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The Critical Line of an Ising Antiferromagnet on Square and Honeycomb Lattices
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We show that the singularity of the free energy of Ising models in the absence of a magnetic fie
on the triangular, square, and honeycomb lattices is related to zeros of the pseudopartition function
an elementary cycle. Using the Griffiths’ smoothness postulate, we extend these results to the cas
a magnetic field and derive a formula of the critical line of an Ising antiferromagnet, which is in good
agreement with the numerical results. [S0031-9007(96)02173-4]
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Since Onsager’s famous solution of the square lat
Ising model in the absence of a magnetic field [1], the Is
model became a standard model for testing the scaling
universality hypotheses [2,3]. However, the Ising mo
in a magnetic field has not been solved exactly so
although some exact results are known. Of particu
interest is to determine the critical line in thesh, T d plane,
along which the free energy becomes singular. Yang
Lee [4] proved that for the Ising ferromagnet, the critic
line is located ath ­ 0. For the Ising antiferromagne
the series expansion method was used to obtain rel
information [5]. Müller-Hartmann and Zittartz obtaine
the critical line by considering the interfacial tension [6,7
Wu and coworkers [8,9] formulated the Ising model
the honeycomb lattice as an 8-vertex model and identi
the critical line as a locus invariant under a generaliz
weak-graph transformation. In this paper we introduc
new approach by considering zeros of the partition funct
on an elementary cycle and using Griffiths’ smoothn
postulate [10]. A closed-form formula of the critical lin
ns
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of an Ising antiferromagnet is obtained, which is in goo
agreement with the numerical results [8,11,12].

The partition function of the Ising model in the pres-
ence of a magnetic field is given by

Z ­
X
hSj

exp

"
b

√X
kijl

KijSiSj 1 h
X

i

Si

!#
, (1)

whereSi ­ 61 and Kij is the interaction strength. The
sum overkijl runs over the pairs of nearest neighbor
on the lattices. Let us consider the ferromagnetic cas
Kij . 0. The Ising partition function on an elementary
cycle of the triangular, square, and honeycomb lattice
(see Fig. 1) can be written, respectively, as

zt ­ 2febsK11K21K3d 1 ebs2K12K21K3d

1 ebs2K22K31K1d 1 ebs2K12K31K2dg , (2)

zs ­ 2fe2bsK11K2d 1 e2bsK12K2d

1 e22bsK12K2d 1 e22bsK11K2d 1 4g , (3)
zh ­ 2fe2bsK11K21K3d 1 4e2bK1 1 4e2bK2 1 4e2bK3 1 4e22bK1 1 4e22bK2 1 4e22bK3 1 e2bsK11K22K3d 1 e2bsK21K32K1d

1 e2bsK31K12K2d 1 e22bsK11K22K3d 1 e22bsK21K32K1d 1 e22bsK31K12K2d 1 e22bsK11K21K3dg , (4)
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whereKj are the interaction strengths. Making the tra
formation, pj ­ exps2bKjd ! p0

j ­ ipj turns zspjd !

z0spjd ; zsipjd, which reads as:

z0
t ­ 2i3y2sz1z2z3d21y2s1 2 z1z2 2 z2z3 2 z3z1d , (5)

z0
s ­ 2z 21

1 z 21
2 fsz1 1 z2d2 2 s1 2 z1z2d2g , (6)

z0
h ­ 22iz 21

1 z 21
2 z 21

3 fs1 2 z1z2 2 z2z3 2 z3z1d2

2 sz1 1 z2 1 z3 2 z1z2z3d2g , (7)

wherezj ; exps22bKjd. One can easily see that the re
solutions ofz0 ­ 0 give the exact relations [3] for the zero
field critical temperatures of an Ising ferromagnet: squa
z1z2 1 z1 1 z2 ­ 1; triangular: z1z2 1 z2z3 1 z3z1 ­ 1;
honeycomb: z1z2z3 2 z1z2 2 z2z3 2 z3z1 2 z1 2 z2 2

z3 1 1 ­ 0. To state it more clearly,
Lemma 1.—Let the Ising partition function on eac

elementary cycle of the square, triangular, and hon
-

:

-

comb lattices bez ­ zsT , h ­ 0d. Make a transforma-
tion, pj ­ exps2bKjd ! p0

j ­ ipj and zspjd ! z0spjd ­
zsipjd. Then the critical temperatures are obtained fro
the real solutions ofz0 ­ 0.

From this lemma, we deduce, as follows, the resu
obtained first by Wannier [13]:

(1) For Ising models on square and honeycomb l
tices, zs2Kjd ­ zsKjd, z0s2Kjd ­ z0sKjd. Thus an

FIG. 1. The elementary cycle of triangular, square, a
honeycomb lattices.
© 1997 The American Physical Society 413
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antiferromagnetic Ising model with the interactio
strength2Kj has the same critical temperature as that
a ferromagnetic Ising model with the interaction streng
Kj .

(2) For an Ising antiferromagnet on a triangular lattic
the equationz0

t ­ 0 has no real solution at any finit
temperature. Thus, no antiferromagnetic phase trans
occurs at any finite temperature.

Now, let us turn our attention to the isotropic cas
Kj ; K. The partition function on an elementary cyc
with N sites is exactly that of the one-dimensional Isi
model on anN-site chain, with the periodic condition
which is exactly solvable [14]. Thus

z ­ lN
1 1 lN

2 , (8)

wherel6 ­ ebK 6 e2bK . Letting z ­ 0 we obtain

e2bK ­ s2id cot
s2n 1 1dp

2N
, sn ­ 0, 1, 2, ..., N 2 1d .

(9)

Making the transformation,pj ! ipj, yields the critical
temperatures

e2bK ­ 2 cot
s2n 1 1dp

2N
, sn ­ 0, 1, 2, ..., N 2 1d .

(10)

Since K . 0 we have e2bK . 1, and thus onlyn ­
N 2 1 is allowed to yield the equation for thecritical
temperatures of the isotropic Ising models on triangul
square, and honeycomb lattices,

e2bK ­ cot
p

2N
, (11)

whereN is the number of edges of an elementary cyc
On the other hand, Baxter’s result [3] is given in the for

e22bK ­ tanfpsq 2 2dy4qg , (12)

where q is the coordination number. Identifyingq ­
2NysN 2 2d, we find that Eqs. (11) and (12) are identic

From Onsager’s solution we know that the critic
point of the Ising model in the absence of a magne
field corresponds to the singularity of the free ener
[3]. Using lemma 1, we find thatthe singularity of the
free energy is associated with the zeros of the Is
pseudopartition function on an elementary cycle.

In 1952 Yang and Lee [4] proposed the celebra
theory of phase transition. By considering the ze
of the grand partition function in the complex fugaci
plane, they showed that in the thermodynamic limit t
critical point is determined by the positive real roo
When this theory was applied to the ferromagnetic Is
model, they considered zeros of the partition function
the complex magnetic field plane and proved the fam
circle theorem. In 1964 Fisher [15] considered zeros
the partition function in the complex temperature pla
He proved that for the Ising model in the absence o
magnetic field and in the thermodynamic limit, the ze
distribution approaches the positive real axis and gi
the critical point. From lemma 1 we see that for the Isi
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model on triangular, square, and honeycomb lattices,
positive real roots of the Yang-Lee zeros of the partiti
function on the infinite lattice in the complex temperatu
plane are related to the zeros of the partition function
an elementary cycle.

In 1970 Griffiths [10] proposed the smoothness po
tulate. He reasoned that since on the boundary betw
the antiferromagnetic and paramagnetic phases there i
a priori reason to single out the particular point corr
sponding to zero field, it is reasonable to assume that
singularity in the free energy does not change its ba
character along the boundary. This postulate was v
fied by Rapaport and Domb [11]. We will use this post
late and take lemma 1 as the boundary condition forh ­ 0.
Since at the critical point,s≠hy≠MdTc ­ 0, it follows that
along the critical lines≠hy≠MdT ­ 0 [16]. For a square
lattice Ising model, the spontaneous magnetization is gi
by [17]

MsT , Tc, h ­ 0d ­

"
1 2

√
2z1

1 2 z
2
1

2z2

1 2 z
2
2

!2#1y8

, fz0sT , h ­ 0dg1y8 . (13)

According to Griffiths, we assume that in a nonze
magnetic field, near the critical line, the magnetizati
strength takes the same functional form as the case
h ­ 0,

MsT , Tc, hd ­ gsT , hdfgsT , hdg1y8 , (14)

wheregsT , hd andgsT , hd are nonsingular analytic func
tions of T and h. gsT , hd is related to the partition
function on an elementary cycle, withgsT , h ­ 0d ­
z0sT , h ­ 0d. Thus√

≠M
≠h

!
T

­
≠g
≠h

fgsT , hdg1y8 1
g
8

≠g

≠h
fgsT , hdg27y8 .

(15)

SincegsT , hd, gsT , hd, and their derivatives with respec
to h do not approach infinity for arbitraryh, along
the critical line s≠hy≠MdT ­ 0 requires gsT , hd ­ 0.
Therefore ,we might plausibly extend lemma 1 to t
case of a nonzero magnetic field. Let the Ising partiti
function on an elementary cycle of square and honeyco
lattices bez ­ zsT , hd. Make a transformation

pj ­ e2bKj ! p0
j ­ ie2bKj and jhj ! fsjhjd . (16)

Thusz ! z0 with the boundary conditionfs0d ­ 0. Here
fsjhjd is assumed to be a real and analytic function ofh.
The critical line is given bygsT , hd ­ z0 ­ 0.

For simplicity let us consider the isotropic Ising mod
on square and honeycomb lattices. The partition funct
on an elementary cycle [3] is again given by Eq. (8) wi

l6 ­ ebK fcoshbh 6 ssinh2 bh 1 e24bK d1y2g . (17)

Thusz ­ 0 yields

coshbh
ssinh2 bh 1 e24bK d1y2

­ s2id cotp
2n 1 1

2N
,

sn ­ 0, 1, ..., N 2 1d . (18)
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Making the transformations, we obtain the critical line,

e24bK ­ tan2 p
2n 1 1

2N
cosh2 bfsjhjd 1 sinh2 bfsjhjd,

sn ­ 0, 1, ..., N 2 1d . (19)

It is interesting to note that for an Ising ferromagnet (K .

0), if h fi 0 and T , Tc, Eq. (19) has no real solution
and no phase transition occurs, which is consistent wi
the conclusion of the Yang-Lee circle theorem [4].

For an Ising antiferromagnetK , 0, the critical line is
obtained as

e4bjKj ­ e4bcjKj cosh2 bfsjhjd 1 sinh2 bfsjhjd . (20)

fsjhjd can be expanded as

fsjhjd ­ Ajhj 1 Bjhj2 1 · · · . (21)

Consider the limiting caseT ! 0. Taking the logarithm
of Eq. (20), we obtain

jfsjhjdj ­ 2jKj 2
1
2

kT ln
1 1 e4bc jKj

4
. (22)

Thus jfsjh0jdj ­ 2jKj with h0 ­ hsT ­ 0d. Consider
another limiting caseb ! b1

c . Substituting Eq. (21) into
Eq. (20) and keeping only the lowest order terms, w
obtain the well-known scaling law [11],

Tc 2 T
Tc

­
1 1 e24bc jKj

4
A2

jKjkTc
jhj2 . (23)

Using the exact result [11,12]jh0j ­ qjKj and Eq. (12),
to the first-order approximation offsjhjd, we haveA ­
2yq. Thus the critical line is given by

e4bjKj ­ cot2
"

psq 2 2d
4q

#
cosh2

√
2bh

q

!

1 sinh2

√
2bh

q

!
. (24)

It is interesting to note that Eq. (24) contains onlyh, T ,
K , andq.

For the square lattice (q ­ 4), using Eqs. (22) and (23)
we obtain, in the limitT ! 0, jhj ­ 4jK j 2 0.534800kT
and as T ! T 2

c , sTc 2 T dyTc ­ 0.03227shyKd2. The
numerically obtained formuli are 2bjKj ­ 2bhy
4 2 0.166752s3d as T ! 0 [12,18] and sTc 2 TdyTc ­
0.0380shyKd2 as T ! T2

c [11]. Using these numer-
ical results, we improve our results to the third orde
obtaining fsjhjd ø 0.542578jhj 1 0.0034873jhj2yjKj 2

0.00353295jhj3yjKj2. The critical line is shown in
Fig. 2(a). We compare our results with the Müller
Hartmann and Zittartz’s formula [6] and the Wu and
coworkers’ formula [9], which are good approximations
At some discrete points the data generated from the
formuli are also plotted in the figure. Our critical line
encompasses the other two, but very close to that of [9
We see that the agreements are good.

For the honeycomb lattice (q ­ 3), in the limit T ! 0,
we get jhj ­ 3jKj 2 0.9877kT , and asT ! T 2

c , sTc 2

T dyTc ­ 0.07841shyKd2. The numerically obtained
th

e

,

.
se

].

FIG. 2. The critical line of the Ising antiferromagnet.h is in
units of jKj andT is in units of jKjyk.

formula is jhj ­ 3jKj 2 1.030366kT as T ! 0 [8].
Using the numerical results given in [8], we have
third order approximation, fsjhjd ø 0.69151507jhj 2

0.003105195jhj2yjK j 2 0.001725869jhj3yjK j2. It is
plotted in Fig. 2(b). The data given in [8] are marked
a cross. The agreements are good.

If we include more higher order terms in the approx
mation, we will obtain better results. For the anisotrop
cases, we can use the same procedure to obtain the cr
line. The shape of the critical line remains unchang
Details will be published elsewhere.

In conclusion, we have shown that the singularity
the free energy of the Ising model in the absence
a magnetic field on triangular, square, and honeyco
lattices is associated with the zeros of the pseudoparti
function on an elementary cycle. Using the Griffith
postulate, we extended these results to the case wi
nonzero magnetic field and obtained the critical line of t
Ising antiferromagnet on square and honeycomb lattic
Our theoretical results are in good agreement with
numerical ones.

This work was funded by Pohang University of Scien
& Technology.
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