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Scaling Hypothesis for the Spectral Densities in the O(3) Nonlinear Sigma Model
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A scaling hypothesis for the-particle spectral densities of the O(3) nonlinear sigma model is
described. It states that for large the n-particle spectral densities are “self-similar” in being
rescaled copies of a universal shape function. Promoted to a working hypothesis, it allows one to
compute the two-point functions at all energy scales and yields exact values for two nonperturbative
constants. Applied to nonintegrable perturbations of the model, the hypothesis implies scaling
laws for multiparticle production processes analogous to Koba-Nielsen-Olesen scaling in QCD.
[S0031-9007(97)03266-3]
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An efficient way to describe the two-point function of where the constantAE") are computable from the inte-
some local operato® in a relativistic QFT is in terms of grals of the lower particle spectral densities [1]. The con-
a Kallen-Lehmann spectral representation. The spectrakantsa” are rapidly increasing with. This implies that
density p(u) of O can be viewed as a measure for thethe ,, — o asymptotics of the full spectral densities (1)
number of degrees of freedom coupling@at energyw.  cannot be computed by naively summing up the asymp-

It decomposes into a sum efparticle contributions totic expressions (2), which in fact would be divergent.
_ Z () 1 (iii) The large u asymptotics of the full spectral densities
plp) = 4 P (), (1) can, however, be computed in renormalized perturbation

where, depending on the local operator under considerr;[lheory (PT). (The correctness of PT in this model has been

tion, some of the:-particle contributions may vanish on Challenged in [2]. To simplify the exposition we shall as-
' 1P y sume the validity of PT for the UV asymptotics through-

the grounds of internal quantum numbers. In a theory . ' i X
, : YRS _ out this Letter.) One finds for the leading behavior

with a single mass scale one hasp'V(u) ~ 6(u — m)

andp™(u), n = 2 has support only aboven, i.e., above Y 1 Inln u

the n-particle threshold. Once(u) is known, the various EM and top:p(n) ~ —[m ((In )3”,

(Minkowski space or Euclidean) two-point functions®f K ® . 3

can be computed as convolution integrals with an appro- spin and currp(u) ~ 1£ L+ 0 1 (3)

priate kernel carrying only kinematical information. The P P m :

Inw
dynamical problem consists in computing theparticle
spectral densitiep ™ (u) of O. Subleading terms can also be computed, but not all of
Here we shall be concerned with massivet+ 1 di- the overall constants are accessible to PT. In particular,

mensional QFTs and in particular with the O(3) nonlinearA; := A*™ is an unknown nonperturbative constant. In

sigma (NLS) model. The four most interesting local op-the case of the TC densitp'P is fixed by PT but

erators in this model are the spin field, the Noether curits relation to the nonperturbatively defined spectral sum

rent, the energy momentum (EM) tensor, and the topolog¢l) is not. Equivalently, the matrix elements of the

ical charge (TC) density. Their spectral densities can bdC density between the vacuum and some multiparticle

grouped into two fam”ieSol(”)(M)’ n=1,1=0,1ac State are defined only up to an unknown nonperturbative
(n) constanti.

cording to their isospin. For everyodd the p,  are e . . .
o g ) Missing pieces of information about the spectral den-
the spectral densities of the EM tensdC density, re sities are the following: (iv) One would like to be able

i (n)
spectively, similarly,p|” for n everyodd are the spectral compute the full spectral densities for all = 0, not
densities of the currepspin, respectively. The follow- nly their large x asymptotics. This would allow one

ing p_igces O.f information are available for these spectray, compute the two-point functions atl energy/length
d((enr;smes. (i) For small particle numbessthe functions  g.ajes ™ |n terms of the spectral resolution (1) this amounts
pi (u) can be computegéxactlyby means of the form  tg knowing all then-particle contributions, not only those
factor approach. In [1] this has been done up to six parwith » < n, for which the computation can be done ex-
ticles. (i) For all particle numbers the u — % asymp-  picitly. (v) One would like to know the (exact) values of
totics of then-particle spectral densities is known, and iSthe nonperturbative constants and A;. Knowledge of
given by ) these constant would allow one to match nonperturbative
and perturbative information unambiguously. In this re-

A
w(ln p)4=2° ’ (2) spect, their role is similar to that of the/A ratio [3].

M—)OO

pi" () ~
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The purpose of this Letter is to bridge the gap between (b) (Asymptotic scaling) The parametq?g’) and Mz(n)
the perturbative and the nonperturbative regime and tgcale asymptotically according to powersngfi.e.,
provide the missing pieces of information (iv) and (v). () +a (n) v
It is based on a remarkable self-similarity property of the &~ em T, My~ ~ Min
n-particle spectral densities. For largehey appear to be Feature (a) in particular means that for sufficiently large

basically rescaled copies of a “universal shape function’, o graphs of two subsequent membﬁy%_l)(z) and

Yi(2). Explicitly, ) ¥\ (z) should become practically indistinguishable. This
an)(,u) _ M Yl<|n(M/m)>’ 1=0,1, (4 appears to be satisfied remarkably well even for small
M g}") n = 4,5,6, as is illustrated in Fig. 1 for the= 1 series.
) ) ) ] The analysis of part (b) of the scaling hypothesis is
where M, and £, are certain scaling parameters 0 more involved. It turns out that all but one of the
be specified later. In the following we shall first give exponents in (b) are fixed by self-consistency, and only

a precise formulation of the scaling law (4) and recallihjs one has to be determined by fitting againstiths 6
some of the evidence presented for it in [1]. Then Weparticle data. The result is [1]

shall promote it to a working hypothesis and show that

it has the following consequences: The UV behavior is yi=1 Q) = ap = a, (8)
consistent with PT; in particular those coefficieAtd in . vo = 3 + 2a, a ~ 0273,

(3) accessible to PT are reproduced. The nonperturbative

constantsy and A, are determined exactly and in the ~Consequences of the hypothesid.et ny be the maxi-
normalization [1] are given by mal particle number for which the spectral densities have

been computed explicitly (at presemi = 6). Then (4)
1 4 . . . .
A= —, A= (5) gives candidate expressions for al> n( particle spec-
) . 4 3m ] ] tral densities so that one can evaluate their sum. Con-
Finally, candidate results for the two-point functionsaht cerning the UV behavior of the sum notice that a finite

energy or length scales are obtained. number of terms in the sum, each decaying according to
Formulation of the hypothesis-With hindsight to the (2) can never produce the different UV behavior in (3).
asymptotics (2) let us introduce However, the infinite sum does. What is happening is
R (x) = me*p (me),  1=0,1. (6) that the partial sumgin u)>~2 >0 .| o () develop a

Herel = 0,1 as before correspond to the EM tensor andPlateau, i.e., are practically co.ns_tant in a large interval
TC density and spin and current series, respectively. Thgmn = & = uma(N). WhenN is increased the plateau
graphs of these functions are roughly “bell shaped”: Startis prolonged and eventually reaches out to infinity, i.e.,

ing from zero atx = Inn they are strictly increasing, Mma(N) — ®for N — oo (while umi, is basicallyN inde-
reach a single maximum at some— g;”) > Inn, and pendent). The value of the plateau determines the asymp-

then decrease monotonically for all> f(") The posi- totic constants in (3). In those cases where the coefficients
y w P are accessible to PT the perturbative value is reproduced

. (n) . . (n) , (n)
tion & of the maximum and its valud;,”" = R;"(£;)  with an accuracy better than 1%. In addition one obtains
are two important characteristics of the function, and

hence of the spectral density. Defining

Y (z) = l(n)Rl(")(gl”)z), 1=0,1, (7) Yizl 2 vs. 3 Yizl 3vs. 4
M, 1 1
both the value and the position of the maximum are 3j§ i 8:2
normalized to unity. Initially Y,(")(z) is defined for 0.4 0.4
(In n)/gl(”) = z < o; in order to have a common domain 0.2 { 0.2
of definition we setr,” (z) = 0 for 0 = z = (Inn)/&". 05115225 0511.522.8
The proposed behavior of the spectral densities is as in the Y[z] Y[z]
following scaling hypothesis: , Ayss g Vs 6
(a) (Self-similarity) The functions’t’l(")(z), n =2 con- 0.8 0.8
verge pointwise to a bounded functidf(z). The se- 0.6 0.6
quence ofcth moments converges to tthéh moments of 0.4 0.4
Yi(z) fork +1=0,1,ie, 0.2 . 0.2 .
lim Y;(n)(Z)ZYz(Z), =0, 0.511.522.5 0.511.52 2.5
"ﬁmm ) FIG. 1. lllustration of the self-similarity property (o)f the
. ky (1) k rescaled! = 1 spectral densities. The plots sho¥"(z
,'z'_”,lfo dz Y (2) = fo dzz7Yi(2). (dashed) comparzd With,("“)(z) (solid) for np= 2, 3,4,?. “
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the following twoexactrelations among the four constants by means of the scaling hypothesis. Tke— oo limit of
- (10) yields a candidate for the exact two-point function.
AT = —pspin - AEM g qtop (9) For the case of the spin field the result is shown
4 in Fig. 3 in units of the two-loop PT result for the
These relations reflect the linking between the evesame quantity. The “exactN = o curve approaches
and the odd particle members of an isospin family,its asymptotic value (here normalized to unity by using
which results from the clustering relations obeyed by thex;, = 4/372 for the normalization of the PT result) fairly
exact form factors [1]. Sinc€A"")pr = 1/3w the first  slowly. Demanding a 1% accuracy for PT one finds that
equation in (9) givesA*®™ = A; as in (5), while the there are two such regimes, one at an intermediate energy
second equation fixes the physical normalization of thgcale4 < y < 9 and a second one for= 75. A similar
TC matrix elements in terms of that of the EM tensor,behavior is found for the current two-point function.
which in our conventions amounts 4 = ;. Thus, somewhat surprisingly, PT does not necessarily
The Ao value can be tested independently by means ofmprove monotonically with increasing energy. As a
Monte Carlo (MC) simulations. In Fig. 2 the results for reservation one must add, however, that these are 1%—
the two-point functions of the TC density are shown—2% effects which may be affected by subleading terms
once computed via the form factor approach, with thein the scaling law (b). [Inclusion of a three-loop PT
absolute normalization fixed according to (5) and oncecontribution does not remove the effect; subleading terms
via MC simulations. The simulations were done usingarising from extrapolating’"*!(z) — Y (z) have been
the cluster algorithm of [4] with the standard actiontaken into account in Fig. 3.]
and the geometrical definition of the TC density. The Relation to KNO scaling—A bonus of the above
data in Fig. 2 correspond to a 460 square lattice agcaling hypothesis is that it implies KNO-like scaling laws
inverse couplingB = 1.80 (correlation length 65.05). for multiparticle production processes in nonintegrable
The statistical errors are smaller than the size of the dotperturbations of the model (but not vice versa). To allow
The nice agreement confirmg = ; and hence provides for particle production we enlarge our model world by
further support for the scaling hypothesis. a “weak” sector so that a general state is of the form
The plateau phenomenon for the spectral densities hds; w), wheres is the “strong” (sigma-model) part of the
a counterpart for the two-point functions. In momentumstate andw is the weak part. Adding a current-current
space the latter can be computed as Stieltjes transformsteraction term, production processgsw) — |s'; w’)
of the corresponding spectral densities. Inserting th¢where the statesands’ have different particle numbers)
decomposition (1) one obtains for the= N particle  become possible. The corresponding transition amplitude,
approximants to lowest order in the new interaction, reads

(n)
In(y) = Z [ LRy i, A= [earoigol,  ay

2 + m2e%y’
(10) " \where the Fourier transform df,(x) has support at the
Forn > ng the n-particle spectral densities are evaluatedmomentum@, the weak momentum transfer.
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FIG. 3. Spin two-point function: Ratio ofy(y) approxi-
FIG. 2. Two-point function of the topological charge denS|ty mants and two-loop perturbation theofyr(y) versusy =
Comparison MC data and form factor result. Tesn@f— I Inp/m.
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The simplest production process is the two-dimensionalvhere the parameters andh; are the( ?’;al — 1)th and
analog of_thee e~ annihilation. We mode] this process (?T—j — 1)th moments of the universal shape function
by choosingQ* >0 and s = |0). Summing over all y,(;) respectively, and the exponents are given in (8).
(discrete and continuous) quantum numbers of #he The casel = 1 corresponds to the current perturbation
particle states’, the probability distribution for producing and; = 0 to the perturbation by the EM tensor. These
n particles at energyu = /0> becomes independent KNO-type scaling laws, however, are valid only for
of the weak part of the process and is proportional tosimultaneously large particle numbers and large energies
the current spectral density. The proportionality factorin the perturbed theory. In contrast, the scaling hypothesis
involves the coupling constant of the external currentya) (b) for the spectral densities is valid already in the
current interaction, which drops out when considering theynperturbed theory for all energies, and in particular is
conditional probabilityP,, for having exactly2n particles  nonperturbative in nature.
produced, once the process has taken place at all. One hasye are indebted to F. Niedermayer for making avail-

P, = A (211)( ) ip — 12 able t(_) us his_ MC program. We also wish to thank
2n o P 2n ’ (12)  p. weisz for discussions and W. Ochs and S. Lupia for
n calling our attention to the KNO scaling. M. N. acknowl-

where the second equation fixes the normalization Conédges support by the Reimar Liist fellowship of the Max-
stantx. Similarly, production processes upon perturba-p|anck Society.

tion with the EM tensor can be studied, in which case

o"(w) appears in (12). Using our scaling hypothe-

sis the energy dependence of the probability distribu-

tion can in both cases be expressed, for lgsgénhere *On leave of absence from the Research Institute for
one can approximate the sums by integrals), in terms of  Particle and Nuclear Physics, Budapest, Hungary.
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