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Scaling Hypothesis for the Spectral Densities in the O(3) Nonlinear Sigma Mode
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A scaling hypothesis for then-particle spectral densities of the O(3) nonlinear sigma model is
described. It states that for largen the n-particle spectral densities are “self-similar” in being
rescaled copies of a universal shape function. Promoted to a working hypothesis, it allows one
compute the two-point functions at all energy scales and yields exact values for two nonperturba
constants. Applied to nonintegrable perturbations of the model, the hypothesis implies scal
laws for multiparticle production processes analogous to Koba-Nielsen-Olesen scaling in QC
[S0031-9007(97)03266-3]
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An efficient way to describe the two-point function o
some local operatorO in a relativistic QFT is in terms of
a Källen-Lehmann spectral representation. The spec
densityrsmd of O can be viewed as a measure for th
number of degrees of freedom coupling toO at energym.
It decomposes into a sum ofn-particle contributions

rsmd 
X
n

rsndsmd , (1)

where, depending on the local operator under consid
tion, some of then-particle contributions may vanish o
the grounds of internal quantum numbers. In a the
with a single mass scalem one hasrs1dsmd , dsm 2 md
andrsndsmd, n $ 2 has support only abovenm, i.e., above
then-particle threshold. Oncersmd is known, the various
(Minkowski space or Euclidean) two-point functions ofO

can be computed as convolution integrals with an app
priate kernel carrying only kinematical information. Th
dynamical problem consists in computing then-particle
spectral densitiesrsndsmd of O .

Here we shall be concerned with massive1 1 1 di-
mensional QFTs and in particular with the O(3) nonline
sigma (NLS) model. The four most interesting local o
erators in this model are the spin field, the Noether c
rent, the energy momentum (EM) tensor, and the topol
ical charge (TC) density. Their spectral densities can
grouped into two familiesr

snd
l smd, n $ 1, l  0, 1 ac-

cording to their isospin. Forn evenyodd the r
snd
0 are

the spectral densities of the EM tensoryTC density, re-
spectively; similarly,r

snd
1 for n evenyodd are the spectra

densities of the currentyspin, respectively. The follow-
ing pieces of information are available for these spec
densities: (i) For small particle numbersn the functions
r

snd
l smd can be computedexactly by means of the form

factor approach. In [1] this has been done up to six p
ticles. (ii) For all particle numbersn the m ! ` asymp-
totics of then-particle spectral densities is known, and
given by

r
snd
l smd ,

A
snd
l

msln md422l
, m ! ` , (2)
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where the constantsA
snd
l are computable from the inte-

grals of the lower particle spectral densities [1]. The co
stantsA

snd
l are rapidly increasing withn. This implies that

the m ! ` asymptotics of the full spectral densities (1
cannot be computed by naively summing up the asym
totic expressions (2), which in fact would be divergen
(iii) The largem asymptotics of the full spectral densitie
can, however, be computed in renormalized perturbat
theory (PT). (The correctness of PT in this model has be
challenged in [2]. To simplify the exposition we shall as
sume the validity of PT for the UV asymptotics through
out this Letter.) One finds for the leading behavior

EM and top:rsmd ,
AO

m

∑
1

sln md2
1 O

µ
ln ln m

sln md3

∂∏
,

spin and curr:rsmd ,
AO

m

∑
1 1 O

µ
1

ln m

∂∏
.

(3)

Subleading terms can also be computed, but not all
the overall constants are accessible to PT. In particu
l1 := Aspin is an unknown nonperturbative constant. I
the case of the TC densityAtop is fixed by PT but
its relation to the nonperturbatively defined spectral su
(1) is not. Equivalently, the matrix elements of th
TC density between the vacuum and some multiparti
state are defined only up to an unknown nonperturbat
constantl0.

Missing pieces of information about the spectral de
sities are the following: (iv) One would like to be abl
to compute the full spectral densities for allm $ 0, not
only their largem asymptotics. This would allow one
to compute the two-point functions atall energy/length
scales. In terms of the spectral resolution (1) this amou
to knowing all then-particle contributions, not only those
with n # n0 for which the computation can be done ex
plicitly. (v) One would like to know the (exact) values o
the nonperturbative constantsl0 and l1. Knowledge of
these constant would allow one to match nonperturbat
and perturbative information unambiguously. In this r
spect, their role is similar to that of themyL ratio [3].
© 1997 The American Physical Society 4151
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The purpose of this Letter is to bridge the gap betwe
the perturbative and the nonperturbative regime and
provide the missing pieces of information (iv) and (v
It is based on a remarkable self-similarity property of th
n-particle spectral densities. For largen they appear to be
basically rescaled copies of a “universal shape functio
Ylszd. Explicitly,

r
snd
l smd ø

M
snd
l

m
Yl

µ
lnsmymd

j
snd
l

∂
, l  0, 1 , (4)

where M
snd
l and j

snd
l are certain scaling parameters t

be specified later. In the following we shall first giv
a precise formulation of the scaling law (4) and reca
some of the evidence presented for it in [1]. Then w
shall promote it to a working hypothesis and show th
it has the following consequences: The UV behavior
consistent with PT; in particular those coefficientsAO in
(3) accessible to PT are reproduced. The nonperturba
constantsl0 and l1 are determined exactly and in th
normalization [1] are given by

l0 
1
4

, l1 
4

3p2 . (5)

Finally, candidate results for the two-point functions atall
energy or length scales are obtained.

Formulation of the hypothesis.—With hindsight to the
asymptotics (2) let us introduce

R
snd
l sxd := mexr

snd
l smexd, l  0, 1 . (6)

Here l  0, 1 as before correspond to the EM tensor an
TC density and spin and current series, respectively. T
graphs of these functions are roughly “bell shaped”: Sta
ing from zero atx  ln n they are strictly increasing,
reach a single maximum at somex  j

snd
l . ln n, and

then decrease monotonically for allx . j
snd
l . The posi-

tion j
snd
l of the maximum and its valueM

snd
l  R

snd
l sjsnd

l d
are two important characteristics of the function, an
hence of the spectral density. Defining

Y
snd
l szd :=

1

M
snd
l

R
snd
l sjsnd

l zd, l  0, 1 , (7)

both the value and the position of the maximum a
normalized to unity. Initially Y

snd
l szd is defined for

sln ndyj
snd
l # z , `; in order to have a common domain

of definition we setY
snd
l szd  0 for 0 # z # sln ndyj

snd
l .

The proposed behavior of the spectral densities is as in
following scaling hypothesis:

(a) (Self-similarity) The functionsY
snd
l szd, n $ 2 con-

verge pointwise to a bounded functionYlszd. The se-
quence ofkth moments converges to thekth moments of
Ylszd for k 1 l  0, 1, i.e.,

lim
n!`

Y
snd
l szd  Ylszd, z $ 0 ,

lim
n!`

Z `

0
dz zkY

snd
l szd 

Z `

0
dz zkYlszd .
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(b) (Asymptotic scaling) The parametersj
snd
l and M

snd
l

scale asymptotically according to powers ofn, i.e.,

j
snd
l , jln

11al , M
snd
l , Mln

2gl .

Feature (a) in particular means that for sufficiently larg
n the graphs of two subsequent membersY

sn21d
l szd and

Y
snd
l szd should become practically indistinguishable. Thi

appears to be satisfied remarkably well even for sma
n  4, 5, 6, as is illustrated in Fig. 1 for thel  1 series.

The analysis of part (b) of the scaling hypothesis
more involved. It turns out that all but one of the
exponents in (b) are fixed by self-consistency, and on
this one has to be determined by fitting against then # 6
particle data. The result is [1]

g1  1, a0  a1 =: a ,

g0  3 1 2a, a ø 0.273 .
(8)

Consequences of the hypothesis.—Let n0 be the maxi-
mal particle number for which the spectral densities hav
been computed explicitly (at presentn0  6). Then (4)
gives candidate expressions for alln . n0 particle spec-
tral densities so that one can evaluate their sum. Co
cerning the UV behavior of the sum notice that a finit
number of terms in the sum, each decaying according
(2), can never produce the different UV behavior in (3
However, the infinite sum does. What is happening
that the partial sumssln md222l

PN
n011 r

snd
l smd develop a

plateau, i.e., are practically constant in a large interv
mmin & m & mmaxsNd. WhenN is increased the plateau
is prolonged and eventually reaches out to infinity, i.e
mmaxsNd ! ` for N ! ` (while mmin is basicallyN inde-
pendent). The value of the plateau determines the asym
totic constants in (3). In those cases where the coefficien
are accessible to PT the perturbative value is reproduc
with an accuracy better than 1%. In addition one obtain

FIG. 1. Illustration of the self-similarity property of the
rescaled l  1 spectral densities. The plots showY

snd
l szd

(dashed) compared withY
sn11d
l szd (solid) for n  2, 3, 4, 5.
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the following twoexactrelations among the four constan

Acurr 
p

4
Aspin, AEM  4Atop. (9)

These relations reflect the linking between the ev
and the odd particle members of an isospin fami
which results from the clustering relations obeyed by t
exact form factors [1]. SincesAcurr dPT  1y3p the first
equation in (9) givesAspin  l1 as in (5), while the
second equation fixes the physical normalization of
TC matrix elements in terms of that of the EM tenso
which in our conventions amounts tol0 

1
4 .

The l0 value can be tested independently by means
Monte Carlo (MC) simulations. In Fig. 2 the results fo
the two-point functions of the TC density are shown
once computed via the form factor approach, with t
absolute normalization fixed according to (5) and on
via MC simulations. The simulations were done usi
the cluster algorithm of [4] with the standard actio
and the geometrical definition of the TC density. T
data in Fig. 2 correspond to a 460 square lattice
inverse couplingb  1.80 (correlation length 65.05).
The statistical errors are smaller than the size of the d
The nice agreement confirmsl0 

1
4 and hence provides

further support for the scaling hypothesis.
The plateau phenomenon for the spectral densities

a counterpart for the two-point functions. In momentu
space the latter can be computed as Stieltjes transfo
of the corresponding spectral densities. Inserting
decomposition (1) one obtains for then # N particle
approximants

IN s yd 
NX
1

Z `

0
dm

rsndsmd
m2 1 m2e2y , y  ln pym .

(10)

For n . n0 the n-particle spectral densities are evaluat

FIG. 2. Two-point function of the topological charge densit
Comparison MC data and form factor result. Test ofl0  1

4 .
n
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by means of the scaling hypothesis. TheN ! ` limit of
(10) yields a candidate for the exact two-point function.

For the case of the spin field the result is show
in Fig. 3 in units of the two-loop PT result for the
same quantity. The “exact”N  ` curve approaches
its asymptotic value (here normalized to unity by usin
l1  4y3p2 for the normalization of the PT result) fairly
slowly. Demanding a 1% accuracy for PT one finds th
there are two such regimes, one at an intermediate ene
scale4 & y & 9 and a second one fory * 75. A similar
behavior is found for the current two-point function
Thus, somewhat surprisingly, PT does not necessa
improve monotonically with increasing energy. As
reservation one must add, however, that these are 1
2% effects which may be affected by subleading ter
in the scaling law (b). [Inclusion of a three-loop P
contribution does not remove the effect; subleading ter
arising from extrapolatingY sn11dszd 2 Y sndszd have been
taken into account in Fig. 3.]

Relation to KNO scaling.—A bonus of the above
scaling hypothesis is that it implies KNO-like scaling law
for multiparticle production processes in nonintegrab
perturbations of the model (but not vice versa). To allo
for particle production we enlarge our model world b
a “weak” sector so that a general state is of the fo
js; wl, wheres is the “strong” (sigma-model) part of the
state andw is the weak part. Adding a current-curren
interaction term, production processesjs; wl ! js0; w0l
(where the statess ands0 have different particle numbers
become possible. The corresponding transition amplitu
to lowest order in the new interaction, reads

A 
Z

d2xlamsxd ks0jja
msxdjsl , (11)

where the Fourier transform ofla
msxd has support at the

momentumQ, the weak momentum transfer.

FIG. 3. Spin two-point function: Ratio ofIN s yd approxi-
mants and two-loop perturbation theoryIPTs yd versus y 
ln pym.
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The simplest production process is the two-dimension
analog of thee1e2 annihilation. We model this process
by choosingQ2 . 0 and s  j0l. Summing over all
(discrete and continuous) quantum numbers of then-
particle states0, the probability distribution for producing
n particles at energym 

p
Q2 becomes independen

of the weak part of the process and is proportional
the current spectral density. The proportionality fact
involves the coupling constant of the external curren
current interaction, which drops out when considering t
conditional probabilityP2n for having exactly2n particles
produced, once the process has taken place at all. One

P2n 
m

k
r

s2nd
1 smd,

X̀
n1

P2n  1 , (12)

where the second equation fixes the normalization co
stant k. Similarly, production processes upon perturb
tion with the EM tensor can be studied, in which cas
r

s2nd
0 smd appears in (12). Using our scaling hypothe

sis the energy dependence of the probability distrib
tion can in both cases be expressed, for largem (where
one can approximate the sums by integrals), in terms
n 

P`
n1 2nP2n , sln md1ys11ad, the average number of

particles produced. The asymptotic distribution takes t
KNO-scaling form [5]

nP2n  f

µ
n
n

∂
. (13)

The scaling functionfsqd is given in terms of the
universal shape function as

fsqd 
2s1 1 adh̃l

h2
l

µ
hl

2h̃lq

∂
gl

Yl

"µ
hl

2h̃lq

∂11a
#

, (14)
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where the parametershl and h̃l are thes gl21
11a 2 1dth and

s gl22
11a 2 1dth moments of the universal shape functio

Ylszd, respectively, and the exponents are given in (
The casel  1 corresponds to the current perturbatio
and l  0 to the perturbation by the EM tensor. Thes
KNO-type scaling laws, however, are valid only fo
simultaneously large particle numbers and large energ
in the perturbed theory. In contrast, the scaling hypothe
(a),(b) for the spectral densities is valid already in t
unperturbed theory for all energies, and in particular
nonperturbative in nature.
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