increase of 0.87 andr, = 0.21, respectively, correspond to the minima of
coupling, a minimum appears, indicating the existence of a certhe similarity functionS(r). The panel (d) demonstrates that
tain phase shift between interacting systems (curves 3 and 4ihe state of one of the oscillators is delayed in time with respect
In the regime of lag synchronization (curves 5 and 6), the mini<to the other; the same can be shown for the variablgsand
mum is extremely small. 212 as well.
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LS corresponds to the change of the sign by the secon@). If we neglect for a moment this phase shift, the
positive LE, but does not exactly coincide with it due to system (7) becomes a system of cougtiehtical chaotic
the intermittency discussed below. This means that thescillators, with a transition teompletesynchronization
relation appears not only between the phases but also b be observed [6,7]. In the system (7) this happens
tween the amplitudes. The phase shift remains, and theréer ¢ = 0.095, to be compared withe; = 0.14 in the
fore a time lag between the signalsandx, is observed. full system. With the phase shift, the transition to lag
To develop an approximate theory of the phase and lagynchronization occurs. Indeed, if we introduce the lag
synchronization in the model (1), let us rewrite it in the variables for the second systefa = A,(t + (), 7, =

variables (2): 2(t + 79), where 7y = (6; — 02)w51, we can reduce

. ' (7) to the system of two identical oscillators, driven with

A2 =aA SN ¢15 — 212 COSP 1 the same force but where the coupling term contains one
+ &(A2,1 COSeha COSh12 — A12COS b12), amplitude that is time shifted. Because the amplitudes

. _ _ in this model are slow, this time shift does not influence
p12=wip+asing;2C08¢ 15+ z12/A12SiNd12  (4)  the full synchronization significantly, so we gdt ~
; ; As,z1 = Z. In the initial variables this means the onset
—e(Ay /A, COSP, | SIN — COS¢ |, Sin , 25 <1 2 e
2(A21/41 $218NP12 $125iN12) of lag synchronization:
2ip=f—cz12 + A12212C08¢ .

x(t + 79) = x1(t), y2t + 70) = y1(1),
The main idea in analyzing this system is to use averaging ~
. . 2t + 70) = z1(1).
over rotations of the phases, », assuming that the am- _ _ _ _ _
plitudes vary slowly. Although there is no small parame- This consideration also explains the discrepancy be-
ter allowing one to perform this procedure mathematicallytween the transition point to lag synchronizationzat=
correct, we will see that the results correspond rather wel: = 0-14 and the point where the second Lyapunov ex-

to the properties of the full system. Introducing the “slow” POnent becomes negatite ~ 0.11). Indeed, it is known
phases; » according tog» = wot + 0, and averag- thatthe transition to complete synchronization is extremely

ing the equations for them, we get sensitive to small perturbations. Even when the second
LE is negative, the local instability can lead to bursts of

i(gl — 0,)) =2A — E(ﬂ + ﬂ)sin(el - 0,). nonsynchronous behavior [19], see Fig. 4. Because of
dt 2 A A this intermittency,o gradually decreases in the region

(®)  0.11 < & < 0.14 until these local instabilities disappear.

When we neglect the fluctuations of the amplitudes on the.We now discuss the relation between the lag synchro-

right-hand side, this equation has a stable fixed point hization and the generr_slllzed one. The relatiir) ~
AAA x,(t + 79) can be rewritten ax;(r) = T7x,(t), where
1412

(6) T' is the generating operator of the flow of the dynamical
e(A3 + AD) system. If the coupling: and the time lagr are small,

which corresponds to the phase locking of the Rdssleévje can approximaté with the generating operator of a

" . .~~~ ~partial (uncoupled) Rossler flow; it can be considered as a
systems. The transition point to phasezsyncgronlzatlo nction in the three-dimensional phase space. Thus, the
can thus be estimated ag ~ 4A{4;42/(4; + AD). If lag synchronization is similar to GS with the function be-
we neglect the variations of the amplitudes we obtalr]ng defined by the dynamics of the partial system.
gp ~ 24 = 0.‘04 (for the parameters used), in rough To check the universal character of the LS, we inves-
agreement with the numerical resajf =~ 0.036.

" ... tigate numerically two dynamical models of real physical
Now we turn to the description of the next transition, stems. One is the electronic circuit experimentally stud-
and for this purpose we assume constant slow phas?

in the equations ford and z. Here we also perform d in [3] in the context of CS; the other is the hybrid laser

the averaging, except for the terms containing both thgystem experimentally studied in [20]. Both systems are

fast phasesp;, and the variableg; », because the latter,

6, — 6, = arcsin

contrary to the amplitudes, cannot be considered as slow. ' ‘ ' |
As a result we obtain ) 5T
>§
y a I b diidid Ll bl ) Lekideicadd ealdddbianld,
Ap = EAI,Z — z12C09wot + 612) ‘f 0 [piigpaisi u M 4{ *
A )
€ =< _g | |
+ §[A2,1 cogf; — 62) — Aj2], (7) = =5 ’ ’ .
f1a=f — cz12 + A2z codwot + 61,). 0 1000 2000 3000 4000 5000

t

This is a system of two coupled periodically driven FIG. 4. The time series,(t + 7) — x,(¢) in the intermittent

oscillators. It is important that the driving in both regione = 0.13, 7 = 0.32. The bursts can be viewed as the
systems is not identical, but comes with the phase shiféxcursions from the low-dimensional “synchronous” attractor.
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