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Dynamical Localization in the Paul Trap
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We show that quantum localization occurs in the center-of-mass motion of an ion stored in a Paul

trap and interacting with a standing laser field. The present state-of-the-art ion trap systems makes the
experimental observation of this phenomenon feasible.  [S0031-9007(97)03219-5]

PACS numbers: 42.50.Dv, 03.65.Sq, 05.45.+b, 32.80.Lg

The phenomenon of dynamical localization—an anatesulting dynamics of the ion follows from the time de-
log of Anderson localization [1] of electronic waves in pendent Schrédinger equation with the Hamiltonkn=
one-dimensional disordered solids—is a fingerprint of32 /5, 4 %(mw2/4) [a + 2gcodw) R + %hwa&z +
quantum chaos [2]. This has motivated the experimer; ) 5 cogki + ¢)cogw. 7). Here the parameters
tal verification of the suppression of ionization of Ryd- 3nd, denote [6] the dc and ac voltages applied to the trap.
berg atoms in microwave fields [3] and the localization inTpe frequency of the ac field is. Herew, is the atomic

the momentum d_istribution of an atom _moving in a phasgrgnsition frequency(), is the Rabi frequency, and is
modulated standing wave [4,5]. In this Letter we showipe phase of the standing wave.

that t_he effect of dynamical Iocallzatlc_)n of quantum me- Tpe phenomenon of dynamical localization is a quan-
chanical wave packets appears also in the center-of-maggm coherence effect [2]. It is therefore extremely sensi-
motion of a single ion confined in a Paul trap [6] and in-tjye [12] to noise such as spontaneous emission. In order
teracting with a laser field. This system is of particular, 4y0id spontaneous emission we consider the ion to be
interest, since here the spatial periodicity of the standingyitially in its internal ground state and the detuning of the
wave is broken by the binding potential of the trap. As|gser fieldA = wr — w, 1o be large [13]. After mak-

a result we find localization both in the momentum anding the rotating wave approximation and introducing the
the position variables in contrast to the previous examplegjimensionless position = 2k%, times = w7/2, and mo-

The localization lengths are shown to be related to classimentump = (4k/mw)p the dimensionless Hamiltonian
cal diffusion in the energy of a reference oscillator. The

recent experimental successes [7] in controlling the quan- 16k2 = 1, 1 R
tum motion in a Paul trap make our proposal experimen- H = s H = 5 Pt 5 (a + 2qcos2t)z
tally feasible. e

The phenomenon of dynamical localization in the Paul + Qcodi + 2¢)

trap emerges because (i) the Paul trap is an explicitly time
dependent device, (ii) a standing laser wave provides with the effective coupling constaft = 2/ik2Q3/mw?A
spatially periodic light potential for the center-of-mass mo-governs via the Schrodinger equatidid/dt)|i(x, 1)) =
tion, and (iii) the temperature of the ion is so low that its H|(x, 1)) the vibratory motion of the ion described by the
motion has to be treated quantum mechanically [8]. Startstate|i(x, )). Herek = 8k>/i/mw is the effective Planck
ing from the Hamiltonian describing the motion in the constant.
Paul trap in the presence of the standing wave we com- Dynamical localization arises from the properties of the
pute the position and momentum distributions of the ionquantum evolution in the domain of classically chaotic
by solving the corresponding Newton'’s equations and thelynamics. Choosing the maximum of the cosine potential
Schradinger equation. We show that the classical distrito be located at the center of the trap potential, e= 0
butions are broad [9]. In contrast, the quantum distriiwhen A > 0 or ¢ = 7/2 when A < 0, the dynamics
butions display on top of a broad background a narrowbecome chaotic. Indeed in Fig. 1, where we plot the
three-peaked distribution. We discuss the relation bePoincaré surface of section, we observe a chaotic sea with
tween the classical diffusion and the quantum localizatioriwo stable islands in the neighborhood of the minima of the
lengths, and calculate the Floquet states of this system. W&tanding laser field at = =#. These regular structures
conclude by discussing experimental possibilities for ob-are remnants of the integrable casks= 0 corresponding
serving this phenomenon. to the Mathieu equation and the driven pendulum when
We consider the standard Paul trap setup realized = g = 0.
experimentally in many labs [7,10,11]: a standing laser We now calculate the time evolution of a Gaussian wave
field of frequencyw; and wave vectok aligned along packet centered initially at the stochastic region near the
the x axis couples the internal states of a single two-origin using the split-operator method [14]. For the simu-
level ion of massn to the center-of-mass motion. The lations presented in this Letter the numerical value of the
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of position and momentum. The classical distributions are
broad, while the quantum mechanical ones are dynami-
cally localized. The mixed phase space with stochastic
domains and stable islands results from the combination
of the trap potential and the standing wave, and reflects it-
self in the three-peak structure of the position distribution.
Note that classically these peaks are missing. We have
also verified that dynamical localization is not sensitive to
the initial position of the wave packet in the chaotic re-
gion and hence not destroyed by small fluctuations in the
optical phasep.

A natural explanation of our results emerges when we
make a time transformation which expresses the system
as a combination of a reference harmonic oscillator and
a time dependent potential. We sdt) = [, dt’ r(¢')2,

B s ok . : where r(t) = |e(¢)| is the modulus of the solutios =
-6 0 6 e(t) of the classical Mathieu equation. In the new po-
X sition variable y(7) = r(t)"'x(r) and momentum vari-
FIG. 1. Poincaré surface of section for an ion moving in aablell = dy(r)/dr the Hamiltonian readd = I1%/2 +
strongly detuned standing wave laser field and a time dependea;l%XZ/z + Qr(t)?codr(t)x], wherew, is the frequency
harmonic potential. The dynamics is chaotic all over theqihe time independent reference oscillator. The dynamics
phase space except for two small stable islands around the o h
phase space pointér = 7,p = 0) and (x = —, p = 0). s!mpln‘les considerably wigoen we choose th_e reference os-
The circle with its center at the origin of phase space denote§illator [15] @, = w; + >~ nca, wherew; is the secu-
the contour line of exponential decay of the Gaussian phaskar frequency and, are the Fourier coefficients @f(r).
space distribution of the initial wave packet. The box in thewith €(0) = 1, €(0) = iw, as the choice of initial condi-
upper left cormner shows the area @frk. Here we have iong¢(r) becomes the Floquet solution. Thefr) is 7
used the trap parametets= 0.0, ¢ = 0.4, and the coupling s . .
QO = 0.65. periodic and there is a simple one to one correspondence
between the new and the old variables.
When we now introduce the action-angle variables

Planck constant is = 0.29. The spatial size of the quan- / and ¢ for a harmonic oscillator of frequency, by
tized grid is taken to be-80 = x = 80, with 4096 grid x = v2/w, sind and Il = \2/w, cosd, the Hamil-
points. This allows us to resolve momenta uppte= 23,  tonian of our system reducesty = w,I + QV(1,0,1),
which is sufficient for our purpose. To make a comparisorwhere V(1,0,t) = r(1)* cogr(1)y/21/w, sinf]. Hence
to the classical case we calculate 4096 trajectories startirije potentialV causes quasirandom behavior éfand
from a classical Gaussian ensemble centered initially at thelow diffusion in7 [16]. If we approximate the diffusion
origin and having the same widths in the position and mocoefficient [16] D(I) = Q2/[277(7)] f(Z)” dof [ dt
mentum as the quantum wave packet. aV(I,6,t)/90 by a constantD(I) ~ D, then normal

In the top of Fig. 2 we show for an example case thdinear diffusion off leads to anomalous diffusion [17] with
spreads\x andA p in position and momentum of the clas- Ay, Aw x ¢'/2, Furthermorep, ~ VD/w, andDy ~
sical and quantum mechanical distributions as functions o{/D , implies Dy;/D, = 2. Diffusion in x and p
time. In order to remove the fast oscillations we have avshould be similar when averaging over one period of
eraged the spreads over one cycle of the rf field. There arg(zr) = r(tr + ).
two main stages in the time dependence of the momentum We have tested this hypothesis numerically by carry-
and position spreads. In the short time behavior, that iSpg out simulations forg = 0.2, 0.3, and 0.4 and) &€
before the quantum break time ~ 50, there is no sig- [0.4,1.3]. IndeedAx?, Ap? ~ t*, wherea varies in the
nificant difference between the classical (upper line) andange[0.47,0.74], andD,/D, = v? is a constant (mean
the quantum mechanical (lower line) spreads. In the sedeviation 1%) for a givery, which is in accordance with
ond stage, which characterizes the long time behavior, thadhe fact thatv, depends only og. Furthermorey is close
is, for + > 50, there is a considerable difference between18] to w,, whereas it deviates considerably from the sec-
the classical and the quantum mechanical spreads: wherealsar frequencyw, describing the time averaged binding
the classical ones increase monotonically, the correspongiotential of the Paul trap.
ing quantum mechanical ones oscillate with a small ampli- We can relate the widths of the localized quantum
tude around an average value. This is the first indicationvave packet to the classical diffusion constabts D,
that the quantum mechanical distributions show dynamicaand the break time. by Ax? = D,t¢ andAp? = D 1.
localization. We have also confirmed thakp?/Ax?> = v2, with a

To bring this out most clearly we show in the lower mean deviation of 10% originating from the oscillation of
part of Fig. 2 the time averaged probability distributionsthe widths; see Fig. 2. Therefore we now consider the
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FIG. 2. Classical and quantum dynamics of a single ion moving under the influence of a strongly detuned standing laser field and
a time dependent harmonic potential. On the top we show the time dependence of the widths of the classical (upper curve) and
quantum mechanical (lower curve) position (left) and momentum (right) distributions. We find that classically both widths increase
with time, whereas in the quantum case they oscillate around an average value. On the bottom we show in a semilogarithmic
plot the corresponding position (left) and momentum (right) distributions averaged over time in an interaFof07 around

t = 4757. Indeed the classical distributions are broad giving rise to a polynomial curve, whereas the quantum ones consist of
narrow distributions which rest on a broad pedestal. Note thatPth¢ axis does not begin from zero, so a minor part of the

distributions is left outside the figure. Here we have used a wave packet of wjdt & = 0.29 and the trap parametess= 0.0,
g = 0.4, with the couplingQ) = 0.65.

localization lengthl in the reference oscillator basis with caused by the standing laser field and the trap potential
the frequencywr, i.e., Ax?> = k/v(l + %) and Ap? = [19]. The existence of nearly degenerate doublets is
kv(l + %)_ In Fig. 3 we show! and t. as a function connected [20] to the possibility of quantum tunneling
of Q for severalg. We note that ~ ., which enables between the stable islands [21]—a topic discussed in more
us to write the closed expressidh~* ~ D,/(kv) =  detail in an upcoming paper.
D.v/k. For a ~ 1/2 we havel ~ D /k? where D The Floquet solutiongy;, form a complete orthogonal
is the diffusion constant for the energy of the referencdasis. Hence we can represent any wave packet solution
oscillator. This relation is of the same form as the one/(x,?) of the Schrédinger equation as a superposition
derived for the localization in momentum of the kicked ¥ (x,1) = > Ay (x,7) with time independent coeffi-
rotator [2]. cientsA;. In this respect Floguet states play a role similar
In order to gain deeper insight into this phenome-to that of the energy eigenstates in the time independent
non of localization we now calculate numerically the case, and the quantitieg; have the meaning of time
Floquet quasienergies; and the corresponding eigen- averaged energies. We have calculatgdfor several
statesyy(x,1) = e "My (x, 1) of the trapped ion—laser parameters and found that the distribution is strongly lo-
field system. Here the functions,(x,¢) are periodic calized, for instance, for the parameters of Fig. 2 only four
in time with period 7. We can obtain the Floquet States are enough to cover 60% of the initial wave packet.
states as the eigenstates of the eigenvalue equéior-  We now expandy (x,t) = >, Age "#! 3 ak(t)p,(x),
m, Oi(x, 1) = e ™7y (x, 1) with the time-evolution whereg,(x) are the eigenstates of the reference oscillator
operatorU(t + r,1) propagating the state over one time anda’(r + ) = a%(¢). Intheinsetof Fig. 3 we show the
period. We constructU( + ,1) by integrating the time averaged distributioy(n)| = [>; 14, [?|ak(0)?]"/2
Schrodinger equation for the 200 lowest eigenstates of af the localized wave packet in the basis of the quantum
stationary reference oscillator [15]. numbern of the reference oscillator, and compare it to the
We calculated the quasienergies as a function of thdistribution N e ~"/!, wherel is the localization length in
coupling. The two lowest quasienergies start to grow, ane obtained from the wave packet simulations. We find
become almost degenerate for couplifgs= 0.2. This good agreement with the predicted localization length.
behavior results from an effective double-well potentialHence we have shown that dynamical localization in our
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T ' ' ' ! the mixed phase space, opens up new possibilities to study
] the phenomenon of dynamical quantum tunneling.
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