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Universality of Low Energy Absorption Cross Sections for Black Holes
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In this paper we compute the low energy absorption cross section for minimally coupled massles
scalars and spiy/2 particles into a general spherically symmetric black hole in arbitrary dimensions.
The scalars have a cross section equal to the area of the black hole, while th¢sparticles give the
area measured in a flat spatial metric conformally related to the true metric. [S0031-9007(96)02146-1]

PACS numbers: 04.70.Dy, 04.65.+e, 11.25.—w

Recently there has been great interest in the possibilithlack holes. The absorption cross section for low energy
of relating some of the properties of classical blackparticles in3 + 1 dimensional black holes was studied
hole solutions of the low energy supergravity [1] limits extensively in the past, for example, by Starobinski and
of string theories to a more fundamental microscopicChurilov [8], Gibbons [9], Page [10], and Unruh [11]. In
description based on strings abdbranes. In particular these calculations if we consider the particle to be a mass-
extremal black holes correspond in many cases to BP&ss minimally coupled scalar, then we find that the cross
(Bogomolny-Prasad-Sommerfeld) states of the theory, angection equals the area of the horizon of the black hole.
their number for a given set of charges is expected tdn [12] and [4], the4 + 1 dimensional cases studied also
be independent of coupling. This allows a comparisoryielded a cross section equal to the area of the horizon. It
between the number of particle states (computable awas found in [13], however, that the low energy cross sec-
weak coupling) with the Bekenstein-Hawking entropytion for fixedscalars (i.e., scalars which take fixed values
of the black hole (which would exist for the same at the horizon of some extreme black holes) is suppressed
charges at strong coupling). Agreement is found in alby powers of the frequency.
the cases investigated so far [2], thus suggesting that In this paper we show that for all spherically symmetric
the Bekenstein-Hawking entropy for a hole does indeedblack holes, regardless of the theory in which they arise,
correspond to the count of microstates for the hole, thougthe low energy cross section for massless minimally
it is still unclear where these microstates actually reside. coupled scalars is always the area of the horizon. Further,

To study interesting processes like Hawking radiationwe also find the corresponding result for minimally
we need to allow quanta to fall into the hole, renderingcoupled massless spin2 quanta, and this also exhibits a
it non-BPS, after which it would evaporate back towardsuniversal form. Note that the absorption processes studied
extremality. Are there relations between the properties ohere are not for black holes close to extremality though
particle states at weak coupling and properties of blackhey do have the restriction to low energies.
holes, when we consider deviations from extremality? We will consider general metrics irp + 2) spacetime
One result in this direction was presented in [3] where itdimensions of the form
was shown that if one naively ignores interaction between ds> = —f(r)dt* + g(r)[dr® + erQZJ, 1)
non-BPS states, then the degeneracy of a collectio here 40
of branes and antibranes continues to reproduce t
Bekenstein-Hawking entropy for nonextremal holes angi
leads to the correct Hawking temperature. In [4,5] it was
found that if one computes the low energy cross sectiorrln
fo_r absc_)rptlon and emission of neutral scal_ars indthe 1 _scalars this is thes wave. The moded, () with
dimensional extremal black hole, th_en this cross SECt_'OIﬂ'equencyw satisfies the equation
agrees exactly with that for absorption or emission with 1 TR 2 » B
the corresponding collection of branes at weak coupling. (LN (N]F9,)" + 0 rg (¢ (r) = 0.

» is the metric on the unifp sphere. The
nctions f(r) and g(r) are chosen to ensure that the
etric is asymptotically flat.

At low energies only the mode with lowest angular
omentum will contribute to the cross section. For

This result has been extended to charged scalars in four (2)

and five dimensions in [6]. Recently it has been showmefine a coordinate by the relation

[7] that the D-brane decay reproduces the correct grey dr

body factors both for neutral and charged scalar emission. dr = l —, 3
To discover if these are examples of a general pattern re[f(r)]E[g(rn]=

of universality in the theory, we need to observe uni-SO that (2) becomes

versalities that may exist in the interactions of classical {02 + 0*[r’g(r)]}do(1) = 0. (4)
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Let the horizon be at the position= ry. The area of
the horizon is

(5)

An = trulgrm) Y 0, = Rho,,

where(}, is the volume of the unip sphere.

In the following we will restrict our considerations to
the lowest order im = wl, where! is the largest length
scale in the solution (1).

Close to the horizon we can write the solution of (4) by

treating r2g(r) ~ R% to be a constant. This is the near
regionwr < A. At the horizon we War})t a purely ingoing
wave, which is given byp,, (1) = e i@Ru7 At distances
wRiT < 1 butwr < A this solution behaves as

1
p—1
This is justified since in this regiomR};7 < 1 means
wr > (wRy)7" which is consistent with the condition
wr < Asince we havewRy < A < 1.

In the region far from the horizonpr > A the wave
equation approximates to that in a flat metric
p(p —2

[ai— i )+1}[pp/2¢w<p>]=o, @

where we have used rescaled variables= wr. The
corrections to Eq. (7) involve higher powers df This

P ~ 1 — inZT, prh),

(6)

T~ —

may be seen by considering the exact equation and noting

that when expressed in terms pfthe only dependences
on w are contained in the function&r) andg(r). Let us
ofn

expand
® p—1+n
=1
£(r) +ZO[ . }

and similarly forg(r). The coefficientsf,’s are various

(8)

length scales associated with the solution. The leading

power in (8) is determined by the fact that in the

asymptotic region one must have Coulomb law behaviorP€fine x

overlap region we find
B _ 20 V(wRy) T(5E)
p — 1 I‘(l’_“)’

o
2

which gives for the absorption probability of an= 0

spherical wave

(12)

1+ geiﬂ'(p—l)/2 2

1_

13
1+ %e—iﬂ(ﬂ—l)/z (13)

—(p—1)

p— 1

37
I'(=%)
r(5%)
in the limit o« — 0. To convert the spherical wave

absorption probability into the absorption cross section we
have to extract the ingoingwave from the plane wave:

(15)

=4 (wRy)? sinz(p — 1)/2] (14)

eikz — e_ikrr_p/ZY()()K,

—-1/2 . . .
whereYy, = Qp / is the normalized wave function on
pil
2

the p sphere. Using), = Ty We get
L p
KPP = 0,107 2" (T[p/2)*.  (16)
so that the absorption cross sectisrbecomes
27 (P TD/2RY
o =TIK]? = =~ Bo=ay, Q7

~ Tlp + /2]

whereAy is the area of the horizon.

For minimally coupled massless spinors, the Dirac
equation may be written down by making use of the
properties of the massless Dirac operator under conformal
transformations (see, e.g., [14]):

Vuyhu=f iy a0l + (feP ) iy aile figl=0.
(18)
= fl/4gr/*y andh = \/f/g. Then the equa-

Thus the terms in the far region equation which involvelion IS

departures of (r) andg(r) from unity are all suppressed
by powers of).

The solution of (7) is
bu(p) = p 7 [AJe(p) + BIzn(p)].  (9)
Forrw < 1 (butstill wr > A) this reduces to
2_(%])A 2(%) 1-p B
2 (10)

¢w(P)~ F(pTH) + r(3—Tp) P17

whereas forw > 1 this becomes
o

¢“~\/WTM{ACO{p 4
m(p—1) _}} (11)

+ Bco +
{p 4 4

where forp an odd integer, we take the analytic contin-
uation of all expressions ip. Matching onto (6) in the

_mlp-) _m
4

418

hy'dix =iwy'y. (19)

Note that

14

4 1.
y'oi = YF[ar + 2—} + —(y'Vir,
r ¥

where the subsctiff stands for the part of the differential
operator tangent to the sphere. Write

(20)

X = D Fur)AS + Gu(r)A,,
n=0

(21)

where A= are mutually orthogonal functions of the
angular coordinates only. They satsify

Y YN = A7
(22)
Y (y'VirA, = 1(" + %)

AT,

n
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Then we get

h{/\n<a, + ﬁ)Fn + /\;(a, + ﬂ)G,,
2r 2r

e S)r + (s S o |
+—| —(n + & |F,A; + + &G,
r[ <n 2 " " ZG”

= iw[F, A} + G,A,]. (23)
Setting to zero the coefficients af* we get
h[aan + (p + n)ﬂi| =iwF,,
r
24)
Fu (
h|:8,Fn - n—} =iwG,.
r

The lowest angular momentum modes are foundufes
0, which gives (withF = F)

a,h _
92F + a,F[ =+ ﬂ} + wh 2 =0. (25)
r
Define the new coordinate through
d d
— = Pl
=[] (26)
The equation becomes
’F + o*r*F = 0. (27)

Again choosing an ingoing wave at the horizon, the

analog of (6) is
o —(p—1)
F=1-— in[’;gH(d 2L — 1

wheregy = g(ry) is the value ofg(r) at the horizon. In
(28) we have used (26) to solve forfor larger
p—p+1

T Ep

(28)

(29)

r2dQ?, which is conformal to the spatial metric in (1).
Herer is the isotropic radial coordinate.

It is well known thatN = 2 supergravity has black
hole solutions that preserve supersymmetry. In that case
we expect that the cross section for the scalars and for
their spinor superpartners are related. The equation for
these spinors is not, however, the minimal Dirac equation,
since the superpartners of minimally coupled scalars have
a coupling to the electromagnetic field strength. This case
is under investigation.
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