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The Critical Line of an Ising Antiferromagnet on Square and Honeycomb Lattices
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We show that the singularity of the free energy of Ising models in the absence of a magnetic field
on the triangular, square, and honeycomb lattices is related to zeros of the pseudopatrtition function on
an elementary cycle. Using the Griffiths’ smoothness postulate, we extend these results to the case in
a magnetic field and derive a formula of the critical line of an Ising antiferromagnet, which is in good
agreement with the numerical results. [S0031-9007(96)02173-4]

PACS numbers: 05.50.+(q, 64.60.Cn, 75.10.Hk, 75.40.Cx

Since Onsager’'s famous solution of the square latticef an Ising antiferromagnet is obtained, which is in good
Ising model in the absence of a magnetic field [1], the Isingagreement with the numerical results [8,11,12].
model became a standard model for testing the scaling and The partition function of the Ising model in the pres-
universality hypotheses [2,3]. However, the Ising modelence of a magnetic field is given by

in a magnetic field has not been solved exactly so far,

although some exact results are known. Of particular zZ= Zexp|: (Z K;;SiS; + hZS >:| (1)
interest is to determine the critical line in thig T') plane, {s} (ij)

along which the free energy becomes singular. Yang anglhereS; = +1 and K;; is the interaction strength. The

Lee [4] proved that for the Ising ferromagnet, the criticalsum over(i;) runs over the pairs of nearest neighbors
line is located at: = 0. For the Ising antiferromagnet, on the lattices. Let us consider the ferromagnetic case,
the series expansion method was used to obtain relatqd > 0. The Ising partition function on an elementary
information [5]. Muller-Hartmann and Zittartz obtained cycle of the triangular, square, and honeycomb lattices
the critical line by considering the interfacial tension [6,7]. (see Fig. 1) can be written, respectively, as

Wu and coworkers [8,9] formulated the Ising model on 1) — APEAKAK 4 B —KitKD)

the honeycomb lattice as an 8-vertex model and identified -t

the critical line as a locus invariant under a generalized + PUKTKTK) | (BCKTKTR)] ()
weak-graph transformation. In this paper we introduce a

new approach by considering zeros of the partition function 7, = 2[eXBKITK) | p2B(Ki=K)

on an elementary cycle and using Griffiths’ smoothness b BEK) 4, 2BE K 4] (3)

postulate [10]. A closed-form formula of the critical Iinf

= 2[62,3(K1+K2+K3) + 428Kl 4 028Ky 4 fo2BKs 4 Yo7 2BK1 4 g7 2BK2 4 728K 4 825(K1+K2—K3) + 825(K2+K3—K1)

+ ezﬁ(KﬂLK]*Kz) + 6*25(K1+K2*K3) + e*2B(K2+K3*K1) + 6*25(K3+K1*K2) + e*Z,B(K|+K2+K3)] , (4)

whereK; are the interaction strengths Making the traiscomb lattices be; =z(T,h=0). Make a transforma-
formatlon pj = exp2BK;) — p} = ip; turns z(p;) —  tion, p; =exp2BK; )— pj=ip; and z(p;) — z'(p;) =
z/(p;) = z(ip;), which reads as: z(ipj). Then the critical temperatures are obtained from

I _ ~:3/2 -1/2(1 _ _ _ the real solutions of’ =
4 =276 65) I =&& = o6 = 54), ) From this lemma, we deduce, as follows, the results

=207+ L) - (= 45)*, () obtained first by Wannier [13]:
; (1) For Ising models on square and honeycomb lat-

= 207G G 0 - Lo - bl - GO tices, z(—K;) = z(K;), z/(-K;) =Z/(K;). Thus an
—(G+o+G6-a686), ()

K,
where{; = exp(—2BK;). One can easily see that the real *
solutions ofz’ = 0 give the exact relations [3] for the zero- &, K,
field critical temperatures of an Ising ferromagnet: square K, K,
OO+ 4+ =15 trangular: 16+ LG+ GOH=1,
honeycomb: (OB — 0O~ LG —BO— 40— H— K, 9

{3 +1=0. To state it more clearly,

Lemma 1—Let the Ising partition function on each FIG. 1. The elementary cycle of triangular, square, and
elementary cycle of the square, triangular, and honeyhoneycomb lattices.
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antiferromagnetic Ising model with the interaction model on triangular, square, and honeycomb lattices, the
strength—K; has the same critical temperature as that opositive real roots of the Yang-Lee zeros of the partition
a ferromagnetic Ising model with the interaction strengthfunction on the infinite lattice in the complex temperature
K;. plane are related to the zeros of the partition function on
(2) For an Ising antiferromagnet on a triangular lattice,an elementary cycle.

the equationz, = 0 has no real solution at any finite  In 1970 Griffiths [10] proposed the smoothness pos-
temperature. Thus, no antiferromagnetic phase transitiolate. He reasoned that since on the boundary between
occurs at any finite temperature. the antiferromagnetic and paramagnetic phases there is no

Now, let us turn our attention to the isotropic case,a priori reason to single out the particular point corre-

K; = K. The partition function on an elementary cycle sponding to zero field, it is reasonable to assume that the
with N sites is exactly that of the one-dimensional Isingsingularity in the free energy does not change its basic
model on anN-site chain, with the periodic condition, character along the boundary. This postulate was veri-

which is exactly solvable [14]. Thus fied by Rapaport and Domb [11]. We will use this postu-
s= AV 4\ (8) late and take lemma 1 as the boundary conditiorkfer0.
K 'fBK - 7 i Since at the critical pointoh/dM)z, = 0, it follows that
whereA. = e”% x ¢"P%. Lettingz = 0 we obtain along the critical line(ah/dM); =0 [16]. For a square
ot 1 . . O AT
28K — (—i)cot( n )W’(n —0.1.2...N — 1). lattice Ising model, the spontaneous magnetization is given
2N by [17] 291/8
©) 2 2
: . o ) MT <T,h=0=]|1- 26 26
Making the transformationp; — ip;, yields the critical 1 -1
temperatures ~ [(T.h = 0)]'5. (13)
e =—-cot———,(n=0,1,2,...N — 1). According to Griffiths, we assume that in a nonzero

2N (10) magnetic field, near the critical line, the magnetization

] strength takes the same functional form as the case for
Since K > 0 we havee*#X > 1, and thus onlyn = ; —

N — 1 is allowed to yield the equation for theritical

temperatures of the isotropic Ising models on triangular, M(T < Te.h) = g(T.W[y(T. 0], (14)

square, and honeycomb lattices whereg(T, h) andy (T, h) are nonsingular analytic func-
Sk - tions of T and h. y(T,h) is related to the partition
e*PK = cot - (11)  function on an elementary cycle, with(T,h = 0) =

2N’ ) _
whereN is the number of edges of an elementary cycle?® (T.h = 0). Thus

On the other hf\zndK, Baxter’s result [3] is given in the form, %) _ 3_i [y(T,h)]'/® + % Z_Z[Y(T’ 8.
e K =tarlm(q — 2)/44], (12) T

15

where ¢ is the coordination number. Identifying = . . o ) (15)
2N /(N — 2), we find that Egs. (11) and (12) are identical. SinCe (7. ), ¥(T', ), and their derivatives with respect

From Onsager's solution we know that the critical©© # do not approach infinity for arbitrary:, along

point of the Ising model in the absence of a magnetidn® critical line (92/9M)r = 0 requires y(T, h) = 0.
field corresponds to the singularity of the free energy! Nerefore ,we might plausibly extend lemma 1 to the
[3]. Using lemma 1, we find thahe singularity of the case_of a nonzero magnetic field. Let the Ising partition
free energy is associated with the zeros of the Ising?un,Ct'on on an elementary cycle of square and honeycomb
pseudopartition function on an elementary cycle attices bez = z(T', h). Make a transformation
In 1952 Yang and Lee [4] proposed the celebrated p; = ¢*% — pl = ie?#% and |n| — f(|h]). (16)

theory of phase transition. By considering the zero
of the grand partition function in the complex fugacity
plane, they showed that in the thermodynamic limit th
critical point is determined by the positive real roots.

When this th lied to the f e Isi For simplicity let us consider the isotropic Ising model
€n this theory was applied 1o the terromagnetic 1sing, , square and honeycomb lattices. The partition function
model, they considered zeros of the partition function in

the complex magnetic field plane and proved the famougn an elementary cycle [3] is again given by Eq. (8) with

circle theorem. In 1964 Fisher [15] considered zeros of A+ = e¢#X[coshBh = (sintf Bh + e KT (17)
the partition function in the complex temperature planeThusz = 0 yields
He pr0\_/ed_ that for .the Ising model in the _ab_sence of a coshBh ' o+ 1
magnetic field and in the thermodynamic limit, the zero ) K2 (—i)cotw ,
distribution approaches the positive real axis and gives (sinh” Bh + e ) 2N

the critical point. From lemma 1 we see that for the Ising (n=0,1,.,N — 1). (18)

414

SThusz — 2’ with the boundary conditioyi(0) = 0. Here
(lh]) is assumed to be a real and analytic functiorhof
The critical line is given by (T, h) = z/ = 0.
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Making the transformations, we obtain the critical line, @)

o 4BK _ tar? 772"2; L cosh Bf(Ihl) + sint? Bf(|h), 3 \‘\

(n=0,1,...N — 1). (19) 2

It is interesting to note that for an Ising ferromagnkt ¢ 1 4
0), if h #0andT < T,, Eq. (19) has no real solution \
and no phase transition occurs, which is consistent with 0.5 T 25
the conclusion of the Yang-Lee circle theorem [4]. Square lattice

For an Ising antiferromagneé&f < 0, the critical line is
obtained as 8. (b)

e*PIKl = 4Bkl cosit BF(h]) + sink? BF(Ihl). (20)
f(|h]) can be expanded as h
f(nl) = Alnl + BlAl* + --- . (21) 1 \

Consider the limiting cas& — 0. Taking the logarithm
of Eq. (20), we obtain 0.3 08 12 16

Honeycomb lattice

1 1 + Kl
lf(ADI = 2|k — 3kT In 4 (22) FIG. 2. The critical line of the Ising antiferromagnet is in
Thus 1£(Ihol)| = 21K| with hy — h(T = 0). Consider units of |K| andT is in units of |K|/k.
another limiting cas@ — B . Substituting Eq. (21) into
Eqg. (20) and keeping only the lowest order terms, weformula is |h| =3|K| — 1.030366kT as T — 0 [8].
obtain the well-known scaling law [11], Using the numerical results given in [8], we have a
T — T 1+ 2Bkl 42 third order approximation, f(||) = 0.69151507|h| —
“T = 1 KIKT |hl*. (23)  0.003105195|n|?/|IK| — 0.001725869|h|3/|K|>. 1t is
, ¢ ¢ plotted in Fig. 2(b). The data given in [8] are marked as
Using the exact result [11,12ho| = ¢|K| and Eq. (12), 3 cross. The agreements are good.

to the first-order approximation of(|4]), we haveA = If we include more higher order terms in the approxi-
2/q. Thus the critical line is given by mation, we will obtain better results. For the anisotropic
4BIK] (g — 2) 2Bh cases, we can use the same procedure to obtain the critical
e — PR : iy : :
cot p cosht p line. The shape of the critical line remains unchanged.
Details will be published elsewhere.
+ sinhz(@ . (24) In conclusion, we have shown that the singularity of
q the free energy of the Ising model in the absence of
It is interesting to note that Eq. (24) contains only7, @ magnetic field on triangular, square, and honeycomb
K, andg. lattices is associated with the zeros of the pseudopartition

For the square latticey(= 4), using Egs. (22) and (23) function on an elementary cycle. Using the Giriffiths’
we obtain, in the limitT — 0, || = 4|K| — 0.534800kT  postulate, we extended these results to the case with a
and asT—T,, (T.—T)/T.=0.03227(h/K)>. The nonzero magnetic field and obtained the critical line of the
numerically obtained formuli are —B|K|=—pBh/ Ising antiferromagnet on square and honeycomb lattices.
4—-0.166752(3) as T—0 [12,18] and(T. — T)/T. =  Our theoretical results are in good agreement with the
0.0380(h/K)*> as T — T, [11]. Using these numer- numerical ones.
ical results, we improve our results to the third order, This work was funded by Pohang University of Science
obtaining f(|h]) =0.542578|h| + 0.0034873|h|?/|K| — & Technology.
0.00353295|1|3/|K|?>. The critical line is shown in
Fig. 2(a). We compare our results with the Miiller-

Hartmann and Zittartz’s formula [6] and the Wu and [l L. Onsager, Phys. Re@5, 117 (1944). _
coworkers’ formula [9], which are good approximations. [2] B-M. McCoy and T.T. Wu,The two-dimensional Ising

: : model(Harvard Univ. Press, Cambridge, MA, 1973).
At some discrete pomts_ the da_ta generated .f_rom FheS%S] R. J. BaxterExactly Solved Models in Statistical Mechan-
formuli are also plotted in the figure. Our critical line ics (Academic Press, London, 1982)
encompasses the other two, but very close to that of [9].[4] C.N. Yang and T. D. Lee Ph)’/s. Re87 404 (1952):T.D.

We see that the agreements are good. Lee and C. N. Yangibid. 87, 410 (1952).

For the honeycomb lattice; & 3), in the limit 7 — 0, [5] C. Domb, inPhase Transitions and Critical Phenomena
we get|n|=3|K| — 0.9877kT, and asT — T, (T. — edited by C. Domb and M. S. Green (Academic, London,
T)/T.=0.07841(h/K)*>. The numerically obtained 1974), Vol. 3, p. 357.
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