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Paul
kes the
Dynamical Localization in the Paul Trap
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We show that quantum localization occurs in the center-of-mass motion of an ion stored in a
trap and interacting with a standing laser field. The present state-of-the-art ion trap systems ma
experimental observation of this phenomenon feasible. [S0031-9007(97)03219-5]
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The phenomenon of dynamical localization—an an
log of Anderson localization [1] of electronic waves
one-dimensional disordered solids—is a fingerprint
quantum chaos [2]. This has motivated the experim
tal verification of the suppression of ionization of Ry
berg atoms in microwave fields [3] and the localization
the momentum distribution of an atom moving in a pha
modulated standing wave [4,5]. In this Letter we sho
that the effect of dynamical localization of quantum m
chanical wave packets appears also in the center-of-m
motion of a single ion confined in a Paul trap [6] and i
teracting with a laser field. This system is of particu
interest, since here the spatial periodicity of the stand
wave is broken by the binding potential of the trap.
a result we find localization both in the momentum a
the position variables in contrast to the previous examp
The localization lengths are shown to be related to cla
cal diffusion in the energy of a reference oscillator. T
recent experimental successes [7] in controlling the qu
tum motion in a Paul trap make our proposal experim
tally feasible.

The phenomenon of dynamical localization in the P
trap emerges because (i) the Paul trap is an explicitly t
dependent device, (ii) a standing laser wave provide
spatially periodic light potential for the center-of-mass m
tion, and (iii) the temperature of the ion is so low that
motion has to be treated quantum mechanically [8]. St
ing from the Hamiltonian describing the motion in th
Paul trap in the presence of the standing wave we c
pute the position and momentum distributions of the
by solving the corresponding Newton’s equations and
Schrödinger equation. We show that the classical dis
butions are broad [9]. In contrast, the quantum dis
butions display on top of a broad background a narr
three-peaked distribution. We discuss the relation
tween the classical diffusion and the quantum localizat
lengths, and calculate the Floquet states of this system.
conclude by discussing experimental possibilities for o
serving this phenomenon.

We consider the standard Paul trap setup reali
experimentally in many labs [7,10,11]: a standing la
field of frequencyvL and wave vectork aligned along
the x axis couples the internal states of a single tw
level ion of massm to the center-of-mass motion. Th
0031-9007y97y78(22)y4181(4)$10.00
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resulting dynamics of the ion follows from the time de
pendent Schrödinger equation with the Hamiltonianˆ̃H ­
ˆ̃p

2y2m 1
1
2 smv2y4d fa 1 2q cossvt̃dg ˆ̃x

2
1

1
2 h̄vaŝz 1

h̄V0ŝx cossk ˆ̃x 1 fd cossvLt̃d. Here the parametersa
andq denote [6] the dc and ac voltages applied to the tra
The frequency of the ac field isv. Hereva is the atomic
transition frequency,V0 is the Rabi frequency, andf is
the phase of the standing wave.

The phenomenon of dynamical localization is a qua
tum coherence effect [2]. It is therefore extremely sen
tive [12] to noise such as spontaneous emission. In or
to avoid spontaneous emission we consider the ion to
initially in its internal ground state and the detuning of th
laser fieldD ­ vL 2 va to be large [13]. After mak-
ing the rotating wave approximation and introducing th
dimensionless positionx ; 2kx̃, time t ; vt̃y2, and mo-
mentump ; s4kymvdp̃ the dimensionless Hamiltonian

Ĥ ;
16k2

mv2
ˆ̃H ­

1
2

p̂2 1
1
2

sa 1 2q cos2tdx̂2

1 V cossx̂ 1 2fd

with the effective coupling constantV ­ 2h̄k2V
2
0ymv2D

governs via the Schrödinger equationik2s≠y≠tdjcsx, tdl ­
Ĥjcsx, tdl the vibratory motion of the ion described by th
statejcsx, tdl. Herek2 ­ 8k2h̄ymv is the effective Planck
constant.

Dynamical localization arises from the properties of th
quantum evolution in the domain of classically chaot
dynamics. Choosing the maximum of the cosine potent
to be located at the center of the trap potential, i.e.,f ­ 0
when D . 0 or f ­ py2 when D , 0, the dynamics
become chaotic. Indeed in Fig. 1, where we plot th
Poincaré surface of section, we observe a chaotic sea w
two stable islands in the neighborhood of the minima of t
standing laser field atx ­ 6p. These regular structures
are remnants of the integrable casesV ­ 0 corresponding
to the Mathieu equation and the driven pendulum wh
a ­ q ­ 0.

We now calculate the time evolution of a Gaussian wa
packet centered initially at the stochastic region near
origin using the split-operator method [14]. For the sim
lations presented in this Letter the numerical value of t
© 1997 The American Physical Society 4181
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FIG. 1. Poincaré surface of section for an ion moving in
strongly detuned standing wave laser field and a time depen
harmonic potential. The dynamics is chaotic all over t
phase space except for two small stable islands around
phase space pointssx ­ p, p ­ 0d and sx ­ 2p , p ­ 0d.
The circle with its center at the origin of phase space deno
the contour line of exponential decay of the Gaussian ph
space distribution of the initial wave packet. The box in t
upper left corner shows the area of2pk2. Here we have
used the trap parametersa ­ 0.0, q ­ 0.4, and the coupling
V ­ 0.65.

Planck constant isk2 ­ 0.29. The spatial size of the quan
tized grid is taken to be280 # x # 80, with 4096 grid
points. This allows us to resolve momenta up top . 23,
which is sufficient for our purpose. To make a comparis
to the classical case we calculate 4096 trajectories sta
from a classical Gaussian ensemble centered initially at
origin and having the same widths in the position and m
mentum as the quantum wave packet.

In the top of Fig. 2 we show for an example case t
spreadsDx andDp in position and momentum of the clas
sical and quantum mechanical distributions as function
time. In order to remove the fast oscillations we have
eraged the spreads over one cycle of the rf field. There
two main stages in the time dependence of the momen
and position spreads. In the short time behavior, tha
before the quantum break timetp , 50, there is no sig-
nificant difference between the classical (upper line) a
the quantum mechanical (lower line) spreads. In the s
ond stage, which characterizes the long time behavior,
is, for t . 50, there is a considerable difference betwe
the classical and the quantum mechanical spreads: whe
the classical ones increase monotonically, the correspo
ing quantum mechanical ones oscillate with a small am
tude around an average value. This is the first indicat
that the quantum mechanical distributions show dynam
localization.

To bring this out most clearly we show in the low
part of Fig. 2 the time averaged probability distributio
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of position and momentum. The classical distributions a
broad, while the quantum mechanical ones are dyna
cally localized. The mixed phase space with stochas
domains and stable islands results from the combinat
of the trap potential and the standing wave, and reflects
self in the three-peak structure of the position distributio
Note that classically these peaks are missing. We ha
also verified that dynamical localization is not sensitive
the initial position of the wave packet in the chaotic re
gion and hence not destroyed by small fluctuations in t
optical phasef.

A natural explanation of our results emerges when w
make a time transformation which expresses the syst
as a combination of a reference harmonic oscillator a
a time dependent potential. We settstd ­

Rt
0 dt0 rst0d22,

where rstd ­ jestdj is the modulus of the solutione ­
estd of the classical Mathieu equation. In the new po
sition variablexstd ­ rstd21xstd and momentum vari-
ableP ; dxstdydt the Hamiltonian readsH ­ P2y2 1

v2
r x2y2 1 Vrstd2 cosfrstdxg, wherevr is the frequency

of the time independent reference oscillator. The dynam
simplifies considerably when we choose the reference
cillator [15] vr ­ vs 1

P`
2` ncn, wherevs is the secu-

lar frequency andcn are the Fourier coefficients ofestd.
With es0d ­ 1, Ùes0d ­ ivr as the choice of initial condi-
tions estd becomes the Floquet solution. Thenrstd is p

periodic and there is a simple one to one corresponde
between the new and the old variables.

When we now introduce the action-angle variabl
I and u for a harmonic oscillator of frequencyvr by
x ;

p
2Iyvr sinu and P ;

p
2Ivr cosu, the Hamil-

tonian of our system reduces toHI ­ vrI 1 VV sI , u, td,
where V sI , u, td ­ rstd2 cosfrstd

p
2Iyvr sinug. Hence

the potentialV causes quasirandom behavior ofu and
slow diffusion inI [16]. If we approximate the diffusion
coefficient [16] DsId ­ V2yf2ptspdg

R2p

0 duf
Rp

0 dt 3

≠V sI , u, tdy≠ug2 by a constantDsId , D, then normal
linear diffusion ofI leads to anomalous diffusion [17] with
Dx, Dp ~ t1y2. Furthermore,Dx ,

p
Dyvr andDP ,p

D vr implies DPyDx ­ v2
r . Diffusion in x and p

should be similar when averaging over one period
rstd ­ rst 1 pd.

We have tested this hypothesis numerically by carr
ing out simulations forq ­ 0.2, 0.3, and 0.4 andV [
f0.4, 1.3g. IndeedDx2, Dp2 , ta , wherea varies in the
rangef0.47, 0.74g, andDpyDx ­ n2 is a constant (mean
deviation 1%) for a givenq, which is in accordance with
the fact thatvr depends only onq. Furthermore,n is close
[18] to vr , whereas it deviates considerably from the se
ular frequencyvs describing the time averaged bindin
potential of the Paul trap.

We can relate the widths of the localized quantu
wave packet to the classical diffusion constantsDx, Dp ,
and the break timetp by Dx2 ­ Dxta

p andDp2 ­ Dpta
p .

We have also confirmed thatDp2yDx2 ­ n2, with a
mean deviation of 10% originating from the oscillation o
the widths; see Fig. 2. Therefore we now consider t
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FIG. 2. Classical and quantum dynamics of a single ion moving under the influence of a strongly detuned standing laser
a time dependent harmonic potential. On the top we show the time dependence of the widths of the classical (upper cu
quantum mechanical (lower curve) position (left) and momentum (right) distributions. We find that classically both widths in
with time, whereas in the quantum case they oscillate around an average value. On the bottom we show in a semilog
plot the corresponding position (left) and momentum (right) distributions averaged over time in an interval ofDt ­ 50p around
t ­ 475p. Indeed the classical distributions are broad giving rise to a polynomial curve, whereas the quantum ones co
narrow distributions which rest on a broad pedestal. Note that thePsxd axis does not begin from zero, so a minor part of t
distributions is left outside the figure. Here we have used a wave packet of widths

2
0x ­ k2 ­ 0.29 and the trap parametersa ­ 0.0,

q ­ 0.4, with the couplingV ­ 0.65.
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localization lengthl in the reference oscillator basis wit
the frequencyn, i.e., Dx2 ­ k2ynsl 1

1
2 d and Dp2 ­

k2nsl 1
1
2 d. In Fig. 3 we showl and tp as a function

of V for severalq. We note thatl , tp, which enables
us to write the closed expressionl12a , Dpysk2nd ­
Dxnyk2. For a , 1y2 we have l , D yk22 where D

is the diffusion constant for the energy of the referen
oscillator. This relation is of the same form as the o
derived for the localization in momentum of the kicke
rotator [2].

In order to gain deeper insight into this phenom
non of localization we now calculate numerically th
Floquet quasienergiesmk and the corresponding eigen
statescksx, td ­ e2imktuksx, td of the trapped ion–lase
field system. Here the functionsuksx, td are periodic
in time with period p . We can obtain the Floque
states as the eigenstates of the eigenvalue equationUst 1

p , tdcksx, td ­ e2imkpcksx, td with the time-evolution
operatorUst 1 p, td propagating the state over one tim
period. We constructUst 1 p , td by integrating the
Schrödinger equation for the 200 lowest eigenstates o
stationary reference oscillator [15].

We calculated the quasienergies as a function of
coupling. The two lowest quasienergies start to grow, a
become almost degenerate for couplingsV $ 0.2. This
behavior results from an effective double-well potent
e
e

-

f a

he
nd

l

caused by the standing laser field and the trap poten
[19]. The existence of nearly degenerate doublets
connected [20] to the possibility of quantum tunnelin
between the stable islands [21]—a topic discussed in m
detail in an upcoming paper.

The Floquet solutionsck form a complete orthogonal
basis. Hence we can represent any wave packet solu
csx, td of the Schrödinger equation as a superpositi
csx, td ­

P
k Akcksx, td with time independent coeffi-

cientsAk. In this respect Floquet states play a role simil
to that of the energy eigenstates in the time independ
case, and the quantitiesmk have the meaning of time
averaged energies. We have calculatedAk for several
parameters and found that the distribution is strongly
calized; for instance, for the parameters of Fig. 2 only fo
states are enough to cover 60% of the initial wave pack
We now expandcsx, td ­

P
k Ake2imkt

P
n ak

nstdfnsxd,
wherefnsxd are the eigenstates of the reference oscilla
andak

nst 1 pd ­ ak
nstd. In the inset of Fig. 3 we show the

time averaged distributionjcsndj ­ f
P

k jAkj2jak
ns0dj2g1y2

of the localized wave packet in the basis of the quantu
numbern of the reference oscillator, and compare it to th
distributionN e2nyl , wherel is the localization length in
n obtained from the wave packet simulations. We fin
good agreement with the predicted localization leng
Hence we have shown that dynamical localization in o
4183
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FIG. 3. The localization lengthl and the break timetp as a
function of the couplingV for q ­ 0.2, 0.3, and 0.4 (dotted,
dashed, and solid lines, respectively). Starting fromV ­ 0.4,
l is the lower curve. The inset shows in log-scale the tim
averaged distributionjcsndj of the localized wave packet in the
reference oscillator basis, and the distributionN exps2nyld,
wherel ­ 90 is predicted by the wave packet simulations a
N ­ 0.2 is the normalization. The parameters in the inset a
the same as in Fig. 2.

system can be described as inhibition of classical diffus
in the action variable (vibrational quantum number) of
Floquet reference oscillator.

The observation of this phenomenon is possible w
the present ion trap systems. Indeed taking the exp
mental trap parameters from [7] and considering a dip
transition from the ground state of9Be1 we obtain for a
driving frequencyvy2p , 200 MHz the valuesq , 0.2
and k2 , 0.015. In order to achieve the valuek2 , 0.3
used in our simulations we need a smaller frequency s
as vy2p , 10 MHz; to keepq in the stable region the
applied voltage has to be [6] smaller, or the trap s
larger, than in [7]. To be consistent with the assumpti
of far detuning, the termV0yD ; e in the dimension-
less couplingV ­ sk2Ddys4vde2 has to be small. For
e ­ 0.1 and the detuningDy2p , 10 GHz we obtain
V ­ 0.65, as used in our simulations. Moreover Fig.
shows that localization occurs for a wide range of t
parameters.

We conclude by summarizing our main results. T
motion of a trapped ion interacting with a laser fie
shows the phenomenon of dynamical localization in po
tion and momentum. This phenomenon can be obser
by measuring the fluorescence light from the ion—usi
this technique the measurement of a position distribut
is possible either directly [4,10] or via the vibration
state distribution [7,11]. Moreover the three-peak stuct
of the quantum mechanical position distribution, reflecti
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the mixed phase space, opens up new possibilities to st
the phenomenon of dynamical quantum tunneling.
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