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In this paper we compute the low energy absorption cross section for minimally coupled ma
scalars and spin-1y2 particles into a general spherically symmetric black hole in arbitrary dimensio
The scalars have a cross section equal to the area of the black hole, while the spin-1y2 particles give the
area measured in a flat spatial metric conformally related to the true metric. [S0031-9007(96)021

PACS numbers: 04.70.Dy, 04.65.+e, 11.25.–w
gy
d
d

ss-
ss
le.
o

It
c-
s

sed

ic
e,

lly
er,
y

ied
h

e

r
r

Recently there has been great interest in the possibil
of relating some of the properties of classical blac
hole solutions of the low energy supergravity [1] limits
of string theories to a more fundamental microscop
description based on strings andD-branes. In particular
extremal black holes correspond in many cases to B
(Bogomolny-Prasad-Sommerfeld) states of the theory, a
their number for a given set of charges is expected
be independent of coupling. This allows a compariso
between the number of particle states (computable
weak coupling) with the Bekenstein-Hawking entrop
of the black hole (which would exist for the same
charges at strong coupling). Agreement is found in a
the cases investigated so far [2], thus suggesting th
the Bekenstein-Hawking entropy for a hole does indee
correspond to the count of microstates for the hole, thou
it is still unclear where these microstates actually reside

To study interesting processes like Hawking radiatio
we need to allow quanta to fall into the hole, renderin
it non-BPS, after which it would evaporate back toward
extremality. Are there relations between the properties
particle states at weak coupling and properties of bla
holes, when we consider deviations from extremality
One result in this direction was presented in [3] where
was shown that if one naively ignores interaction betwee
non-BPS states, then the degeneracy of a collecti
of branes and antibranes continues to reproduce
Bekenstein-Hawking entropy for nonextremal holes an
leads to the correct Hawking temperature. In [4,5] it wa
found that if one computes the low energy cross secti
for absorption and emission of neutral scalars in the4 1 1
dimensional extremal black hole, then this cross secti
agrees exactly with that for absorption or emission wit
the corresponding collection of branes at weak couplin
This result has been extended to charged scalars in f
and five dimensions in [6]. Recently it has been show
[7] that the D-brane decay reproduces the correct gre
body factors both for neutral and charged scalar emissio

To discover if these are examples of a general patte
of universality in the theory, we need to observe un
versalities that may exist in the interactions of classic
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black holes. The absorption cross section for low ener
particles in3 1 1 dimensional black holes was studie
extensively in the past, for example, by Starobinski an
Churilov [8], Gibbons [9], Page [10], and Unruh [11]. In
these calculations if we consider the particle to be a ma
less minimally coupled scalar, then we find that the cro
section equals the area of the horizon of the black ho
In [12] and [4], the4 1 1 dimensional cases studied als
yielded a cross section equal to the area of the horizon.
was found in [13], however, that the low energy cross se
tion for fixedscalars (i.e., scalars which take fixed value
at the horizon of some extreme black holes) is suppres
by powers of the frequency.

In this paper we show that for all spherically symmetr
black holes, regardless of the theory in which they aris
the low energy cross section for massless minima
coupled scalars is always the area of the horizon. Furth
we also find the corresponding result for minimall
coupled massless spin-1y2 quanta, and this also exhibits a
universal form. Note that the absorption processes stud
here are not for black holes close to extremality thoug
they do have the restriction to low energies.

We will consider general metrics insp 1 2d spacetime
dimensions of the form

ds2 ­ 2fsrddt2 1 gsrd fdr2 1 r2dV2
pg , (1)

where dVp is the metric on the unitp sphere. The
functions fsrd and gsrd are chosen to ensure that th
metric is asymptotically flat.

At low energies only the mode with lowest angula
momentum will contribute to the cross section. Fo
scalars this is thes wave. The modefvsrd with
frequencyv satisfies the equation

hsrpf fsrdg
1

2 fgsrdg
p21

2 ≠r d2 1 v2fr2gsrdgpjfvsrd ­ 0 .

(2)
Define a coordinatet by the relation

dt ­
dr

rpf fsrdg
1

2 fgsrdg
p21

2

, (3)

so that (2) becomes
h≠2

t 1 v2fr2gsrdgpjfvstd ­ 0 . (4)
© 1997 The American Physical Society 417
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Let the horizon be at the positionr ­ rH . The area of
the horizon is

AH ­ hrHfgsrHdg
1

2 jpvp ; R
p
Hvp , (5)

whereVp is the volume of the unitp sphere.
In the following we will restrict our considerations t

the lowest order inl ­ vl, wherel is the largest length
scale in the solution (1).

Close to the horizon we can write the solution of (4)
treatingr2gsrd , R2

H to be a constant. This is the ne
regionvr , l. At the horizon we want a purely ingoin
wave, which is given byfvstd ­ e2ivR

p
H t . At distances

vR
p
H t ø 1 but vr , l this solution behaves as

fv , 1 2 ivR
p
Ht, t , 2

1
p 2 1

r2s p21d. (6)

This is justified since in this regionvR
p
Ht ø 1 means

vr ¿ svRH d
p

p21 which is consistent with the conditio
vr , l since we havevRH , l ø 1.

In the region far from the horizon,vr . l the wave
equation approximates to that in a flat metric∑

≠2
r 2

psp 2 2d
4r2 1 1

∏
frpy2fvsrdg ­ 0 , (7)

where we have used rescaled variablesr ­ vr. The
corrections to Eq. (7) involve higher powers ofl. This
may be seen by considering the exact equation and no
that when expressed in terms ofr the only dependence
on v are contained in the functionsfsrd andgsrd. Let us
expand

fsrd ­ 1 1
X̀
n­0

∑
vfn

r

∏p211n

(8)

and similarly forgsrd. The coefficientsfn ’s are various
length scales associated with the solution. The lead
power in (8) is determined by the fact that in th
asymptotic region one must have Coulomb law behav
Thus the terms in the far region equation which invol
departures offsrd andgsrd from unity are all suppresse
by powers ofl.

The solution of (7) is

fvsrd ­ r
12p

2 fAJs p21

2
dsrd 1 BJ2s p21

2
dsrdg . (9)

For rv ø 1 (but still vr . l) this reduces to

fvsrd ,
22s p21

2
dA

Gs p11
2 d

1
2s p21

2
d
v12p

Gs 32p
2 d

B
rp21 , (10)

whereas forrv ¿ 1 this becomes

fv ,

s
2

prp

Ω
A cos

∑
r 2

psp 2 1d
4

2
p

4

∏
1 B cos

∑
r 1

psp 2 1d
4

2
p

4

∏æ
, (11)

where forp an odd integer, we take the analytic conti
uation of all expressions inp. Matching onto (6) in the
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overlap region we find

B
A

­ i
22sp21dsvRH dp

p 2 1

Gs 32p
2 d

Gs p11
2 d

, (12)

which gives for the absorption probability of anl ­ 0
spherical wave

G ­ 12

Ç
1 1

B
A eipsp21dy2

1 1
B
A e2ips p21dy2

Ç2
(13)

­ 4
22sp21d

p 2 1
svRH dp sinfpsp 2 1dy2g

Gs 32p
2 d

Gs 11p
2 d

(14)

in the limit v ! 0. To convert the spherical wave
absorption probability into the absorption cross section w
have to extract the ingoings wave from the plane wave:

eikz ! e2ikr r2py2Y00K , (15)

whereY00 ­ V
21y2
p is the normalizeds wave function on

thep sphere. UsingVp ­
2p p11

2

Gs p11

2
d we get

jKj2 ­
1

4vp V21
p V2

p212psGfpy2gd2, (16)

so that the absorption cross sections becomes

s ­ GjK j2 ­
2p s p11dy2R

p
H

Gfsp 1 1dy2g
­ AH , (17)

whereAH is the area of the horizon.
For minimally coupled massless spinors, the Dira

equation may be written down by making use of th
properties of the massless Dirac operator under conform
transformations (see, e.g., [14]):

=mgmc ­ f2 1

2 g0≠0fcg 1 s fgp12d2 1

4 gi≠ifg
p

4 f
1

4 cg ­ 0 .

(18)

Define x ­ f1y4gpy4c and h ­
p

fyg. Then the equa-
tion is

hgi≠ix ­ ivg0x . (19)

Note that

gi≠i ­ gr

∑
≠r 1

p
2r

∏
1

1
r

sgi=idT , (20)

where the subsctiptT stands for the part of the differentia
operator tangent to thep sphere. Write

x ­
X̀
n­0

Fnsrdl1
n 1 Gnsrdl2

n , (21)

where l6 are mutually orthogonal functions of the
angular coordinates only. They satsify

gr g0l6
n ­ l7

n

gr sgi=idT l6
n ­ 7

µ
n 1

p
2

∂
l6

n .
(22)
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Then we get

h

Ω
l2

n

µ
≠r 1

p
2r

∂
Fn 1 l1

n

µ
≠r 1

p
2r

∂
Gn

1
1
r

∑
2

µ
n 1

p
2

∂
Fnl2

n 1

µ
n 1

p
2

∂
Gnl1

n

∏æ
­ ivfFnl1

n 1 Gnl2
n g . (23)

Setting to zero the coefficients ofl6 we get

h

∑
≠r Gn 1 sp 1 nd

Gn

r

∏
­ ivFn ,

h

∑
≠r Fn 2 n

Fn

r

∏
­ ivGn .

(24)

The lowest angular momentum modes are found forn ­
0, which gives (withF ; F0)

≠2
rF 1 ≠rF

∑
≠rh
h

1
p
r

∏
1 v2h22F ­ 0 . (25)

Define the new coordinatex through
d

dx
­ fhsrdrpg

d
dr

. (26)

The equation becomes

≠2
xF 1 v2r2pF ­ 0 . (27)

Again choosing an ingoing wave at the horizon, t
analog of (6) is

F ­ 1 2 ivR
p
Hg

2sd21dy2
H

r2sp21d

p 2 1
, (28)

wheregH ­ gsrHd is the value ofgsrd at the horizon. In
(28) we have used (26) to solve forx for larger

x ­
r2p11

s2p 1 1d
. (29)

Comparing to the case of the scalar, we see that
absorptionprobablity isg

2py2
H times the result for the

scalar.
It is interesting to note for extremal holesrH ! 0 and

gH ! ` so that the absorption cross section for minima
coupled fermions vanishes in this limit of extremality.

The absorption probablility above implies a cro
section

s ­ 2g
2py2
H AH . (30)

Here the factor of2 comes from the two spinorsl6 that
contribute to the absorption at low energies, when
incident wave is a plane wave times a constant spinor.

Note that (30) is2vprp, wherevprp is the area of
the horizon measured in the spatial metricds2 ­ dr2 1
e

he

y

s

e

r2dV2, which is conformal to the spatial metric in (1)
Herer is the isotropic radial coordinate.

It is well known that N ­ 2 supergravity has black
hole solutions that preserve supersymmetry. In that ca
we expect that the cross section for the scalars and
their spinor superpartners are related. The equation
these spinors is not, however, the minimal Dirac equatio
since the superpartners of minimally coupled scalars ha
a coupling to the electromagnetic field strength. This ca
is under investigation.
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